首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies were performed to test the hypothesis that the absence of adrenal glucocorticoids late in gestation alters sympathetic and baroreflex responses before and immediately after birth. Fetal sheep at 130-131 days gestation (term 145 days) were subjected to bilateral adrenalectomy before the normal prepartum increase in plasma cortisol levels. One group of fetuses (n = 5) received physiological cortisol replacement with a continuous infusion of hydrocortisone (2 mg x day(-1) x kg(-1) for 10 days), whereas the other group received 0.9% NaCl vehicle (n = 5). All animals underwent a second surgery 48 h before the study for placement of a renal nerve recording electrode. Heart rate (HR), mean arterial blood pressure (MABP), renal sympathetic nerve activity (RSNA), and baroreflex control of HR and RSNA were studied before and after cesarean section delivery. At the time of study (140-141 days gestation), fetal plasma cortisol concentration was undetectable in adrenalectomized (ADX) fetuses and 58 +/- 9 ng/ml in animals receiving cortisol replacement (ADX + F). Fetal and newborn MABP was significantly greater in ADX + F relative to ADX animals. One hour after delivery, MABP increased 13 +/- 3 mmHg and RSNA increased 91 +/- 12% above fetal values in ADX + F (both P < 0.05) but remained unchanged in ADX lambs. The midpoint pressures of the fetal HR and RSNA baroreflex function curves were significantly greater in ADX + F (54 +/- 3 and 56 +/- 3 mmHg for HR and RSNA curves, respectively) than ADX fetuses (45 +/- 2 and 46 +/- 3 mmHg). After delivery, the baroreflex curves reset toward higher pressure in ADX + F but not ADX lambs. These results suggest that adrenal glucocorticoids contribute to cardiovascular regulation in the late-gestation fetus and newborn by modulating arterial baroreflex function and sympathetic activity.  相似文献   

2.
Right ventricular function was investigated in seven fetal sheep (125-130 days gestation) hypoxaemic at a mean of 5 days postoperation, and were compared to nine normoxaemic fetal sheep of the same gestation. Arterial O2 and CO2 tensions, pH, and haematocrit values for the hypoxaemic and normoxaemic fetuses were 15.6 +/- 1.0 vs. 20.6 +/- 1.8 torr, 49.4 +/- 4.1 vs. 46.1 +/- 1.6 torr, 7.38 +/- 0.02 vs. 7.39 +/- 0.02, and 29 +/- 7.5 vs. 31 +/- 5.3%, respectively. Right ventricular output and stroke volume were similar in the two groups, 241 +/- 57 vs. 247 +/- 75 ml X min-1 X kg-1 and 1.5 +/- 0.4 vs. 1.5 +/- 0.4 ml X kg-1, respectively. Filling and afterload pressures were also similar in the hypoxaemic and normoxaemic fetuses with right atrial pressure of 3.0 +/- 1.0 vs. 3.7 +/- 1.2 mmHg, and arterial pressure of 42 +/- 5 vs. 43 +/- 4 mmHg, respectively. Ventricular function curves were produced by rapid withdrawal and re-infusion of fetal blood producing curves with a steep ascending limb and a plateau phase. The breakpoint joining the limbs of the control function curve for the hypoxaemic and normoxaemic fetuses were right atrial pressure 2.9 +/- 1.0 vs. 3.4 +/- 1.2 mmHg and a stroke volume of 1.5 +/- 0.5 vs. 1.5 +/- 0.4 ml X kg-1, respectively. Linear regression of stroke volume against arterial pressure from 30-90 mmHg during infusions of nitroprusside and phenylephrine at right atrial filling pressures greater than breakpoint was stroke volume = 0.018 ml X kg-1 X mmHg-1 arterial pressure +/- 2.25 ml X kg-1. This equation is not different from that calculated in normoxaemic fetuses, and demonstrates that the fetal right ventricle is quite sensitive to changes in arterial pressure. These data indicate that reduction in fetal oxygen content by an estimated 40% does not affect fetal right ventricular function.  相似文献   

3.
Preterm infants are often treated with intravenous dopamine to increase mean arterial blood pressure (MAP). However, there are few data regarding cerebrovascular responses of developing animals to dopamine infusions. We studied eight near-term and eight preterm chronically catheterized unanesthetized fetal sheep. We measured cerebral blood flow and calculated cerebral vascular resistance (CVR) at baseline and during dopamine infusion at 2.5, 7.5, 25, and 75 microg x kg(-1) x min(-1). In preterm fetuses, MAP increased only at 75 microg x kg(-1) x min(-1) (25 +/- 5%), whereas in near-term fetuses MAP increased at 25 microg x kg(-1) x min(-1) (28 +/- 4%) and further at 75 microg x kg(-1) x min(-1) (51 +/- 3%). Dopamine infusion was associated with cerebral vasoconstriction in both groups. At 25 microg x kg(-1) x min(-1), CVR increased 77 +/- 51% in preterm fetuses and 41 +/- 11% in near-term fetuses, and at 75 microg x kg(-1) x min(-1), CVR increased 80 +/- 33% in preterm fetuses and 83 +/- 21% in near-term fetuses. We tested these responses to dopamine in 11 additional near-term fetuses under alpha-adrenergic blockade (phenoxybenzamine, n = 5) and under dopaminergic D(1)-receptor blockade (SCH-23390, n = 6). Phenoxybenzamine completely blocked dopamine's pressor and cerebral vasoconstrictive effects, while D(1)-receptor blockade had no effect. Therefore, in unanesthetized developing fetuses, dopamine infusion is associated with cerebral vasoconstriction, which is likely an autoregulatory, alpha-adrenergic response to an increase in blood pressure.  相似文献   

4.
During the latter third of gestation, the number of resistance vessels in the lungs of the fetal sheep increases by 10-fold even after correction for lung growth. We measured pulmonary arterial pressure and blood flow directly and calculated total pulmonary resistance (pressure divided by flow) in intrauterine fetal lambs at 93-95 days and at 136 days of gestation (term is 145-148 days). In addition, we used a hyperbaric chamber to increase oxygen tension in the fetuses and measured the effect on the pulmonary circulation. When corrected for wet weight of the lungs, pulmonary blood flow did not change with advancing gestation (139 +/- 42 to 103 +/- 45 ml.100 g-1.min-1). Pulmonary arterial pressure increased (42 +/- 5 to 49 +/- 3 mmHg); thus total pulmonary resistance increased with advancing gestation from 0.32 +/- 0.12 to 0.55 +/- 0.21 mmHg.100 g.min.ml-1. If the blood flow is corrected for dry weight of the lungs, neither pulmonary blood flow nor total pulmonary resistance changed with advancing gestation. Increasing oxygen tension increased pulmonary blood flow 10-fold in the more mature fetuses but only 0.2-fold in the less mature fetuses. At the normal low oxygen tension of the fetus, pulmonary blood flow does not increase between these two points of gestation in the fetal lamb despite the increase in vessel density in the lungs. However, during elevated oxygen tension, pulmonary blood flow does increase in proportion to the increase in vessel density.  相似文献   

5.
The purpose of this study was to determine whether an increase in pulmonary vascular filtration pressure affects net production of liquid within the lumen of the fetal lung. We studied 14 chronically catheterized fetal lambs [130 +/- 3 (SD) days gestation] before, during, and after a 4-h rapid (500 ml/h) intravenous infusion of isotonic saline. In seven fetuses we measured pulmonary arterial and left atrial pressures, lung lymph flow, and protein osmotic pressures in plasma and lymph. In eight lambs with a chronically implanted tracheal loop cannula, we measured the change in luminal lung liquid volume over time by progressive dilution of tracheally instilled 125I-albumin, which stays within the lung lumen. Saline infusion increased pulmonary vascular pressures by 2-3 mmHg and decreased the plasma-lymph difference in protein osmotic pressure by 1 mmHg. Lung lymph flow increased from 1.9 +/- 0.6 to 3.9 +/- 1.2 (SD) ml/h; net production of luminal lung liquid did not change (12 +/- 5 to 12 +/- 6 ml/h). Thus an increase in net fluid filtration pressure in the pulmonary circulation, which was sufficient to double lung lymph flow, had no significant effect on luminal lung liquid secretion in fetal sheep.  相似文献   

6.
The effect of acute hypoxaemia on right and left ventricular function was investigated in 8 fetal sheep (137-140 days gestation). Fetuses were instrumented with electromagnetic flow sensors on the ascending aorta and the main pulmonary artery. After 8 days recovery, hypoxaemia was achieved by reducing the maternal ewe's inspired O2 concentration to 13.1 +/- 1.5%. Control and hypoxaemic arterial blood values were pH 7.37 +/- 0.04 (SD) and 7.35 +/- 0.06, PCO2 48.0 +/- 2.8 and 47.6 +/- 5.1 mmHg, PO2 19.9 +/- 2.2 and 11.4 +/- 1.5 mmHg, haematocrit 37.5 +/- 1.2 and 39.5 +/- 2.2, respectively. Arterial pressure increased insignificantly with acute hypoxaemia (50.2 +/- 3.9 to 53.6 +/- 8.1 mmHg). Left and right ventricular performance was assessed by generating biventricular function curves relating stroke volume to mean atrial pressure. All function curves were composed of steep ascending and plateau limbs that intersected at a breakpoint. Comparing control and hypoxaemia function curves, the left ventricular stroke volume breakpoints were 0.79 +/- 0.20 and 0.78 +/- 0.21 ml/kg, respectively, while the right ventricular stroke volume breakpoints were 0.99 +/- 0.11 and 0.88 +/- 0.21 ml/kg (n.s.). In 4 fetuses, acute hypoxaemia was associated with significant increases in arterial blood pressure (P less than 0.05). In these fetuses, the right ventricular function curve was shifted significantly downward compared to the control right ventricular curve. When nitroprusside was given to these hypertensive fetuses to return blood pressure to control levels, the right ventricular function curve returned to baseline. We conclude that even under conditions of extreme hypoxaemia, ventricular function is well preserved in the normotensive fetal sheep. However, when increases in arterial pressure also accompany hypoxaemia, detectable changes in right ventricular function can be accounted for by changes in arterial pressure.  相似文献   

7.
In adult rats, when plasma osmolality increases, water flows across the blood-brain barrier down its concentration gradient from brain to plasma, and brain volume deceases. The brain responds to this stress by gaining osmotically active solutes, which limit water loss. This phenomenon is termed brain volume (water) regulation. We tested the hypothesis that brain volume regulation is more effective in young lambs and adult sheep than in fetuses, premature lambs, and newborn lambs. Brain water responses to acute hyperosmolality were measured in the cerebral cortex, cerebellum, and medulla of fetuses at 60 and 90% of gestation, premature ventilated lambs at 90% of gestation, newborn lambs, young lambs at 20-30 days of age, and adult sheep. After exposure of the sheep to increases in systemic osmolality with mannitol plus NaCl, brain water content and electrolytes were quantified. The ideal osmometer is a system in which impermeable solutes do not enter or leave in response to an osmotic stress. There were significant differences from an ideal osmometer in the cerebral cortex of fetuses at 90% of gestation, cerebral cortex, and cerebellum of newborn lambs, and cerebral cortex, cerebellum, and medulla of young lambs and adult sheep; however, there were no differences in the brain regions of fetuses at 60% of gestation and premature lambs, cerebellum and medulla of fetuses at 90% of gestation, and medulla of newborn lambs. We conclude that 1) brain water loss is maximal and brain volume regulation impaired in most brain regions of fetuses at 60 and 90% of gestation and premature lambs; 2) brain volume regulation develops first in the cerebral cortex of the fetuses at 90% of gestation and in the cerebral cortex and cerebellum of newborn lambs, and then it develops in the medulla of the lambs at 20-30 days of age; 3) brain water loss is limited and volume regulation present in the brain regions of young lambs and adult sheep; and 4) the ability of the brain to exhibit volume regulation develops in a region- and age-related fashion.  相似文献   

8.
Experiments were conducted in 8 chronically-catheterized fetal sheep at 125-135 days gestation in order to determine the effect of exogenously administered lactic acid to the fetus on fetal heart rate, blood pressure, breathing movements (FBM), electrocortical activity (ECOG), plasma immunoreactive (IR-ACTH) and cortisol concentrations. When fetal arterial pH decreased from 7.37 +/- 0.01 during the control period to 7.20 +/- 0.01, there was an initial bradycardia followed by tachycardia but no change in blood pressure. The amplitude of FBM increased 2-fold initially in association with an increase in PCO2 from 47.9 +/- 2.1 mmHg to 58.8 +/- 3.6 mmHg at 5 min into the lactate infusion. There was no change in the incidence of FBM or low-voltage ECOG and there was no change in the plasma concentrations of IR-ACTH and cortisol with the infusion of lactate. We conclude that the major effects of acutely elevating circulatory lactate concentrations in fetal sheep are to increase the amplitude of FBM and to cause an initial bradycardia followed by a tachycardia.  相似文献   

9.
Fetal sheep were thyroidectomized at 80 days' gestation and reoperated at 118-122 days for insertion of vascular catheters. The effects of hypoxaemia and intravenous tyramine infusion on plasma catecholamine concentrations, blood pressure and heart rate were then determined in experiments at 125-135 days' gestation. Age matched intact fetuses were also studied. Thyroidectomy was associated with increased concentrations of noradrenaline, adrenaline and dopamine in some thoracic and abdominal organs, increased noradrenaline concentrations in the cerebellum, and decreased adrenaline concentrations in the hypothalamus, cervical spinal cord, and superior cervical and inferior mesenteric ganglia. Arterial pressure was significantly lower in the thyroidectomized fetuses (34.0 +/- 0.15 mmHg) than in intact fetuses (44.7 +/- 0.2 mmHg; p less than 0.001). In contrast, plasma noradrenaline concentrations were significantly higher in the thyroidectomized fetuses (2.04 +/- 0.25 ng/ml) compared to the intact fetuses (0.99 +/- 0.08 ng/ml; P less than 0.001). In the intact fetuses there was a significant increase in plasma noradrenaline concentration and blood pressure during hypoxaemia, and bradycardia at the onset of hypoxaemia. In contrast, in the thyroidectomized fetuses hypoxaemia did not cause significant change in plasma catecholamine concentrations, blood pressure or heart rate. Infusion of tyramine produced a 1.9-fold increase of plasma noradrenaline in thyroidectomized fetuses compared to a 9.2-fold increase in the intact fetuses (P less than 0.05). Tyramine infusion caused a similar proportional increase of blood pressure in both thyroidectomized and intact fetuses. Heart rate decreased during the tyramine-induced hypertension in the intact fetus, but increased in the thyroidectomized fetuses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Dopamine is used clinically to stabilize mean arterial blood pressure (MAP) in sick infants. One goal of this therapeutic intervention is to maintain adequate cerebral blood flow (CBF) and perfusion pressure. High-dose intravenous dopamine has been previously demonstrated to increase cerebrovascular resistance (CVR) in near-term fetal sheep. We hypothesized that this vascular response might limit cerebral vasodilatation during acute isocapnic hypoxia. We studied nine near-term chronically catheterized unanesthetized fetal sheep. Using radiolabeled microspheres to measure fetal CBF, we calculated CVR at baseline, during fetal hypoxia, and then with the addition of an intravenous dopamine infusion at 2.5, 7.5, and 25 microg.kg(-1).min(-1) while hypoxia continued. During acute isocapnic fetal hypoxia, CBF increased 73.0 +/- 14.1% and CVR decreased 38.9 +/- 4.9% from baseline. Dopamine infusion at 2.5 and 7.5 microg.kg(-1).min(-1), begun during hypoxia, did not alter CVR or MAP, but MAP increased when dopamine infusion was increased to 25 microg.kg(-1).min(-1). Dopamine did not alter CBF or affect the CBF response to hypoxia at any dose. However, CVR increased at a dopamine infusion rate of 25 microg.kg(-1).min(-1). This increase in CVR at the highest dopamine infusion rate is likely an autoregulatory response to the increase in MAP, similar to our previous findings. Therefore, in chronically catheterized unanesthetized near-term fetal sheep, dopamine does not alter the expected cerebrovascular responses to hypoxia.  相似文献   

11.
At 110-111 days gestation, instrumented fetal sheep were administered saline or dexamethasone (2.2 microgram. kg(-1). h(-1) iv) for 48 h. Measurement of fetal blood pressure showed a greater increase in dexamethasone-treated (n = 6) compared with control (n = 5) fetuses (7.3 +/- 2.3 vs. 0.6 +/- 2.3 mmHg, P < 0.05). Fetuses were delivered by cesarean section, and the femoral muscle and brain were obtained under halothane anesthesia. Femoral and middle cerebral arteries (approximately 320-micrometer internal diameter) were evaluated using wire myography. Sensitivity to KCl (2.5-125 mM) and the magnitude of the maximal vasoconstriction to 125 mM K(+) were similar in femoral and middle cerebral arteries from dexamethasone-treated vs. control fetuses. Acetylcholine-induced vasorelaxation was similar in femoral arteries from control and dexamethasone-treated fetuses. Middle cerebral arteries did not relax to acetylcholine. Sensitivity to endothelin-1 (ET-1; 0.1 pM-0.1 microM) and magnitude of the ET-1-induced vasoconstriction were greater in femoral arteries from dexamethasone-treated vs. control fetuses (P < 0.05). Autoradiographical studies with receptor-specific ligands demonstrated increased ET(A)-receptor binding, the principal receptor subtype, in femoral muscle vessels (P < 0.001) but decreased ET(A)-receptor binding in middle cerebral arteries (P < 0.01) from dexamethasone-treated compared with control fetuses. Relatively little ET(B)-receptor binding was evident in all tissues examined. We conclude that hyperreactivity to ET-1, due to increased ET(A)-receptor binding, may be involved in the dexamethasone-induced increase in peripheral vascular resistance in fetal sheep in vivo.  相似文献   

12.
It has been proposed that fetal adaptations to intrauterine nutrient deprivation permanently reprogram the cardiovascular system. We investigated the impact of restricted periconceptional nutrition and/or restricted gestational nutrition on fetal arterial blood pressure (BP), heart rate, rate pressure product, and the fetal BP responses to ANG II and the angiotensin-converting enzyme inhibitor captopril during late gestation. Restricted periconceptional nutrition resulted in an increase in fetal mean arterial BP between 115 and 125 days gestation (restricted 41.5 +/- 2.8 mmHg, n = 12; control 38.5 +/- 1.5 mmHg, n = 13) and between 135 and 147 days gestation (restricted 50.5 +/- 2.2 mmHg, n = 8; control 42.5 +/- 1.9 mmHg, n = 10) as well as an increase in the rate pressure product in twin, but not singleton, fetuses between 115 and 147 days gestation. Mean BP and fetal plasma ACTH were also positively correlated in twin, but not singleton, fetuses. This is the first demonstration that maternal undernutrition during the periconceptional period results in an increase in fetal arterial BP. This increase occurs concomitantly with an increase in fetal ACTH but is not dependent on activation of the fetal renin-angiotensin system.  相似文献   

13.
Cerebral arteries of newborn pigs and baboons constrict to acetylcholine, suggesting that endothelium-dependent dilator mechanisms may be lacking in immature cerebral arteries. The present study tested this possibility in the immature sheep by examining the response of cerebral arterioles in fetal and newborn sheep to endothelium-dependent dilator, acetylcholine. Pial arteriolar diameter was measured in 9 anaesthetized foetuses in utero (4 preterm, 90-111 days gestation and 5 term, 128-143 days gestation) and in 5 anaesthetized, newborn lambs (14 days) using a closed cranial window with intravital microscopy. Application of acetylcholine to the pial surface induced dose-dependent increase in pial arteriolar diameter in all age groups; EC50 for acetylcholine was 0.10 +/- 0.03, 0.28 +/- 0.08 and 0.26 +/- 0.17 microM for preterm fetal, term fetal, and newborn lambs, respectively. The data demonstrate a sensitive dilator response to acetylcholine in immature fetuses as well as newborn lambs suggesting that cholinergic-mediated release of endothelium-dependent relaxing factor is functional early in gestation. The contractile response to acetylcholine observed in newborn pigs and premature baboons may reflect a species difference rather than maturational lack of endothelium-dependent dilator mechanisms.  相似文献   

14.
Fetal volume control is driven by an equilibrium between fetal and maternal hydrostatic and oncotic pressures in the placenta. Renal contributions to blood volume regulation are minor because the fetal kidneys cannot excrete fluid from the fetal compartment. We hypothesized that an increase in fetal plasma protein would lead to an increase in plasma oncotic pressure, resulting in an increase in fetal arterial and venous pressures and decreased angiotensin levels. Plasma or lactated Ringer solution was infused into each of five twin fetuses. After 7 days, fetal protein concentration was 71.2 +/- 4.2 g/l in the plasma-infused fetuses compared with 35.7 +/- 6.3 g/l in the lactated Ringer-solution-infused fetuses. Arterial pressure was 68.0 +/- 3.6 compared with 43.4 +/- 1.9 mmHg in the lactated Ringer solution-infused fetuses (P < 0.0003), whereas venous pressure was 4.8 +/- 0.3 mmHg in the plasma-infused fetuses compared with 3.3 +/- 0.4 mmHg in the lactated Ringer solution-infused fetuses (P < 0.036). Six fetuses were studied on days 0, 7, and 14 of plasma protein infusion. Fetal protein concentration increased from 31.1 +/- 1.5 to 84.8 +/- 3.8 g/l after 14 days (P < 0.01), and arterial pressure increased from 43.1 +/- 1.8 to 69.1 +/- 4.1 mmHg (P < 0.01). Venous pressure increased from 3.0 +/- 0.4 to 6.2 +/- 1.3 mmHg (P < 0.05). Fetal heart rate did not change. Angiotensin II concentration decreased, from 24.6 +/- 5.6 to 2.9 +/- 1.3 pg/l, after 14 days (P < 0.01). Fetal plasma infusions resulted in fetal arterial and venous hypertensions that could not be corrected by reductions in angiotensin II levels.  相似文献   

15.
The present study was designed to determine the plasma clearance rate of atrial natriuretic factor (ANF) during development in chronically-instrumented fetal, newborn and adult non-pregnant sheep. To determine the contribution of the kidney in the metabolism of ANF, urinary clearance of ANF was also measured. Intravenous infusion of ANF (0.025 and 0.1 microgram.min-1.kg-1) produced a significant decrease in mean arterial blood pressure in newborn lambs and in adult non-pregnant sheep. Estimated plasma ANF clearance rate for the 0.025 and 0.1 microgram.min-1.kg-1 ANF infusion rate were respectively 177 +/- 55 and 155 +/- 34 ml.min-1.kg-1 in fetuses, 138 +/- 26 and 97 +/- 13 ml.min-1.kg-1 in newborn lambs and, 148 +/- 33 and 103 +/- 25 ml.min-1.kg-1 in adult nonpregnant ewes. Fetal, newborn and adult ANF plasma clearance rates during high ANF infusion rate (0.1 microgram.min-1.kg-1) were not significantly different. Low or high ANF infusion rate was not associated with significant changes in urinary ANF concentration or urinary ANF excretion rate. Taken together, the present study demonstrates that ANF plasma clearance rate is similar in fetal, newborn and adult non-pregnant sheep and that the excretory function of the kidney contributes only minimally to ANF plasma clearance rate.  相似文献   

16.
In the unanesthetized fetal sheep the administration of morphine causes initial apnoea followed by hyperpnoea. We thought that a section of the brain at midcollicular level might separate these two effects. Therefore we sectioned the brain stem of five fetuses at 132 +/- 1 (SEM) days of gestation and compared their responses to morphine (17 experiments) with that observed in seven intact fetuses at similar gestational ages (15 experiments). Brain stem sections were confirmed morphologically and histologically. Morphine, 1 mg/kg was injected in the fetal jugular vein during low-voltage electrocortical activity (ECoG). We measured ECoG, eye movements, diaphragmatic activity, blood pressure and amniotic pressure. Sectioned fetuses before the administration of morphine had a complete dissociation between ECoG and breathing activity. With the administration of morphine we found: (i) the length of the apnoea was 139.8 +/- 15.5 min in sectioned fetuses and 17.0 +/- 5.8 min in intact fetuses (P less than 0.01); and (ii) there was no hyperpneic response in the sectioned fetus whereas the length of hyperpnoea in the intact group was 99.1 +/- 11.8 min (P less than 0.001). The results support the idea of two central distinct areas of action of morphine in the fetal brain. The absence of hyperpnoea in the sectioned fetuses suggests that neurons inhibiting the 'respiratory neurons' are located rostrally to the mid-collicular line.  相似文献   

17.
We studied breathing and behavioral response to increased arterial CO2 (PaCO2) in 12 fetal sheep between 130 and 145 days of gestation. Of these 12 fetuses, 10 had an increase in PaCO2 through maternal rebreathing of CO2; in the other 2 fetuses CO2 was increased via an endotracheal tube and application of continuous distending airway pressure. We used our window technique to observe and videotape fetal behavior. The experiments consisted of recording breathing activity and behavior during resting conditions (1 low- and high-voltage ECoG cycle) and during administration of CO2. We measured electrocortical activity (ECoG), eye movements (EOG), electromyography of the diaphragm (EMGdi) and neck muscles, tracheal (Ptr), amniotic, and carotid arterial pressures. Administration of CO2 by the rebreathing technique produced an increase in the amplitude of breathing activity as reflected by an increase in Ptr from 5.0 +/- 0.6 to 12 +/- 1.9 mmHg (P less than 0.01) and an increase in SEMGdi from 32 +/- 4 to 77 +/- 8% max (P less than 0.001). Frequency increased due to a decrease in inspiratory (TI) and expiratory duration. Ptr/TI increased from 11.0 +/- 2.0 to 37.4 +/- 9.0 mmHg/s (P less than 0.05) and SEMGdi/TI increased from 67 +/- 7 to 221 +/- 28% max/s (P less than 0.001). Although the response was at times prolonged into the transitional high-voltage zone, it did not persist during established high-voltage ECoG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Effects of endogenous angiotensin II on the fetal circulation   总被引:4,自引:0,他引:4  
The role of endogenous angiotensin II in the regulation of the circulation was investigated by infusion of [sar1],[ala8]-angiotensin II, a competitive antagonist of angiotensin II, into fetal sheep with chronically-maintained intravascular catheters. The thesis considered was that angiotensin II may have a greater role in the fetus than in the adult since the autonomic nervous system does not develop fully until late in gestation. Fetal cardiac output and its distribution to various organs and actual blood flows to fetal tissues were determined by the radionuclide-labelled microsphere technique. Intravenous infusion of [sar1], [ala8]-angiotensin II at a rate of 13.95-42.15 microgram/min per kg fetal body weight increased plasma renin activity from a control value of 8.9 +/- 1.6 to 18.9 +/- 3.9 ng/ml per h (SEM). Mean arterial blood pressure fell significantly from a control level of 47 +/- 1.6 to 41 +/- 1.1 mmHg. Blood flow to the unbilical-placental circulation decreased from 239 +/- 27.0 to 198 +/- 20.2 ml/min per kg, but the calculated vascular resistance in the umbilical-placental circulation did not change. Although cardiac output did not change, blood flow to the peripheral circulation, which includes the fetal skin, muscle and and bone and constitutes 75 +/- 0.9% of the total fetal body weight, increased as did flow to the thyroid and adrenal circulations. Endogenous angiotensin II appears to be important in maintaining blood flow to the umbilical-placental circulation by maintaining fetal arterial blood pressure. Angiotensin II exerts this effect by mediating a tonic vasoconstriction primarily in the peripheral circulation.  相似文献   

19.
Fetal breathing movements (FBM) are inhibited by both exogenous prostaglandin E2 (PGE2) and ethanol in sheep. Maternal ethanol exposure in late-gestation sheep also increases fetal [PGE2]. However, during prolonged reduced uterine blood flow (RUBF) when [PGE2] in fetal plasma is already elevated, FBM are not inhibited by ethanol. These experiments were designed, therefore, to test the hypothesis that the FBM response to PGE2 is also diminished during RUBF. PGE2 (594+/-19 ng.min(-1).kg(-1) fetal body weight) was infused for 6 h into the jugular vein of RUBF (PO2 = 14+/-1 mmHg (1 mmHg = 133.3 Pa); n = 7) and control (PO2 = 22+/-1 mmHg (p < 0.01); n = 7) ovine fetuses, and the effect on FBM, electrocortical (ECoG), and electroocular activities was determined. The infusion of PGE2 increased plasma [PGE2] from 881+/-162 to 1189+/-114 pg.mL(-1) in RUBF fetuses and from 334+/-72 to 616+/-118 pg.mL(-1) (p < 0.05) in control fetuses. FBM were initially inhibited by PGE2 from 22.5+/-9.4 and 17.9+/-6.5% of the time to 6.9+/-2.4 and 0.5+/-0.4% (p < 0.01) in RUBF and control fetuses, respectively. FBM remained inhibited in control fetuses throughout the infusion but returned to baseline incidence in RUBF fetuses in the last 2 h of the infusion. These results are consistent with the hypothesis that one component of the adaptative mechanisms of the fetus to prolonged RUBF is an altered response of FBM to exogenous PGE2. We speculate that the lack of a sustained inhibition in FBM during RUBF with infusion of PGE2 may be a result of an alteration in brainstem receptor function or number or local PGE2 removal.  相似文献   

20.
In the adult animal, ANG-(1-7) may counterbalance some effects of ANG II. Its effects in the fetus are unknown. Basal ANG-(1-7), ANG I, ANG II, and renin concentrations were measured in plasma from ovine fetuses and their mothers (n = 10) at 111 days of gestation. In the fetus, concentrations of ANG I, ANG-(1-7), and ANG II were 86 +/- 21, 13 +/- 2, and 14 +/- 2 fmol/ml, respectively. In the ewe, concentrations of ANG I were significantly lower (20 +/- 4 fmol/ml, P < 0.05) as were concentrations of ANG-(1-7) (2.9 +/- 0.6 fmol/ml), whereas ANG II concentrations were not different (10 +/- 1 fmol/ml). Plasma renin concentrations were higher in the fetus (4.8 +/- 1.1 pmol ANG I x ml(-1) x h(-1)) than in the ewe (0.9 +/- 0.2 pmol x ml(-1) x h(-1), P < 0.05). Infusion of ANG-(1-7) (approximately 9 microg/h) for a 3-day period caused a significant increase in plasma concentrations of ANG-(1-7) reaching a maximum of 448 +/- 146 fmol/ml on day 3 of infusion. Plasma levels of ANG I and II as well as renin were unchanged by the infusion. Urine flow rate, glomerular filtration rate, and fetal arterial blood pressure did not change and were not different than values in fetuses receiving a saline infusion for 3 days (n = 5). However, the osmolality of amniotic and allantoic fluid was significantly higher in fetuses that received ANG-(1-7). Also, compared with the saline-infused animals, mRNA expression levels of renin, the AT(1) receptor, and AT(2) receptor were elevated in kidneys of fetuses that received infusions of ANG-(1-7). Infusion of an ANG-(1-7) antagonist ([D-Ala(7)]-ANG-(1-7), 20 microg/h) for 3 days had no effect on fetal blood pressure or renal function. In conclusion, although infusion of ANG-(1-7) did not affect fetal urine flow rate, glomerular filtration rate, or blood pressure, changes in fetal fluids and gene expression indicate that ANG-(1-7) may play a role in the fetal kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号