首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that serum deprivation stimulates myofibrillar proteolysis in chick myotubes. In the present study, we examined the effect of serum deprivation on expression of the proteolytic-related genes (ubiquitin, proteasome, calpains, and cathepsin B) by real-time PCR of cDNA in chick myotubes. Myotubes were incubated with serum-free medium for 24 h. Ubiquitin and proteasome subunits (C1 and C2) and calpains (m-, mu-, and p94/calpain-3) but not cathepsin B mRNA expression were increased by serum deprivation. These results indicate that serum deprivation stimulates ubiquitin-proteasome and calpain proteolytic pathways, resulting in an increase in myofibrillar proteolysis in chick myotubes.  相似文献   

2.
3.
The effects of cysteine as an antioxidant nutrient on change in protein modification and myofibrillar proteolysis in chick myotubes by induction of oxidative stress by H(2)O(2) treatment were investigated. Myotubes were treated for 1 h with H(2)O(2) (1 mM). After this treatment, the H(2)O(2) was removed and the cells were cultured in cysteine (0.1 and 1 mM) containing serum-free medium for 24 h. Protein carbonyl content as an index of protein modification and N(tau)-methylhistidine release as an index of myofibrillar proteolysis were increased at 24 h after H(2)O(2) treatment, and the increment was reduced by cysteine. Calpain, proteasome and cathepsin (B+L and D) activities were increased at 24 h after H(2)O(2) treatment, and the increment was also reduced by cysteine. These results indicate that cysteine suppresses protein modification by oxidative stress, resulting in a decrease of protease acitivities, finally resulting in a decrease in myofibrillar proteolysis in chick myotubes.  相似文献   

4.
The effects of cysteine as an antioxidant nutrient on change in protein modification and myofibrillar proteolysis in chick myotubes by induction of oxidative stress by H2O2 treatment were investigated. Myotubes were treated for 1 h with H2O2 (1 mM). After this treatment, the H2O2 was removed and the cells were cultured in cysteine (0.1 and 1 mM) containing serum-free medium for 24 h. Protein carbonyl content as an index of protein modification and Nτ-methylhistidine release as an index of myofibrillar proteolysis were increased at 24 h after H2O2 treatment, and the increment was reduced by cysteine. Calpain, proteasome and cathepsin (B+L and D) activities were increased at 24 h after H2O2 treatment, and the increment was also reduced by cysteine. These results indicate that cysteine suppresses protein modification by oxidative stress, resulting in a decrease of protease acitivities, finally resulting in a decrease in myofibrillar proteolysis in chick myotubes.  相似文献   

5.
6.
During recent years, it has become increasingly clear that the ubiquitin-proteasome proteolytic pathway regulates intracellular protein degradation in various physiological and pathophysiological conditions. Substrates specifically degraded by the proteasome are important tools to assess the involvement of the proteasome in cellular proteolysis. It was recently proposed that the membrane permeable substrate methoxysuccinyl-phenylalanine-leucine-phenylalanine-7-amido-4- trifluoromethyl coumarin (FLF) is degraded specifically by the proteasome. The role of other proteolytic pathways in the degradation of FLF, however, is not fully understood. In the present study, we tested the role of different proteolytic pathways in the degradation of FLF in cultured myotubes and HepG2 cells by treating the cells with inhibitors of lysosomal, calpain and proteasome activity. In addition, we tested the hypothesis that insulin blocks proteasome-dependent degradation of FLF in myotubes and HepG2 cells. Results suggest that degradation of FLF in both myotubes and HepG2 cells is regulated by proteasome and calpain activity but not by lysosomal activity. Insulin inhibited proteasome-dependent but not calpain-dependent degradation of FLF in both myotubes and HepG2 cells. The results are important because they suggest that FLF degradation does not specifically reflect proteasome activity.  相似文献   

7.
Protein metabolism, including the interrelated processes of synthesis and degradation, mediates the growth of an animal. In ectothermic animals, protein metabolism is responsive to changes in both biotic and abiotic conditions. This study aimed to characterise responses of protein metabolism to food deprivation that occur in the coldwater salmonid, Arctic charr, Salvelinus alpinus. We compared two groups of Arctic charr: one fed continuously and the other deprived of food for 36 days. We measured the fractional rate of protein synthesis (KS) in individuals from the fed and fasted groups using a flooding dose technique modified for the use of deuterium-labelled phenylalanine. The enzyme activities of the three major protein degradation pathways (ubiquitin proteasome, lysosomal cathepsins and the calpain systems) were measured in the same fish. This study is the first to measure both KS and the enzymatic activity of protein degradation in the same fish, allowing us to examine the apparent contribution of different protein degradation pathways to protein turnover in various tissues (red and white muscle, liver, heart and gills). KS was lower in the white muscle and in liver of the fasted fish compared to the fed fish. There were no observable effects of food deprivation on the protease activities in any of the tissues with the exception of liver, where the ubiquitin proteasome pathway seemed to be activated during fasting conditions. Lysosomal proteolysis appears to be the primary degradation pathway for muscle protein, while the ubiquitin proteasome pathway seems to predominate in the liver. We speculate that Arctic charr regulate protein metabolism during food deprivation to conserve proteins.  相似文献   

8.
We examined the effects of orally administered glycine on myofibrillar proteolysis in food-deprived chicks. Food-deprived (24 h) chicks were orally administered 57, 113, and 225 mg glycine/100 g body weight and killed after 2 h. The plasma N(tau)-methylhistidine concentration, used as myofibrillar proteolysis, was decreased by glycine. We also examined the expression of proteolytic-related genes by real-time PCR of cDNA from chick skeletal muscles. The mRNA expression of atrogin-1/MAFbx, proteasome C2 subunit, m-calpain large subunit, and cathepsin B was decreased by glycine in a dose-dependent manner. The plasma corticosterone concentration was also decreased by glycine, but the plasma insulin concentration was unaffected. These results indicate that orally administered glycine suppresses myofibrillar proteolysis and expression of proteolytic-related genes of skeletal muscle by decreasing the plasma corticosterone concentration in chicks.  相似文献   

9.
The goal of this research was to evaluate the roles of calpains and their interactions with the proteasome and the lysosome in degradation of individual sarcomeric and cytoskeletal proteins in cultured muscle cells. Rat L8-CID muscle cells, in which we expressed a transgene calpain inhibitor (CID), were used in the study. L8-CID cells were grown as myotubes after which the relative roles of calpain, proteasome and lysosome in total protein degradation were assessed during a period of serum withdrawal. Following this, the roles of proteases in degrading cytoskeletal proteins (desmin, dystrophin and filamin) and of sarcomeric proteins (alpha-actinin and tropomyosin) were assessed. Total protein degradation was assessed by release of radioactive tyrosine from pre-labeled myotubes in the presence and absence of protease inhibitors. Effects of protease inhibitors on concentrations of individual sarcomeric and cytoskeletal proteins were assessed by Western blotting. Inhibition of calpains, proteasome and lysosome caused 20, 62 and 40% reductions in total protein degradation (P<0.05), respectively. Therefore, these three systems account for the bulk of degradation in cultured muscle cells. Two cytoskeletal proteins were highly-sensitive to inhibition of their degradation. Specifically, desmin and dystrophin concentrations increased markedly when calpain, proteasome and lysosome activities were inhibited. Conversely, sarcomeric proteins (alpha-actinin and tropomyosin) and filamin were relatively insensitive to the addition of protease inhibitors to culture media. These data demonstrate that proteolytic systems work in tandem to degrade cytoskeletal and sarcomeric protein complexes and that the cytoskeleton is more sensitive to inhibition of degradation than the sarcomere. Mechanisms, which bring about changes in the activities of the proteases, which mediate muscle protein degradation are not known and represent the next frontier of understanding needed in muscle wasting diseases and in muscle growth biology.  相似文献   

10.
Summary. We previously reported that L-leucine suppresses myofibrillar proteolysis in chick skeletal muscles. In the current study, we compared the effects of L- and D-enantiomers of leucine on myofibrillar proteolysis in skeletal muscle of chicks. We also assessed whether leucine itself or its metabolite, α-ketoisocaproate (α-KIC), mediates the effects of leucine. Food-deprived (24 h) chicks were orally administered 225 mg/100 g body weight L-leucine, D-leucine or α-KIC and were sacrificed after 2 h. L-Leucine administration had an obvious inhibitory effect on myofibrillar proteolysis (plasma Nτ-methylhistidine concentration) in chicks while D-leucine and α-KIC were much more effective. We also examined the expression of the proteolytic-related genes (ubiquitin, proteasome, m-calpain and cathepsin B) by real-time PCR of cDNA in chick skeletal muscles. Ubiquitin mRNA expression was decreased by D-leucine and α-KIC but not L-leucine. Proteasome and m-calpain mRNA expressions as well as cathepsin B mRNA expression were likewise decreased by L-leucine, D-leucine and α-KIC. These results indicate that D-leucine and α-KIC suppress proteolytic-related genes, resulting in an decrease in myofibrillar proteolysis while L-leucine is much less effective in skeletal muscle of chicks, may be explain by conversion of D-leucine to α-KIC.  相似文献   

11.
Addition of the synthetic glucocorticoid, dexamethasone (Dex) to serum-deprived C(2)C(12) myotubes elicited time- and concentration-dependent changes in N(tau)-methylhistidine (3-MH), a marker of myofibrillar protein degradation. Within 24 h, 100 nM Dex significantly decreased the cell content of 3-MH and increased release into the medium. Both of these responses had increased in magnitude by 48 h and then declined toward basal values by 72 h. The increase in the release of 3-MH closely paralleled its loss from the cell protein. Furthermore, Dex also decreased the 3-MH:total cell protein ratio, suggesting that myofibrillar proteins were being preferentially degraded. Incubation of myotubes with the peptide aldehyde, MG-132, an inhibitor of proteolysis by the (ATP)-ubiquitin (Ub)-dependent proteasome, prevented both the basal release of 3-MH (>95%) and the increased release of 3-MH into the medium in response to Dex (>95%). Northern hybridization studies demonstrated that Dex also elicited similar time- and concentration-dependent increases in the expression of mRNA encoding two components (14 kDa E(2) Ub-conjugating enzyme and Ub) of the ATP-Ub-dependent pathway. The data demonstrate that Dex stimulates preferential hydrolysis of myofibrillar proteins in C(2)C(12) myotubes and suggests that the ATP-Ub-dependent pathway is involved in this response.  相似文献   

12.
These experiments were done to clarify that the differential effects of thyroxine (T(4)) and triiodothyronine (T(3)) on skeletal muscle protein turnover are caused by their roles on ATP production. Primary cultured chick muscle cells were treated with a physiological level of T(4) (60 ng/ml), T(3) (12 ng/ml), or ATP (0.5 mM) for 6 days and the protein content, ATP production, proteasome activity, and myofibrillar protein breakdown were measured. The protein content measured as an index of cell growth was not affected by T(4), T(3), or ATP. The cellular ATP level was increased by T(3) and ATP, but not by T(4). Proteasome activity and N(tau)-methylhistidine (MeHis) release measured as an index of myofiblillar protein breakdown was also increased by T(3) and ATP, but not by T(4). These results indicate that T(3) but not T(4) increases ATP production followed by an increase in proteasome activity, and thus stimulates myofibrillar proteolysis.  相似文献   

13.
β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite that may have a positive effect in protein catabolic conditions. Therefore, we hypothesized that HMB treatment could attenuate the sepsis-induced protein catabolic state. The aims of our study were to elucidate the effect of HMB in healthy and septic animals and to evaluate the differences in the action of HMB in different muscle types. Intact and septic (5 mg endotoxin/kg i.p.) rats were administered with HMB (0.5 g/kg/day) or saline. After 24 h, extensor digitorum longus (EDL) and soleus (SOL) muscles were isolated and used for determination of total and myofibrillar proteolysis, protein synthesis, leucine oxidation, activity of cathepsins B and L, chymotrypsin-like activity, and expression of α-subunits of proteasome. Our results indicate that the catabolic state induced by the endotoxin treatment was caused both by increase in protein breakdown (due to activation of proteasome system) and by attenuation of protein synthesis. The EDL (muscle composed of white, fast-twitch fibers) was more susceptible to these changes than the SOL (muscle composed of red, slow-twitch fibers). The HMB treatment had no effect in healthy animals but counteracted the changes in septic animals. The action of HMB was mediated by attenuation of proteasome activity and protein breakdown, not by stimulation of protein synthesis. More pronounced effect of the HMB treatment on myofibrillar proteolysis was observed in the SOL.  相似文献   

14.
The p97/VCP ATPase complex facilitates the extraction and degradation of ubiquitinated proteins from larger structures. We therefore studied if p97 participates to the rapid degradation of myofibrillar proteins during muscle atrophy. Electroporation of a dominant negative p97 (DNp97), but not the WT, into mouse muscle reduced fibre atrophy caused by denervation and food deprivation. DNp97 (acting as a substrate-trap) became associated with specific myofibrillar proteins and its cofactors, Ufd1 and p47, and caused accumulation of ubiquitinated components of thin and thick filaments, which suggests a role for p97 in extracting ubiquitinated proteins from myofibrils. DNp97 expression in myotubes reduced overall proteolysis by proteasomes and lysosomes and blocked the accelerated proteolysis induced by FoxO3, which is essential for atrophy. Expression of p97, Ufd1 and p47 increases following denervation, at times when myofibrils are rapidly degraded. Surprisingly, p97 inhibition, though toxic to most cells, caused rapid growth of myotubes (without enhancing protein synthesis) and hypertrophy of adult muscles. Thus, p97 restrains post-natal muscle growth, and during atrophy, is essential for the accelerated degradation of most muscle proteins.  相似文献   

15.
To estimate calpain proteolysis, we measured the hydrolysis rate of a fluorogenic calpain substrate in individual resting normal and dystrophic mdx mouse myotubes in culture. Hydrolysis rates were high during myoblast and myotube alignment and fusion. After alignment and fusion ceased, hydrolysis rates declined. For normal myotubes, hydrolysis remained low after the development of contractile activity. In contrast, after the development of contractile activity, dystrophic mdx myotubes had abnormally high levels of hydrolysis that were dependent on external calcium and that could be abolished by calpeptin, an inhibitor of calpain. We eliminated the direct effects of contraction during measurements of hydrolysis by the addition of tetrodotoxin. Substrate hydrolysis by lysosomes or proteosomes was controlled for using NH(4)Cl and clasto-lactacystin beta-lactone, respectively. Increased activity of the calcium-activated protease in mature mdx myotubes was linked to the abnormal activity of calcium-specific leak channels because an antagonist of these channels reduced the higher levels of hydrolysis in dystrophic myotubes to nearly normal levels. The abnormal activity of these channels is linked to an increased frequency of transient sarcolemmal disruptions in the more fragile mdx myotubes (, ). Treatment of mdx myotubes with a pro-drug of methylprednisolone also reduced calpain substrate hydrolysis to nearly normal levels. However, this inhibition only required 2.5 h of pretreatment, which was not long enough to act by the known effects of prednisolone on calcium homeostasis.  相似文献   

16.
Identification and characterization of PEBP as a calpain substrate   总被引:3,自引:0,他引:3  
Calpains are calcium- and thiol-dependent proteases whose dysregulation has been implicated in a number of diseases and conditions such as cardiovascular dysfunction, ischemic stroke, and Alzheimer's disease (AD). While the effects of calpain activity are evident, the precise mechanism(s) by which dysregulated calpain activity results in cellular degeneration are less clear. In order to determine the impact of calpain activity, there is a need to identify the range of specific calpain substrates. Using an in vitro proteomics approach we confirmed that phosphatidylethanolamine-binding protein (PEBP) as a novel in vitro and in situ calpain substrate. We also observed PEBP proteolysis in a model of brain injury in which calpain is clearly activated. In addition, with evidence of calpain dysregulation in AD, we quantitated protein levels of PEBP in postmortem brain samples from the hippocampus of AD and age-matched controls and found that PEBP levels were approximately 20% greater in AD. Finally, with previous evidence that PEBP may act as a serine protease inhibitor, we tested PEBP as an inhibitor of the proteasome and found that PEBP inhibited the chymostrypsin-like activity of the proteasome by approximately 30%. Together these data identify PEBP as a potential in vivo calpain substrate and indicate that increased PEBP levels may contribute to impaired proteasome function.  相似文献   

17.
We have analysed protein degradation in primary cultures of normal and dystrophic chick muscle, in fibroblasts derived from normal and dystrophic chicks, and in human skin fibroblasts from normal donors and from patients with Duchenne muscular dystrophy (DMD). Our results indicate that degradative rates of both short- and long-lived proteins are unaltered in dystrophic muscle cells and in dystrophic fibroblasts. Longer times in culture and co-culturing chick fibroblasts with the chick myotubes do not expose any dystrophy-related abnormalities in protein catabolism. Furthermore, normal and dystrophic muscle cells and fibroblasts are equally able to regulate proteolysis in response to serum and insulin. We conclude that cultures of chick myotubes, chick fibroblasts, and fibroblasts derived from humans afflicted with DMD are not appropriate models for studying the enhanced protein degradation observed in dystrophy.  相似文献   

18.
Calpain, calcium-dependent cysteine protease, is reported here to impose the crucial influence on oridonin-induced L929 cell apoptosis and autophagy. We found that inhibition of calpain increased oridonin-induced Bax activation, cytochrome c release and PARP cleavage, indicating that calpain plays an anti-apoptotic role in oridonin-induced L929 cell apoptosis. To explore this potential anti-apoptotic mechanism, we inhibited calpain and proteasome activity in oridonin-induced L929 cell apoptosis, and discovered that the inducible IκBα proteolysis was partially blocked by the inhibition of either calpain or proteasome, but completely blocked by the inhibition of both. It demonstrated that calpain and proteasome were two distinct pathways participating in IκBα degradation. To further study the role of calpain in oridonin-induced L929 cell autophagy, we discovered that calpain inhibitor decreased oridonin-induced autophagy, as well as Beclin 1 activation and the conversion from LC3-I to LC3-II. Moreover, Inhibition of autophagy by 3-MA increased oridonin-induced apoptosis. In conclusion, besides suppressing apoptosis, calpain promotes autophagy in oridonin-induced L929 cell death, and inhibition of autophagy might contribute to up-regulation of apoptosis.  相似文献   

19.
Of a total of three Friesian cows, two of which had been treated with adrenalin before slaughter, Mm longissimus (LO), supraspinatus (SS), triceps brachii (TB) and rectus abdominis (RA) were sampled at different times post mortem (pm). pH, calpain/calpastatin activities and degradation of myofibrillar proteins, as evidenced by SDS-PAGE, were assessed. Contraction characteristics were measured by determining myofibrillar ATPase activities. Adrenalin treatment resulted in a high ultimate pH (6.48 +/- 0.40) and a faster decline pm of calpain I activity. The effect was similar in all four investigated muscles (72.4 +/- 5.4% decline at 24 h pm). The decline in calpain I activity in the control muscles was muscle-dependent and ranged from 22.8-74.3% at 24 h pm. Differences in ultimate pH did not lead to distinct rates of breakdown of proteins with molecular weights lower than that of myosin heavy chain. Calpastatin levels were muscle-dependent and correlated with myofibrillar ATPase activity (r = -0.99). In a second experiment Mm rectus abdominis (RA) and psoas major (PM) of adrenalin-treated (n = 6) and control (n = 6) Friesian-Holstein calves were sampled at 1 and 29 h pm for assessment of calpain activities. At seven days pm the M longissimus (LO) was sampled for tenderness evaluation. pH values were measured at 30 min, 4 h and 29 h pm. Adrenalin treatment resulted in a higher ultimate pH in the three muscles. Higher ultimate pH resulted in lower calpain activities in the RA at 29 h pm (P less than or equal to 0.025).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
These experiments were done to clarify that the differential effects of thyroxine (T4) and triiodothyronine (T3) on skeletal muscle protein turnover are caused by their roles on ATP production. Primary cultured chick muscle cells were treated with a physiological level of T4 (60 ng/ml), T3 (12 ng/ml), or ATP (0.5 mM) for 6 days and the protein content, ATP production, proteasome activity, and myofibrillar protein breakdown were measured. The protein content measured as an index of cell growth was not affected by T4, T3, or ATP. The cellular ATP level was increased by T3 and ATP, but not by T4. Proteasome activity and N τ-methylhistidine (MeHis) release measured as an index of myofiblillar protein breakdown was also increased by T3 and ATP, but not by T4. These results indicate that T3 but not T4 increases ATP production followed by an increase in proteasome activity, and thus stimulates myofibrillar proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号