首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
The mechanism underlying the important role of protein kinase Cdelta (PKCdelta) in the apoptotic effect of etoposide in glioma cells is incompletely understood. Here, we examined the role of PKCdelta in the activation of Erk1/2 by etoposide. We found that etoposide induced persistent activation of Erk1/2 and nuclear translocation of phospho-Erk1/2. MEK1 inhibitors decreased the apoptotic effect of etoposide, whereas inhibitors of p38 and JNK did not. The activation of Erk1/2 by etoposide was downstream of PKCdelta since the phosphorylation of Erk1/2 was inhibited by a PKCdelta-KD mutant and PKCdelta small interfering RNA. We recently reported that phosphorylation of PKCdelta on tyrosines 64 and 187 was essential for the apoptotic effect of etoposide. Using PKCdeltatyrosine mutants, we found that the phosphorylation of PKCdeltaon these tyrosine residues, but not on tyrosine 155, was also essential for the activation of Erk1/2 by etoposide. In contrast, nuclear translocation of PKCdelta was independent of its tyrosine phosphorylation and not necessary for the phosphorylation of Erk1/2. Etoposide induced down-regulation of kinase phosphatase-1 (MKP-1), which correlated with persistent phosphorylation of Erk1/2 and was dependent on the tyrosine phosphorylation of PKCdelta. Moreover, silencing of MKP-1 increased the phosphorylation of Erk1/2 and the apoptotic effect of etoposide. Etoposide induced polyubiquitylation and degradation of MKP-1 that was dependent on PKCdelta and on its tyrosine phosphorylation. These results indicate that distinct phosphorylation of PKCdeltaon tyrosines 64 and 187 specifically activates the Erk1/2 pathway by the down-regulation of MKP-1, resulting in the persistent phosphorylation of Erk1/2 and cell apoptosis.  相似文献   

10.
The precise role of STAT3 Ser(727) phosphorylation in RET-mediated cell transformation and oncogenesis is not well understood. In this study, we have shown that familial medullary thyroid carcinoma (FMTC) mutants RET(Y791F) and RET(S891A) induced, in addition to Tyr(705) phosphorylation, constitutive STAT3 Ser(727) phosphorylation. Using inhibitors and dominant negative constructs, we have demonstrated that RET(Y791F) and RET(S891A) induce STAT3 Ser(727) phosphorylation via a canonical Ras/ERK1/2 pathway and that integration of the Ras/ERK1/2/ELK-1 and STAT3 pathways was required for up-regulation of the c-fos promoter by FMTC-RET. Moreover, inhibition of ERK1/2 had a more severe effect on cell proliferation and cell phenotype in HEK293 cells expressing RET(S891A) compared with control and RET(WT)-transfected cells. The transforming activity of RET(Y791F) and RET(S891A) in NIH-3T3 cells was also inhibited by U0126, indicating a role of the ERK1/2 pathway in RET-mediated transformation. To investigate the biological significance of Ras/ERK1/2-induced STAT3 Ser(727) phosphorylation for cell proliferation and transformation, N-Ras-transformed NIH-3T3 cells were employed. These cells displayed elevated levels of activated ERK1/2 and Ser(727)-phosphorylated STAT3, which were inhibited by treatment with U0126. Importantly, overexpression of STAT3, in which the Ser(727) was mutated into Ala (STAT3(S727A)), rescued the transformed phenotype of N-Ras-transformed cells. Immunohistochemistry in tumor samples from FMTC patients showed strong nuclear staining of phosphorylated ERK1/2 and Ser(727) STAT3. These data show that FMTC-RET mutants activate a Ras/ERK1/2/STAT3 Ser(727) pathway, which plays an important role in cell mitogenicity and transformation.  相似文献   

11.
Our previous studies demonstrated that the IL-13-induced 15-lipoxygenase expression in primary human monocytes is regulated by the activation of both Stat1 and Stat3 and by protein kinase C (PKC)delta. IL-13 stimulated the phosphorylation of Stat3 on both Tyr705 and Ser727. In this study we show that IL-13 induces the association of PKCdelta with Stat3, not with Stat1, and is required for Stat3 Ser727 phosphorylation. We found a novel IL-13-dependent cytosolic signaling complex of PKCdelta and tyrosine-phosphorylated Stat3. A tyrosine kinase inhibitor blocked PKCdelta association with Stat3 as well as Stat3 Ser727 phosphorylation. We therefore hypothesized that tyrosine phosphorylation was required for Stat3 interaction with PKCdelta and subsequent PKCdelta-dependent phosphorylation of Stat3 Ser727. We developed an efficient transfection protocol for human monocytes. Expression of Stat3 containing a mutation in Tyr705 inhibited the association of PKCdelta with Stat3 and blocked Stat3 Ser727 phosphorylation, whereas transfection with wild-type Stat3 did not. Furthermore, by transfecting monocytes with Stat3 containing mutations in Tyr705 or Ser727 or with wild-type Stat3, we demonstrated that both Stat3 tyrosine and serine phosphorylations are required for optimal binding of Stat3 with DNA and maximal expression of 15-lipoxygenase, an important regulator of inflammation and apoptosis.  相似文献   

12.
13.
Protein kinase Cdelta (PKCdelta) is involved in the apoptosis of various cells in response to diverse stimuli. In this study, we characterized the role of PKCdelta in the apoptosis of C6 glioma cells in response to etoposide. We found that etoposide induced apoptosis in the C6 cells within 24 to 48 h and arrested the cells in the G(1)/S phase of the cell cycle. Overexpression of PKCdelta increased the apoptotic effect induced by etoposide, whereas the PKCdelta selective inhibitor rottlerin and the PKCdelta dominant-negative mutant K376R reduced this effect compared to control cells. Etoposide-induced tyrosine phosphorylation of PKCdelta and its translocation to the nucleus within 3 h was followed by caspase-dependent cleavage of the enzyme. Using PKC chimeras, we found that both the regulatory and catalytic domains of PKCdelta were necessary for its apoptotic effect. The role of tyrosine phosphorylation of PKCdelta in the effects of etoposide was examined using cells overexpressing a PKCdelta mutant in which five tyrosine residues were mutated to phenylalanine (PKCdelta5). These cells exhibited decreased apoptosis in response to etoposide compared to cells overexpressing PKCdelta. Likewise, activation of caspase 3 and the cleavage of the PKCdelta5 mutant were significantly lower in cells overexpressing PKCdelta5. Using mutants of PKCdelta altered at individual tyrosine residues, we identified tyrosine 64 and tyrosine 187 as important phosphorylation sites in the apoptotic effect induced by etoposide. Our results suggest a role of PKCdelta in the apoptosis induced by etoposide and implicate tyrosine phosphorylation of PKCdelta as an important regulator of this effect.  相似文献   

14.
15.
16.
17.
Protein kinase Cdelta (PKCdelta) regulates cell apoptosis and survival in diverse cellular systems. PKCdelta translocates to different subcellular sites in response to apoptotic stimuli; however, the role of its subcellular localization in its proapoptotic and antiapoptotic functions is just beginning to be understood. Here, we used a PKCdelta constitutively active mutant targeted to the cytosol, nucleus, mitochondria, and endoplasmic reticulum (ER) and examined whether the subcellular localization of PKCdelta affects its apoptotic and survival functions. PKCdelta-Cyto, PKCdelta-Mito, and PKCdelta-Nuc induced cell apoptosis, whereas no apoptosis was observed with the PKCdelta-ER. PKCdelta-Cyto and PKCdelta-Mito underwent cleavage, whereas no cleavage was observed in the PKCdelta-Nuc and PKCdelta-ER. Similarly, caspase-3 activity was increased in cells overexpressing PKCdelta-Cyto and PKCdelta-Mito. In contrast to the apoptotic effects of the PKCdelta-Cyto, PKCdelta-Mito, and PKCdelta-Nuc, the PKCdelta-ER protected the cells from tumor necrosis factor-related apoptosis-inducing ligand-induced and etoposide-induced apoptosis. Moreover, overexpression of a PKCdelta kinase-dead mutant targeted to the ER abrogated the protective effect of the endogenous PKCdelta and increased tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. The localization of PKCdelta differentially affected the activation of downstream signaling pathways. PKCdelta-Cyto increased the phosphorylation of p38 and decreased the phosphorylation of AKT and the expression of X-linked inhibitor of apoptosis protein, whereas PKCdelta-Nuc increased c-Jun NH(2)-terminal kinase phosphorylation. Moreover, p38 phosphorylation and the decrease in X-linked inhibitor of apoptosis protein expression played a role in the apoptotic effect of PKCdelta-Cyto, whereas c-Jun NH(2)-terminal kinase activation mediated the apoptotic effect of PKCdelta-Nuc. Our results indicate that the subcellular localization of PKCdelta plays important roles in its proapoptotic and antiapoptotic functions and in the activation of downstream signaling pathways.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号