首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
蛋白质的序列决定结构,结构决定功能。新一代准确的蛋白质结构预测工具为结构生物学、结构生物信息学、药物研发和生命科学等许多领域带来了全新的机遇与挑战,单链蛋白质结构预测的准确率达到与试验方法相媲美的水平。本综述概述了蛋白质结构预测领域的理论基础、发展历程与最新进展,讨论了大量预测的蛋白质结构和基于人工智能的方法如何影响实验结构生物学,最后,分析了当前蛋白质结构预测领域仍未解决的问题以及未来的研究方向。  相似文献   

2.
大规模蛋白质功能预测方法的进展   总被引:2,自引:0,他引:2  
全基因组测序的快速发展在获得大量序列信息的同时也迫切需要获取功能信息,用生物信息学方法进行大规模蛋白质功能预测在这种需求中获得发展。这些预测方法从基于序列同源性发展到基于genomic-context获得功能相关蛋白质对。基于genomic-context的方法具体有基因融合、染色体邻近、相似系统发生谱等。由于各种方法的偏向性,最新的趋势是整合多种方法的数据,组成蛋白质相互作用网络,通过分析网络的结构进行蛋白质功能预测。  相似文献   

3.
蛋白质的序列、结构和功能多种多样.大量研究表明蛋白质的结构与其氨基酸序列的排序有关,并且局部的氨基酸序列环境对蛋白质的结构具有一定的影响.本文提出一种新的基于5-mer氨基酸扭转角统计偏好的蛋白质结构类型预测方法,在该方法通过PDB数据库中5-mer中间氨基酸的扭转角统计偏好来进行结构类型的预测.新方法可以通过计算机仿...  相似文献   

4.
蛋白质的二级结构预测研究进展   总被引:1,自引:0,他引:1  
唐媛  李春花  张瑗  尚进  邹凌云  李立奇 《生物磁学》2013,(26):5180-5182
认识蛋白质的二级结构是了解蛋白质的折叠模式和三级结构的基础,并为研究蛋白质的功能以及它们之间的相互作用模式提供结构基础,同时还可以为新药研发提供帮助。故研究蛋白质的二级结构具有重要的意义。随着后基因组时代的到来,越来越多的蛋白质序列不断被发现,给蛋白质的二级结构研究带来巨大的挑战和研究空间。而依靠传统的实验方法很难获取大规模蛋白质的二级结构信息。目前,采用生物信息学手段仍然是获得大部分蛋白质二级结构的途径。近年来,许多研究者通过构建用于二级结构预测的蛋白质数据集,计算、提取蛋白质的各种特征信息,并采用不同的预测算法预测蛋白质的二级结构得到了快速的发展。本文拟从蛋白质的特征信息的提取与筛选、预测算法以及预测效果的检验方法等方面进行综述,介绍蛋白质二级结构预测领域的研究进展。相信随着基因组学、蛋白质组学和生物信息学的不断发展,蛋白质二级结构预测会不断取得新突破。  相似文献   

5.
随着蛋白质数据库、基因组序列数据库和自动化技术的迅速发展,结构基因组学作为新的预测蛋白质结构的技术显得越发重要。本文对结构基因组学的产生发展进行概述,分别介绍结构基因组技术的功能、实验流程、蛋白质功能的预测方法,并对该学科发展进行了展望。  相似文献   

6.
有关蛋白质功能的研究是解析生命奥秘的基础,机器学习技术在该领域已有广泛应用。利用支持向量机(support vectormachine,SVM)方法,构建一个预测蛋白质功能位点的通用平台。该平台先提取非同源蛋白质序列,再对这些序列进行特征编码(包括序列的基本信息、物化特征、结构信息及序列保守性特征等),以编码好的样本作为训练数据,利用SVM进行训练,得到敏感性、特异性、Matthew相关系数、准确率及ROC曲线等评价指标,反复测试,得到评价指标最优的SVM模型后,便可以用来预测蛋白质序列上的功能位点。该平台除了应用在预测蛋白质功能位点之外,还可以应用于疾病相关单核苷酸多态性(SNP)预测分析、预测蛋白质结构域分析、生物分子间的相互作用等。  相似文献   

7.
蛋白质结构类预测是生物信息和蛋白质科学中重要的研究领域.基于Chou提出的伪氨基酸离散模型框架,从蛋白质序列出发,设计一种新的伪氨基酸组成方法表示蛋白质序列样本.抽取氨基酸组合(10-D)在序列中出现的频率和疏水氨基酸模式(6-D)表示蛋白质序列的附加特征,用和传统的氨基酸组成(20-D)一起构成的36维的伪氨基酸组成向量来表示蛋白质序列的特征.使用遗传算法来优化附加特征的权重系数.伪氨基酸组成向量作为输入数据,模糊支持向量机作为预测工具.使用三个常用的标准数据集来验证算法的性能.Jack-knife检验结果说明本方法具有较高的准确率,有望成为潜在的预测蛋白质功能的工具.  相似文献   

8.
提出了一种新的蛋白质二级结构预测方法. 该方法从氨基酸序列中提取出和自然语言中的“词”类似的与物种相关的蛋白质二级结构词条, 这些词条形成了蛋白质二级结构词典, 该词典描述了氨基酸序列和蛋白质二级结构之间的关系. 预测蛋白质二级结构的过程和自然语言中的分词和词性标注一体化的过程类似. 该方法把词条序列看成是马尔科夫链, 通过Viterbi算法搜索每个词条被标注为某种二级结构类型的最大概率, 其中使用词网格描述分词的结果, 使用最大熵马尔科夫模型计算词条的二级结构概率. 蛋白质二级结构预测的结果是最优的分词所对应的二级结构类型. 在4个物种的蛋白质序列上对这种方法进行测试, 并和PHD方法进行比较. 试验结果显示, 这种方法的Q3准确率比PHD方法高3.9%, SOV准确率比PHD方法高4.6%. 结合BLAST搜索的局部相似的序列可以进一步提高预测的准确率. 在50个CASP5目标蛋白质序列上进行测试的结果是: Q3准确率为78.9%, SOV准确率为77.1%. 基于这种方法建立了一个蛋白质二级结构预测的服务器, 可以通过http://www.insun.hit.edu.cn:81/demos/biology/index.html来访问.  相似文献   

9.
蛋白质是有机生命体内不可或缺的化合物,在生命活动中发挥着多种重要作用,了解蛋白质的功能有助于医学和药物研发等领域的研究。此外,酶在绿色合成中的应用一直备受人们关注,但是由于酶的种类和功能多种多样,获取特定功能酶的成本高昂,限制了其进一步的应用。目前,蛋白质的具体功能主要通过实验表征确定,该方法实验工作繁琐且耗时耗力,同时,随着生物信息学和测序技术的高速发展,已测序得到的蛋白质序列数量远大于功能获得注释的序列数量,高效预测蛋白质功能变得至关重要。随着计算机技术的蓬勃发展,由数据驱动的机器学习方法已成为应对这些挑战的有效解决方案。本文对蛋白质功能及其注释方法以及机器学习的发展历程和操作流程进行了概述,聚焦于机器学习在酶功能预测领域的应用,对未来人工智能辅助蛋白质功能高效研究的发展方向提出了展望。  相似文献   

10.
了解真核细胞中细胞核内蛋白质的定位情况对于新发现蛋白质的功能注释具有重要意义.随着蛋白质数据库中蛋白质序列数量的急速增加,采用计算方法来预测蛋白质亚核定位已经成为蛋白质科学领域研究的热点.根据Chou提出的伪氨基酸组成离散模型,提出了一种新的蛋白质亚核定位预测方法.计算蛋白质序列的近似熵作为附加特征构建伪氨基酸组成,表示蛋白质序列特征,AdaBoost分类算法作为预测工具.与已报道的亚核定位预测方法的性能相比,这种方法具有更高的准确率.  相似文献   

11.
In recent years, significant effort has been given to predicting protein functions from protein interaction data generated from high throughput techniques. However, predicting protein functions correctly and reliably still remains a challenge. Recently, many computational methods have been proposed for predicting protein functions. Among these methods, clustering based methods are the most promising. The existing methods, however, mainly focus on protein relationship modeling and the prediction algorithms that statically predict functions from the clusters that are related to the unannotated proteins. In fact, the clustering itself is a dynamic process and the function prediction should take this dynamic feature of clustering into consideration. Unfortunately, this dynamic feature of clustering is ignored in the existing prediction methods. In this paper, we propose an innovative progressive clustering based prediction method to trace the functions of relevant annotated proteins across all clusters that are generated through the progressive clustering of proteins. A set of prediction criteria is proposed to predict functions of unannotated proteins from all relevant clusters and traced functions. The method was evaluated on real protein interaction datasets and the results demonstrated the effectiveness of the proposed method compared with representative existing methods.  相似文献   

12.
In the last two decades, the number of the known protein sequences increased very rapidly. However, a knowledge of protein function only exists for a small portion of these sequences. Since the experimental approaches for determining protein functions are costly and time consuming, in silico methods have been introduced to bridge the gap between knowledge of protein sequences and their functions. Knowing the subcellular location of a protein is considered to be a critical step in understanding its biological functions. Many efforts have been undertaken to predict the protein subcellular locations in silico. With the accumulation of available data, the substructures of some subcellular organelles, such as the cell nucleus, mitochondria and chloroplasts, have been taken into consideration by several studies in recent years. These studies create a new research topic, namely ‘protein sub-subcellular location prediction’, which goes one level deeper than classic protein subcellular location prediction.  相似文献   

13.
蛋白质结构从头预测是不依赖模板仅从氨基酸序列信息得到天然结构。它的关键是正确定义能量函数、精确选用计算机搜索算法来寻找能量最低值。基于此,本文系统介绍了能量函数和构象搜索策略,并列举了几种比较成功的从头预测方法,通过比较得出结论:基于统计学知识的能量函数是近年来从头预测发展的主要方向,现有从头预测的构象搜索都用到Monte Carlo法。这表明随着蛋白质结构预测研究的深入,能量函数的构建、构象搜索方法的选择、大分子蛋白质结构的从头预测等关键性问题都取得了突破性进展。  相似文献   

14.
Prediction of protein function from protein sequence and structure   总被引:1,自引:0,他引:1  
The sequence of a genome contains the plans of the possible life of an organism, but implementation of genetic information depends on the functions of the proteins and nucleic acids that it encodes. Many individual proteins of known sequence and structure present challenges to the understanding of their function. In particular, a number of genes responsible for diseases have been identified but their specific functions are unknown. Whole-genome sequencing projects are a major source of proteins of unknown function. Annotation of a genome involves assignment of functions to gene products, in most cases on the basis of amino-acid sequence alone. 3D structure can aid the assignment of function, motivating the challenge of structural genomics projects to make structural information available for novel uncharacterized proteins. Structure-based identification of homologues often succeeds where sequence-alone-based methods fail, because in many cases evolution retains the folding pattern long after sequence similarity becomes undetectable. Nevertheless, prediction of protein function from sequence and structure is a difficult problem, because homologous proteins often have different functions. Many methods of function prediction rely on identifying similarity in sequence and/or structure between a protein of unknown function and one or more well-understood proteins. Alternative methods include inferring conservation patterns in members of a functionally uncharacterized family for which many sequences and structures are known. However, these inferences are tenuous. Such methods provide reasonable guesses at function, but are far from foolproof. It is therefore fortunate that the development of whole-organism approaches and comparative genomics permits other approaches to function prediction when the data are available. These include the use of protein-protein interaction patterns, and correlations between occurrences of related proteins in different organisms, as indicators of functional properties. Even if it is possible to ascribe a particular function to a gene product, the protein may have multiple functions. A fundamental problem is that function is in many cases an ill-defined concept. In this article we review the state of the art in function prediction and describe some of the underlying difficulties and successes.  相似文献   

15.
RNA molecules play integral roles in gene regulation, and understanding their structures gives us important insights into their biological functions. Despite recent developments in template-based and parameterized energy functions, the structure of RNA--in particular the nonhelical regions--is still difficult to predict. Knowledge-based potentials have proven efficient in protein structure prediction. In this work, we describe two differentiable knowledge-based potentials derived from a curated data set of RNA structures, with all-atom or coarse-grained representation, respectively. We focus on one aspect of the prediction problem: the identification of native-like RNA conformations from a set of near-native models. Using a variety of near-native RNA models generated from three independent methods, we show that our potential is able to distinguish the native structure and identify native-like conformations, even at the coarse-grained level. The all-atom version of our knowledge-based potential performs better and appears to be more effective at discriminating near-native RNA conformations than one of the most highly regarded parameterized potential. The fully differentiable form of our potentials will additionally likely be useful for structure refinement and/or molecular dynamics simulations.  相似文献   

16.
γ-转角是所有转角中数量位居第二的结构,约占整个蛋白质结构的3.4%。γ-转角有助于球形结构的形成,帮助肽链改变折叠方向,因此就更加有必要研究γ-转角的预测方法,从而提高蛋白质二级结构的预测精度。近几十年来关于γ-转角的预测方法越来越成熟,预测精度越来越高。本文综述了近年来对γ-转角研究进展,包括它的研究方法以及预测的准确度等。  相似文献   

17.
Recent progress in predicting protein sub-subcellular locations   总被引:1,自引:0,他引:1  
In the last two decades, the number of the known protein sequences increased very rapidly. However, a knowledge of protein function only exists for a small portion of these sequences. Since the experimental approaches for determining protein functions are costly and time consuming, in silico methods have been introduced to bridge the gap between knowledge of protein sequences and their functions. Knowing the subcellular location of a protein is considered to be a critical step in understanding its biological functions. Many efforts have been undertaken to predict the protein subcellular locations in silico. With the accumulation of available data, the substructures of some subcellular organelles, such as the cell nucleus, mitochondria and chloroplasts, have been taken into consideration by several studies in recent years. These studies create a new research topic, namely 'protein sub-subcellular location prediction', which goes one level deeper than classic protein subcellular location prediction.  相似文献   

18.
BackgroundSimilarity based computational methods are a useful tool for predicting protein functions from protein–protein interaction (PPI) datasets. Although various similarity-based prediction algorithms have been proposed, unsatisfactory prediction results have occurred on many occasions. The purpose of this type of algorithm is to predict functions of an unannotated protein from the functions of those proteins that are similar to the unannotated protein. Therefore, the prediction quality largely depends on how to select a set of proper proteins (i.e., a prediction domain) from which the functions of an unannotated protein are predicted, and how to measure the similarity between proteins. Another issue with existing algorithms is they only believe the function prediction is a one-off procedure, ignoring the fact that interactions amongst proteins are mutual and dynamic in terms of similarity when predicting functions. How to resolve these major issues to increase prediction quality remains a challenge in computational biology.ResultsIn this paper, we propose an innovative approach to predict protein functions of unannotated proteins iteratively from a PPI dataset. The iterative approach takes into account the mutual and dynamic features of protein interactions when predicting functions, and addresses the issues of protein similarity measurement and prediction domain selection by introducing into the prediction algorithm a new semantic protein similarity and a method of selecting the multi-layer prediction domain. The new protein similarity is based on the multi-layered information carried by protein functions. The evaluations conducted on real protein interaction datasets demonstrated that the proposed iterative function prediction method outperformed other similar or non-iterative methods, and provided better prediction results.ConclusionsThe new protein similarity derived from multi-layered information of protein functions more reasonably reflects the intrinsic relationships among proteins, and significant improvement to the prediction quality can occur through incorporation of mutual and dynamic features of protein interactions into the prediction algorithm.  相似文献   

19.
Protein structure prediction in genomics   总被引:1,自引:0,他引:1  
As the number of completely sequenced genomes rapidly increases, including now the complete Human Genome sequence, the post-genomic problems of genome-scale protein structure determination and the issue of gene function identification become ever more pressing. In fact, these problems can be seen as interrelated in that experimentally determining or predicting or the structure of proteins encoded by genes of interest is one possible means to glean subtle hints as to the functions of these genes. The applicability of this approach to gene characterisation is reviewed, along with a brief survey of the reliability of large-scale protein structure prediction methods and the prospects for the development of new prediction methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号