首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human social behaviour is influenced by attributing mental states to others. It is debated whether and to what extent such skills might occur in non-human animals. We here test for the possibility of ravens attributing knowledge about the location of food to potential competitors. In our experiments, we capitalize on the mutually antagonistic interactions that occur in these birds between those individuals that store food versus those that try to pilfer these caches. Since ravens' pilfer success depends on memory of observed caches, we manipulated the view of birds at caching, thereby designing competitors who were either knowledgeable or ignorant of cache location and then tested the responses of both storers and pilferers to those competitors at recovery. We show that ravens modify their cache protection and pilfer tactics not simply in response to the immediate behaviour of competitors, but also in relation to whether or not they previously had the opportunity of observing caching. Our results suggest that the birds not only recall whom they had seen during caching, but also know that obstacles can obstruct the view of others and that this affects pilfering.  相似文献   

2.
Food-caching corvids hide food, but such caches are susceptible to pilfering by other individuals. Consequently, the birds use several counter strategies to protect their caches from theft, e.g. hiding most of them out of sight. When observed by potential pilferers at the time of caching, experienced jays that have been thieves themselves, take further protective action. Once the potential pilferers have left, they move caches those birds have seen, re-hiding them in new places. Naive birds that had no thieving experience do not do so. By focusing on the counter strategies of the cacher when previously observed by a potential pilferer, these results raise the intriguing possibility that re-caching is based on a form of mental attribution, namely the simulation of another bird's viewpoint. Furthermore, the jays also keep track of the observer which was watching when they cached and take protective action accordingly, thus suggesting that they may also be aware of others' knowledge states.  相似文献   

3.
Using resources shared within a social group—either in a cooperative or a competitive way—requires keeping track of own and others’ actions, which, in turn, requires well-developed short-term memory. Although short-term memory has been tested in social mammal species, little is known about this capacity in highly social birds, such as ravens. We compared ravens (Corvus corax) with humans in spatial tasks based on caching, which required short-term memory of one's own and of others’ actions. Human short-term memory has been most extensively tested of all social mammal species, hence providing an informative benchmark for the ravens. A recent study on another corvid species (Corvus corone) suggests their capacity to be similar to the humans’, but short-term memory skills have, to date, not been compared in a social setting. We used spatial setups based on caches of foods or objects, divided into individual and social conditions with two different spatial arrangements of caches (in a row or a 3 × 3 matrix). In each trial, a set of three up to nine caches was presented to an individual that was thereafter allowed to retrieve all items. Humans performed better on average across trials, but their performance dropped, when they had to keep track of partner's actions. This differed in ravens, as keeping track of such actions did not impair their performance. However, both humans and ravens demonstrated more memory-related mistakes in the social than in the individual conditions. Therefore, whereas both the ravens’ and the humans’ memory suffered in the social conditions, the ravens seemed to deal better with the demands of these conditions. The social conditions had a competitive element, and one might speculate that ravens’ memory strategies are more attuned to such situations, in particular in caching contexts, than is the case for humans.  相似文献   

4.
Cache recovery is critical for evolution of hoarding behaviour, because the energy invested in caching may be lost if consumers other than the hoarders benefit from the cached food. By raiding food caches, animals may exploit the caching habits of others, that should respond by actively defending their caches. The arctic fox (Alopex lagopus) is the main predator of lemmings and goose eggs in the Canadian High Arctic and stores much of its prey in the ground. Common ravens (Corvus corax) are not as successful as foxes in taking eggs from goose nests. This generalist avian predator regularly uses innovation and opportunism to survive in many environments. Here, we provide the first report that ravens can successfully raid food cached by foxes, and that foxes may defend their caches from ravens.  相似文献   

5.
Group-foraging ravens scatter-hoard when they are competing for food and, to some extent, also raid the caches made by others. We investigated the effects of observational spatial memory on individual caching and raiding tactics. With captive ravens, we found visual observation was essential for locating and raiding the caches of conspecifics. Both captive and free-ranging ravens, food cachers as well as potential cache raiders, responded to each other's presence. Cachers withdrew from conspecifics and most often placed their caches behind structures, obstructing the view of potential observers. Raiders watched inconspicuously and kept at a distance to cachers close to their cache sites. In response to the presence of potential raiders or because of their initial movements towards caches, the cachers frequently interrupted caching, changed cache sites, or recovered their food items. These results suggest that ravens, regardless of whether they act as cachers or raiders, are capable of withholding information about their intentions and, hence, manipulate the other bird's attention either to prevent or to achieve social-learning opportunities. Such interactions may qualify as ‘tactical’ deception and may have created a considerable pressure selecting for social cognition in ravens. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

6.
Florida Scrub-Jays (Aphelocoma coerulescens) are cooperative breeders endemic to Florida’s oak scrub. In autumn, Florida Scrub-Jays cache thousands of acorns and exhibit behaviors that appear to balance cache site selection against food degradation or cache robbery. However, both experience and position within a social dominance hierarchy could affect individual cache preferences. We examined the cache site preferences of birds with differing levels of caching experience and at different strata within a complex social dominance hierarchy. Our objective was to determine how experience, social position, and social context when caching influenced microhabitat preferences, and if these change as jays age, gain experience, and their social position changes. Naïve first-year birds preferred to cache in well-hidden, densely vegetated sites with relatively high soil moisture content. Naïve birds also cached farther from provisioning points if observed by a socially dominant bird than when they were alone or in the presence of birds of equal social status. Experienced adults preferred to cache in open, dry sandy sites and social context at the time of caching did not influence their preferences. As naïve birds aged, they gained experience and their social position changed. Experienced second-year birds shifted their preference to more open, drier sites, and did so more often when they remained subordinate within their group rather than becoming dominant breeders. Second-year birds that remained subordinate did not alter their caching behavior if observed by dominant birds. These patterns suggest that after gaining experience, jays learned which sites were more appropriate for caching and shifted their preference, regardless of their changing social status. We suggest that the risk of cache loss to food degradation might be greater than the risk of pilfering for Florida Scrub-Jays, especially for birds in any social strata except the most subordinate, but this requires additional study.  相似文献   

7.
K. C. BURNS  & JAMIE STEER 《Ibis》2006,148(2):266-272
Social interactions are thought to be an important determinant of food hoarding behaviour in birds. Theoretical work predicts that subordinate birds should cache more to offset losses to dominant birds. However, empirical support for this prediction is mixed. We evaluated whether social dominance influences the food hoarding behaviour of New Zealand Robins Petroica australis . Robins provide a unique opportunity to test food hoarding theory because they are fearless of humans and will cache food presented to them by hand. We offered mealworms to free-ranging male and female Robins to test whether (1) one sex was socially dominant, (2) the subordinate sex cached more frequently than the dominant sex and (3) birds cached more frequently when they were in the presence of a potential competitor. Our results indicate that males were dominant over females. Males acquired most of the prey offered to birds during trials and won all aggressive encounters observed between sexes. However, caching rates ran contrary to theoretical predictions. Males stored approximately twice as many mealworms as females. Both sexes also stored more food when they were alone than when they were accompanied by conspecifics. We interpret the reluctance of females and paired birds to hoard food as a strategy to avoid the loss of caches to competitors. Our overall results indicate that dominance rank strongly influences caching decisions, but that caching rates ran contrary to theoretical predictions.  相似文献   

8.
Food caching animals depend on their caches at times of low food availability. Because stored food is susceptible to being stolen or degraded, many species employ cache protection strategies such as ceasing caching in the presence of others or avoiding storing perishable items for long periods. Several species frequently recover their caches and recache, which may reduce pilferage or degradation of cached items. We studied the food handling decisions of Florida scrub‐jays (Aphelocoma coerulescens) after cache recovery to determine the roles that social and ecological environments play in post‐recovery decisions. Instead of reducing recaching in the presence of others, recovering jays flew away from the recovery site, allowing them to eat or recache a recovered item regardless of the social context. Microhabitat type and soil moisture of the recovery sites had a significant influence on whether recoveries were eaten or recached; most items that were recached had been recovered from bare sand sites or sites with low soil moisture. Taken together, our results suggest that food store management of Florida scrub‐jays are unaffected by the social context, but are strongly affected by the habitat conditions that influence the quality of caches.  相似文献   

9.
Reciprocal pilferage and the evolution of food-hoarding behavior   总被引:6,自引:0,他引:6  
Current theories of food-hoarding behavior maintain that hoardingcan be adaptive if a hoarder is more likely than any other animalto retrieve its own caches. A survey of the literature indicatedthat the hoarder often has a recovery advantage when searchingfor items it has stored, but levels of cache pilferage are oftenso high (2–30% per day) that at least for some long-termfood hoarders, the caching animal is unlikely to recover a significantamount of its stored food. Except in a few cases (acorn woodpeckersand beavers), kin selection cannot explain the high levels ofpilferage observed. We suggest that some small solitary animalswith overlapping home ranges (e.g., most rodents, chickadees,and tits) are able to tolerate high levels of cache pilferage.Pilferage is not as damaging to these animals as it might otherwisebe because many interspecific and all intraspecific cache pilferersalso cache food. These or similar food caches can be pilferedlater by the original food hoarder. In other words, pilferingin these species is often reciprocal, and because it is reciprocal,it can be tolerated. We argue that caching systems based onreciprocal pilfering can be stable and are not necessarily susceptibleto "cheaters," animals that pilfer food but do not scatter hoardfood themselves, and we introduce a model of food hoarding tosupport this argument. These food-caching systems based on reciprocalpilfering resemble cooperative behavior, but the behavior isactually driven by the selfish interests of individuals. Thistheory of scatter-hoarding behavior based on reciprocity hasimportant implications for the ways that food-hoarding animalsinteract with inter- and intraspecific competitors.  相似文献   

10.
贮食是动物应对环境变化和不可预测性而进化出的有效生存对策,认知则是当前鸟类学研究的热点问题之一。目前鸟类贮食行为中的认知研究多集中在空间认知,而社会认知研究相对滞后。对于贮食物种而言,储藏食物被盗现象非常普遍,为了避免被盗食,贮食者不仅要有发达的空间认知能力去记忆贮食地点,同时还需要极强的社会认知能力处理与盗食者的关系,可见社会认知在鸟类的贮食行为中扮演着重要角色。本文将从鸟类贮食的社会关系认知以及社会地位认知两个方面,对鸟类贮食行为中的社会认知研究进行综述,以期为后续鸟类社会认知研究提供借鉴和参考。  相似文献   

11.
Elements of episodic-like memory in animals   总被引:6,自引:0,他引:6  
A number of psychologists have suggested that episodic memory is a uniquely human phenomenon and, until recently, there was little evidence that animals could recall a unique past experience and respond appropriately. Experiments on food-caching memory in scrub jays question this assumption. On the basis of a single caching episode, scrub jays can remember when and where they cached a variety of foods that differ in the rate at which they degrade, in a way that is inexplicable by relative familiarity. They can update their memory of the contents of a cache depending on whether or not they have emptied the cache site, and can also remember where another bird has hidden caches, suggesting that they encode rich representations of the caching event. They make temporal generalizations about when perishable items should degrade and also remember the relative time since caching when the same food is cached in distinct sites at different times. These results show that jays form integrated memories for the location, content and time of caching. This memory capability fulfils Tulving's behavioural criteria for episodic memory and is thus termed 'episodic-like'. We suggest that several features of episodic memory may not be unique to humans.  相似文献   

12.
Western scrub-jays (Aphelocoma californica) hide food and rely on spatial memory to recover their caches at a later date. They also rely on observational spatial memory to steal caches made by other individuals. Successful pilfering may require an understanding of allocentric space because the observer will often be in a different position from the demonstrator when the caching event occurs. We compared cache recovery accuracy of pairs of observers that watched a demonstrator cache food. The pattern of recovery searches showed that observers were more accurate when they had observed the caching event from the same viewing direction as the demonstrator than when they had watched from the opposite direction. Search accuracy was not affected by whether or not the tray-specific local cues provided left–right landmark information (i.e. heterogeneous vs. homogeneous local cues), or whether or not the caching tray location was rotated. Taken together, these results suggest that observers have excellent spatial memory and that they have little difficulty with mental rotation.  相似文献   

13.
Social influences on food caching in willow tits: a field experiment   总被引:5,自引:1,他引:4  
We studied the food hoarding behavior of willow tits (Parusmontanus), a scatter-hoarding passerine wintering in dominance-structuredflocks. We examined social influences on microhabitat selectionand spatial cache distribution at temporary feeders. Dominantadult males stored food closer to die feeder and at a greaterrate than did subordinates. When alone, the birds stored foodcloser to the feeder than when accompanied by conspecifics.Conifers were preferred over deciduous trees as cache trees.The subordinates cached more in die outer parts of branchesthan dominants. There were no significant differences in dierelative or absolute heights of die caches, nor in the verticalor horizontal hoarding niche breadths between dominants andsubordinates. We experimentally removed die dominants from dieflock for 90 min and recorded the behavior of die remainingsubordinates immediately after die removal. The removal resultedin a decrease in die hoarding distance of die remaining birds,indicating that die presence of dominants directly affecteddie behavior of subordinates and suggesting that kleptopar-asitismby dominants may be prevented by rarhing farther away. Withdie dominants removed, die subordinates cached at a greaterrate than before die removal. The decrease in die hoarding distanceand increase in die hoarding rate were die only significanteffects of die experiment, perhaps suggesting that, during ashort absence of dominants, die subordinates do not benefitfrom changing dieir caching microhabitat They might be excludedfrom those new, possibly safer, microhabitats after die dominantbird rejoins die flock.  相似文献   

14.
Differentiating between individuals with different knowledge states is an important step in child development and has been considered as a hallmark in human evolution. Recently, primates and corvids have been reported to pass knower–guesser tasks, raising the possibility of mental attribution skills in non-human animals. Yet, it has been difficult to distinguish ‘mind-reading’ from behaviour-reading alternatives, specifically the use of behavioural cues and/or the application of associatively learned rules. Here, I show that ravens (Corvus corax) observing an experimenter hiding food are capable of predicting the behaviour of bystanders that had been visible at both, none or just one of two caching events. Manipulating the competitors'' visual field independently of the view of the test-subject resulted in an instant drop in performance, whereas controls for behavioural cues had no such effect. These findings indicate that ravens not only remember whom they have seen at caching but also take into account that the other''s view was blocked. Notably, it does not suffice for the birds to associate specific competitors with specific caches. These results support the idea that certain socio-ecological conditions may select for similar cognitive abilities in distantly related species and that some birds have evolved analogous precursors to a human theory-of-mind.  相似文献   

15.
In the temperate zone, permanent-resident birds and mammalsthat do not hibernate must survive harsh winter conditions oflow ambient temperature, long nights, and reduced food levels.To understand the energy management strategy of food-hoardingbirds, it has been hypothesized that such birds respond to increasedstarvation risk by increasing the number of their hoards ratherthan by increasing their fat reserves and that they cache earlyin the day and retrieve their caches later to achieve fat reservesnecessary to survive the night We tested these hypotheses byobserving the responses in captivity of a caching bird, thetufted titmouse (Parus bicolor), to the combined influencesof reduced predictability of food and naturally occurring ambienttemperature and photoperiod. When the food supply was unpredictable,birds significantly increased both internal fat reserves atdusk and external food caches. Initially leaner birds tendedto increase their fat reserves to a greater extent and initiallyfatter birds tended to cache more food and to fly significantlyless. Half the birds also increased their dawn and mean dailybody mass. All birds tended to forage, gain body mass, and cachefood at significantly lower rates in the morning and at significantlyhigher rates in the evening. Cache retrieval showed the oppositetrend, with birds retrieving most of their caches in the morning.Our results do not support the hypothesis that caching birdsincrease caching rate but not body mass under an unpredictablefood regime. Instead fat reserves and food caches are both importantcomplementary sources of energy in food-hoarding birds. Energymanagement by wintering birds occurs in response to a numberof biotic and abiotic factors acting simultaneously; thus futuremodels must incorporate independent variables in addition tothe state of the food supply and time of day  相似文献   

16.
Summary In their natural environment, scrub jays harvest pinyon pine seeds and store them in subterranean caches. In our tests, the birds performed this behavior in an octagonal outdoor aviary with sand-filled cups inserted in the floor. For caching, only 12 such cups in a 90° sector were available, while for the recovery session 4 to 6 days later all 48 cups in the entire aviary were open. In control tests, the birds concentrated their search in the sector where the seeds had been cached. When the internal clock of the birds was shifted 6 h between caching and recovery, they preferentially probed in the adjacent 90° sector. This indicated that they used sun compass information to relocate their caches, largely ignoring visual cues from surrounding landmarks.The dominant role of the sun compass which has a parallel in the orientation of homing pigeons, may reflect a general tendency to prefer compass information in spatial orientation tasks; it is in agreement with the model that birds generally have a directionally oriented view of space.Abbreviations OR Original caches - SH shifted caches  相似文献   

17.
2002年11~12月,在四川省都江堰地区的亚热带常绿阔叶林内利用人工修建的半自然状态围栏进行实验,研究了小泡巨鼠在有同种竞争存在条件下对油茶种子的埋藏行为。结果表明,小泡巨鼠在有竞争存在条件下,显增加了埋藏油茶种子的量。这一结果支持了“竞争的存在刺激鼠类埋藏”的假说。同时,研究结果表明,小泡巨鼠在有竞争存在条件下,显增加了对埋藏种子的搬运距离,每个贮藏点埋藏种子的数量也有所增加,同时埋藏的生境更多地偏向于遮蔽较好的微生境(草丛底层、灌丛下层)中。这些行为策略有可能有利于种子被埋藏植物的种群扩散。在讨论中,我们还通过比较鸟类和兽类在感觉器官上的差别,分析它们在有竞争存在条件下所采取的不同贮食策略。  相似文献   

18.
For food caching to be adaptive, the benefits of recovery must outweigh the costs of storing an item. One of the costs to cachers is the risk of theft, and therefore, it is predicted that individuals may be sensitive to this theft and show various behavioural strategies to minimise it. In this study, we gave wild Cape ground squirrels (Xerus inauris) a choice between two different coloured items of the same food type: one item with a specific colour that was always artificially removed when cached and the other item with a different colour that was not removed when cached. During the choice presentations, subjects reduced the amount they consumed and cached of the food items with the colour that was experimentally removed when cached, despite the two items only differing in caching pay‐off. This avoidance to choose the food with the colour that was removed occurred over time, which suggests that subjects were using information about the item's pay‐off during cache recovery and this then impacted on successive decisions. This study highlights how the sensitivity to a food item's pay‐off can affect an individual's choice towards items that offer the greater overall reward.  相似文献   

19.
Scatter-hoarding rodents such as tree squirrels selectively cache seeds for subsequent use in widely-spaced caches placed below the ground surface. This behavior has important implications for seed dispersal, seedling establishment, and tree regeneration. Hoarders manage these caches by recovering and eating some seeds, and moving and re-caching others. This process of re-caching, however, is poorly understood. Here, we use radio-telemetry to evaluate re-caching behavior for the management of acorn caches by rodents in eastern deciduous forests. We also test the hypothesis that as seeds are re-cached, the distance from the source increases. Radio transmitters were implanted in Northern red oak (Quercus rubra) acorns and presented to rodents in a natural setting over 3 seasons. We used radio-telemetry to track and document evidence of recovery and re-caching. We tracked a total of 102 acorns. Of the 39 radio-tagged acorns initially cached, 19 (49%) were cached on two or more occasions; one acorn was cached four times. The hypothesis that rodents move seeds to progressively greater distances from the source is not well-supported, suggesting that acorns are being moved within an individual's home range. Given the species of rodents in the study area, gray squirrels (Sciurus carolinensis) are the most likely to be responsible for the caching and re-caching events. Gray squirrels appear to engage in extensive re-caching during periods of long-term food storage, which has important implications for understanding how caching behavior influences acorn dispersal and oak regeneration.  相似文献   

20.
Here I report the results of laboratory experiments on cachingbehavior of Carolina chickadees (Parus carolinensis) designedto test the following predictions from a recent dynamic optimizationmodel: under limited resources, small birds, when fat, shouldcache food instead of eating it, but they should eat insteadof caching when lean; when resources are abundant, birds shouldcache less when fat and more when lean. In addition, when resourcesare abundant the amount of time spent in foraging-related activityshould decrease with an increase in body mass. Chickadees weretested for 2 weeks in either a poor-quality environment (wherethey were given four 5-min periods per day of access to a feederfilled with sunflower seeds) or a richer environment (wherethey were given four 10-min access periods); they were thenswitched to the alternative environment for an additional 2weeks. The entire experiment lasted from October through June.Within-individual comparisons showed that birds in both thepoor and rich environments exhibited the predicted correlationsbetween the probability that a seed was cached and body massmeasured at dawn. The number of seeds already stored had a weakand variable effect on caching decisions. Time budgets changedas predicted; birds spent less time with food-related behaviorswhen their energy stores were high compared to when they werelow, and overall spent a higher fraction of their time foragingin the poor-quality environment compared to the rich environment.Two other variables also affected caching behavior: experienceand season. Individuals were more likely to cache in the poorenvironment when they had been tested in the rich environmentthe previous 2 weeks, as compared with birds started in thepoor environment. However, this was true only for tests donein the winter. In late spring, all birds stopped caching orreduced caching rates when faced with limited food availability,irrespective of previous experience. The birds harvested seedsfaster when they cached instead of eating seeds; as a result,long-term weight regulation in the poor environment was affectedby caching decisions. Birds tested in late spring lost weightin the poor environment, whereas those tested in the wintermaintained a stable weight when switched from the rich to thepoor environment. Thus, annual endogenous cues directly affectcaching decisions and indirectly influence the long-term regulationof body mass  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号