首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been proposed that differences in adipocyte function and/or metabolism between obese and lean individuals may manifest themselves in functional adipose tissue abnormalities that lead to metabolic disorders in obesity. We studied lipogenesis and lipolysis of omental adipocytes from obese (OB) and non-obese (NOB) humans. The specific activity of the lipogenic marker enzyme G3PDH was 50% lower in total adipocytes of OB compared to that of NOB subjects. Omental adipocytes from OB subjects also had lower basal lipolytic levels, and a lower lipolytic response to beta-adrenergic stimulus. Cholesterol depletion of adipocyte plasma membrane using methyl b-cyclodextrin caused a lipolytic effect on adipocytes of both groups together, but when obese and lean subjects were analyzed separately, the response was significant only in the obese. We present evidence of a different lipogenic and lipolytic profile in obese individuals' omental adipocytes, and propose a relevant role of plasma membrane cholesterol, where the impact of its removal in OB and NOB adipocyte lipolysis differs.  相似文献   

2.
The aim of the present study was to gain insight into the signaling pathway used by leptin to stimulate lipolysis. The lipolytic rate of white adipocytes from sex- and age-matched lean (+/+) and fa/fa rats was determined in the absence or presence of leptin together with a number of agents acting at different levels of the signaling cascade. Leptin did not modify FSK-, dbcAMP-, and IBMX-stimulated lipolysis. Lipolysis can also be maximally stimulated by lowering media adenosine levels with adenosine deaminase (ADA), i.e., in the ligand-free state. Although ADA produced near maximal lipolysis in adipocytes of lean animals, only half of the maximal lipolytic rate (50.9+/-3.2%) was achieved in fat cells from fa/fa rats (P=0.0034). In adipocytes from lean animals preincubated with ADA, leptin caused a concentration-related stimulation of lipolysis (P=0.0001). However, leptin had no effect on the lipolytic activity of adipocytes in the ligand-free state from fa/fa rats. The adenosine A1 receptor agonist CPA effectively inhibited basal lipolysis in both lean and obese adipocytes (P=0.0001 and P=0.0090, respectively). Leptin had no effect on the lipolytic rate of adipocytes isolated from fa/fa rats and preincubated with CPA. When adipocytes were incubated with the A1 receptor antagonist DPCPX, a significant increase in glycerol release was observed in fa/fa fat cells (P=0.009), whereas cells isolated from lean rats showed no differences to ADA-stimulated lipolysis. After pretreatment with PTX, which inactivates receptor-mediated Gi function, adipocytes of obese rats became as responsive to the stimulatory actions of ISO as cells from lean rats (P=0.0090 vs. ISO in fa/fa rats; P=0.2416 vs. lean rats, respectively). PTX treatment of lean cells, however, did not alter their response to this lipolytic agent. It can be concluded that the lipolytic effect of leptin is located at the adenylate cyclase/Gi proteins level and that leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes.  相似文献   

3.
Mounting evidence suggests there is a reduced mobilization of stored fat in obese compared to lean women. It has been suggested that this decreased lipid mobilization may lead to, or perpetuate, the obese state; however, there may be a beneficial effect of reduced lipolysis, either by allowing for a sink of excess fatty acids, or by limiting a potentially harmful rise in interstitial and circulating fatty acid concentration. Nitric oxide (NO) may be responsible for a portion of the reduced in vivo rates of lipolysis in obese women because NO reduces adipose tissue lipolysis and adipose tissue nitric oxide synthase (NOS) mRNA is higher in obese than lean individuals. The purpose of this study was to determine if the inhibition of NOS by L-N(g)-monomethyl-L-arginine (L-NMMA) in the absence and presence of lipolytic stimulation would result in a larger increase in lipolytic rate in obese (OB) than lean (LN) women. Microdialysis probes were inserted into the subcutaneous abdominal adipose tissue of seven obese and six lean women to monitor lipolysis. Dialysate glycerol concentration increased in response to L-NMMA in OB (basal 125 ± 26 μmol/l; L-NMMA 225 ± 35 μmol/l) to a greater extent than in LN (basal 70 ± 18 μmol/l; L-NMMA 84 ± 20 μmol/l) women (P < 0.05). Dialysate glycerol increased to a similar extent in OB and LN in response to adrenergic stimulation by isoprenaline or norepinephrine in the presence of L-NMMA. The differential glycerol responses to L-NMMA between obese and lean could not be explained by differential blood flow responses. It can be concluded that NO suppresses basal lipolysis in obese women to a greater extent than in lean women.  相似文献   

4.
Regional variation in adipose tissue lipolysis in lean and obese men.   总被引:7,自引:0,他引:7  
Biopsies of adipose tissue were obtained from two subcutaneous regions (abdominal and femoral) in a sample of 54 men (32 obese and 22 lean subjects). Clonidine-induced antilipolysis in femoral adipose cells was similar in both groups, whereas subcutaneous abdominal adipocytes of obese individuals showed a higher alpha 2-adrenergic response than did subcutaneous abdominal adipose cells from lean subjects. In addition, epinephrine had a biphasic effect in subcutaneous abdominal adipocytes from obese individuals, as it induced antilipolysis at low concentrations, and a net lipolytic response at higher doses. In contrast, the physiological amine promoted lipolysis in subcutaneous abdominal adipose cells of lean subjects. Epinephrine- and clonidine-induced antilipolysis of subcutaneous abdominal adipocytes was positively associated with the level of subcutaneous abdominal fat measured by computed tomography (CT). Finally, men with a high alpha 2-adrenergic response of subcutaneous abdominal fat cells were fatter than those with a low alpha 2-adrenergic component. These results suggest that, in men with a wide range of body fatness, variations in the lipolytic response of subcutaneous abdominal adipose cells to epinephrine appear to involve changes in the functional balance between alpha 2- and beta-adrenoceptors.  相似文献   

5.
The in vitro effects of 3,5,3'-triiodo-L-thyronine (L-T3) on (-) epinephrine stimulated lipolytic activity were studied in adipocytes isolated from white adipose tissue of Zucker and Wistar male rats. Basic lipolytic activity was small and nearly insensitive to epinephrine in Zucker genetically obese rats. On the other hand, lipolytic activity was stimulated by epinephrine in Zucker lean rats and Wistar rats in the same way. There was no synergistic interaction between epinephrine and L-T3 on lipolytic activity, since the released glycerol levels were nearly the same. These data corroborate the hypothyroid status of Zucker genetically obese rats.  相似文献   

6.
Amine degradation by adipocyte amine oxidases leads to the production of metabolites that interact with lipid and glucose metabolisms and their hormonal regulations. To further investigate these interactions, we determined the effect of a dietary amine, tyramine (TYR), on glycerol and lactate releases, respectively taken as indices of lipolytic and glycolytic activities of isolated adipocytes. Old male Wistar rats were used to prepare adipocytes by collagenase dissociation of retroperitoneal fat pads. The two tested doses of tyramine (10 microM and 1 mM) had no effect on basal glycerol release. On the other hand, TYR, at the highest dose tested (1 mM), weakly but significantly increased basal lactate release, which was elevated in adipocytes from old rats. Norepinephrine (NE), highly stimulated adipocyte lipolysis with a submaximal effect at 1 microM which was slightly but significantly inhibited by TYR 1 mM. Insulin 1 nM (INS) also poorly inhibited the NE-stimulated lipolysis in adipocytes isolated from old rats. TYR was able to potentiate the poor antilipolytic efficiency of INS. Under similar conditions, a high dose of NE greatly reduced lactate production and TYR (1 mM) reversed this inhibition of lactate release. INS was also able to totally reverse the inhibitory effect of NE on lactate release, but there was no potentiation between insulin and tyramine effects. It can be concluded that high doses of TYR interact with norepinephrine and insulin, at least on the control of glycerol and lactate release, by counteracting catecholamine effects and by mimicking insulin actions.  相似文献   

7.
The lipolytic response of isolated adipocytes from genetic obese (C57/BL/64 ob/ob) and lean (C57BL/6J +/?) mice to ACTH-(1-24), isoproterenol and glucagon has been studied. The mean cell idameter of adipocytes form ob/ob mice was approximately twice that of lean controls. The adipocytes from obese mice contained on the average approximately six times the amount of triacylglycerol present in the smaller lean mouse adipocyte. Lipolysis was calculated both on a per cell basis (10(5) cells) and per mu mole of triacylglycerol and when expressed on a cell number basis, the larger adipocytes from obese mice showed an ACTH-(1-24) stimulated glycerol release which was quantitatively similar to that of smaller adipocytes from lean mice. When expressed per mu mole of triacylglycerol, the smaller cells from lean animals appeared to be dramatically more responsive to either isoproterenol or ACTH-(1-24). On either basis, ACTH-(1-24) stimulated glycerol release from obese mouse cells was greater than the isoproterenol response. The obese mouse of adipocyte showed selective loss of response to isoproterenol compared to its lean control.  相似文献   

8.
With the use of the microdialysis method, exercise-induced lipolysis was investigated in subcutaneous adipose tissue (SCAT) in obese subjects and compared with lean ones, and the effect of blockade of alpha(2)-adrenergic receptors (ARs) on lipolysis during exercise was explored. Changes in extracellular glycerol concentrations and blood flow were measured in SCAT in a control microdialysis probe at rest and during 60-min exercise bouts (50% of heart rate reserve) and in a probe supplemented with the alpha(2)-AR antagonist phentolamine. At rest and during exercise, plasma norepinephrine and epinephrine concentrations were not different in obese compared with lean men. In the basal state, plasma and extracellular glycerol concentrations were higher, whereas blood flow was lower in SCAT of obese subjects. During exercise, the increase of plasma glycerol was higher in obese subjects (115 +/- 35 vs. 65 +/- 21 micromol/l). Oppositely, the exercise-induced increase in extracellular glycerol concentrations in SCAT was five- to sixfold lower in obese than in lean subjects (50 +/- 14 vs. 318 +/- 53 micromol/l). The exercise-induced increase in extracellular glycerol concentration was not significantly modified by phentolamine infusion in lean subjects but was strongly enhanced in the obese subjects and reached the concentrations found in lean sujects (297 +/- 46 micromol/l). These findings demonstrate that the physiological stimulation of SCAT adipocyte alpha(2)-ARs during exercice-induced sympathetic nervous system activation contributes to the blunted lipolysis noted in obese men.  相似文献   

9.
Our previous work identified a genetic mutation in the gene encoding angiopoietin-like protein 3 (Angptl3) in KK/Snk mice (previously KK/San), a mutant strain of KK obese mice. KK/Snk had significantly lower plasma triglyceride and free fatty acid (FFA) than KK mice. Human ANGPTL3 treatment increased both plasma triglyceride and FFA. ANGPTL3 inhibited the activity of lipoprotein lipase, which accounted for the increase of plasma triglyceride. The mechanism how ANGPTL3 affects plasma FFA has not been known. The current study reveals that ANGPTL3 targets on adipose cells and induces lipolysis. Both plasma FFA and glycerol decreased in KK/Snk and increased by the treatment of human ANGPTL3. Specific bindings of ANGPTL3 to adipose cells were shown using fluorescence-labeled protein visually and 125I-labeled protein by the binding analysis. Furthermore, ANGPTL3 activated the lipolysis to stimulate the release of FFA and glycerol from adipocytes. We conclude that ANGPTL3 is a liver-derived lipolytic factor targeting on adipocyte.  相似文献   

10.
We measured whole body and regional lipolytic and adipose tissue blood flow (ATBF) sensitivity to epinephrine in 8 lean [body mass index (BMI): 21 +/- 1 kg/m(2)] and 10 upper body obese (UBO) women (BMI: 38 +/- 1 kg/m(2); waist circumference >100 cm). All subjects underwent a four-stage epinephrine infusion (0.00125, 0.005, 0.0125, and 0.025 microgram. kg fat-free mass(-1). min(-1)) plus pancreatic hormonal clamp. Whole body free fatty acid (FFA) and glycerol rates of appearance (R(a)) in plasma were determined by stable isotope tracer methodology. Abdominal and femoral subcutaneous adipose tissue lipolytic activity was determined by microdialysis and (133)Xe clearance methods. Basal whole body FFA R(a) and glycerol R(a) were both greater (P < 0.05) in obese (449 +/- 31 and 220 +/- 12 micromol/min, respectively) compared with lean subjects (323 +/- 44 and 167 +/- 21 micromol/min, respectively). Epinephrine infusion significantly increased FFA R(a) and glycerol R(a) in lean (71 +/- 21 and 122 +/- 52%, respectively; P < 0.05) but not obese subjects (7 +/- 6 and 39 +/- 10%, respectively; P = not significant). In addition, lipolytic and ATBF sensitivity to epinephrine was blunted in abdominal but not femoral subcutaneous adipose tissue of obese compared with lean subjects. We conclude that whole body lipolytic sensitivity to epinephrine is blunted in women with UBO because of decreased sensitivity in upper body but not lower body subcutaneous adipose tissue.  相似文献   

11.
The aim of this study was to explain the unresponsiveness of rabbit perirenal adipose tissue to epinephrine. The in vitro lipolytic response to isoproterenol and to epinephrine alone or associated with alpha- or beta-adrenergic blocking agents, was studied in the adipocytes of rabbits of various ages. Epinephrine induces a large glycerol release in young rabbit adipocytes whereas an increase in the rate of lipolysis cannot be shown with adult rabbit fat cells. Moreover, an antilipolytic effect can be shown for low concentrations of epinephrine when the basal rate of lipolysis is high in older rabbit adipocytes. Isoproterenol (beta-adrenomimetic) always exerts a strong adipokinetic effect, thus revealing functional beta-receptor sites. The blockade of alpha-adreneoceptor sites by phentolamine, which has no effect on young rabbits, abolishes the antilipolytic effect and unmasks strong lipolytic effect of epinephrine on aged and normal rabbit adipocytes. The loss of beta-adrenergic responsiveness towards epinephrine in the aging rabbit is linked to the involvement of an increased alpha-adrenergic responsiveness. The stimulation of alpha receptor sites by epinephrine leads to a depressive effect on lipolysis (lack of adipokinetic effect or antilipolytic action).  相似文献   

12.
The purpose of this investigation was to explore interactions between adrenergic stimulation, glucocorticoids, and insulin on the lipolytic rate in isolated human adipocytes from subcutaneous and omental fat depots, and to address possible sex differences. Fat biopsies were obtained from 48 nondiabetic subjects undergoing elective abdominal surgery. Lipolysis rate was measured as glycerol release from isolated cells and proteins involved in lipolysis regulation were assessed by immunoblots. Fasting blood samples were obtained and metabolic and inflammatory variables were analyzed. In women, the rate of 8-bromo-cAMP- and isoprenaline-stimulated lipolysis was approximately 2- and 1.5-fold higher, respectively, in subcutaneous compared to omental adipocytes, whereas there was no difference between the two depots in men. Dexamethasone treatment increased the ability of 8-bromo-cAMP to stimulate lipolysis in the subcutaneous depot in women, but had no consistent effects in fat cells from men. Protein kinase A, Perilipin A, and hormone sensitive lipase content in adipocytes was not affected by adipose depot, sex, or glucocorticoid treatment. In conclusion, catecholamine and glucocorticoid regulation of lipolysis in isolated human adipocytes differs between adipose tissue depots and also between sexes. These findings may be of relevance for the interaction between endogenous stress hormones and adipose tissue function in visceral adiposity and the metabolic syndrome.  相似文献   

13.
We examined the effects of diet composition and fasting on lipolysis of freshly isolated adipocytes from gilthead seabream (Sparus aurata). We also analyzed the effects of insulin, glucagon, and growth hormone (GH) in adipocytes isolated from fish fed with different diets. Basal lipolysis, measured as glycerol release, increased proportionally with cell concentration and time of incubation, which validates the suitability of these cell preparations for the study of hormonal regulation of this metabolic process. Gilthead seabream were fed two different diets, FM (100% of fish meal) and PP (100% of plant protein supplied by plant sources) for 6 wk. After this period, each diet group was divided into two groups: fed and fasted (for 11 days). Lipolysis was significantly higher in adipocytes from PP-fed fish than in adipocytes from FM-fed fish. Fasting provoked a significant increase in the lipolytic rate, about threefold in isolated adipocytes regardless of nutritional history. Hormone effects were similar in the different groups: glucagon increased the lipolytic rate, whereas insulin had almost no effect. GH was clearly lipolytic, although the relative increase in glycerol over control was lower in isolated adipocytes from fasted fish compared with fed fish. Together, we demonstrate for the first time that lipolysis, measured in isolated seabream adipocytes, is affected by the nutritional state of the fish. Furthermore, our data suggest that glucagon and especially GH play a major role in the control of adipocyte lipolysis.  相似文献   

14.
In the present study, we have examined the effects of insulin and glucagon on the lipolysis of rainbow trout (Oncorhynchus mykiss). To this end, adipocytes were isolated from mesenteric fat and incubated in the absence (basal lipolysis) or presence of different concentrations of insulin and glucagon. In addition, to further elucidate the effects of these hormones in vivo on adipocyte lipolysis, both fasting and intraperitoneal glucagon injection experiments were performed. Basal lipolysis, measured as the glycerol released in the adipocyte medium, increased proportionally with cell concentration and incubation time. Cell viability was verified by measuring the release of lactate dehydrogenase (LDH) activity in the medium. Insulin (at doses of 35 and 350 nM) decreased lipolysis in isolated adipocytes of rainbow trout in vitro, while glucagon was clearly lipolytic at concentrations of 10 and 100 nM. Furthermore, hypoinsulinemia induced by fasting, as well as glucagon injection, significantly increased lipolysis in isolated adipocytes approximately 1.5- and 1.4-fold, respectively, when compared with adipocytes from control fish. Our data demonstrate that lipolysis, as measured in isolated adipocytes of rainbow trout, can be regulated by both insulin and glucagon. These results not only indicate that insulin is an important hormone in lipid deposition via its anti-lipolytic effects on rainbow trout adipocytes, but also reveal glucagon as a lipolytic hormone, as shown by both in vitro and in vivo experiments.  相似文献   

15.
High fat diet-induced endotoxaemia triggers low-grade inflammation and lipid release from adipose tissue. This study aims to unravel the cellular mechanisms leading to the lipopolysaccharide (LPS) effects in human adipocytes. Subcutaneous pre-adipocytes surgically isolated from patients were differentiated into mature adipocytes in vitro. Lipolysis was assessed by measurement of glycerol release and mRNA expression of pro-inflammatory cytokines were evaluated by real-time PCR. Treatment with LPS for 24 h induced a dose-dependent increase in interleukin (IL)-6 and IL-8 mRNA expression. At 1 μg/ml LPS, IL-6 and IL-8 were induced to 19.5 ± 1.8-fold and 662.7 ± 91.5-fold (P < 0.01 vs basal), respectively. From 100 ng/ml to 1 μg/ml, LPS-induced lipolysis increased to a plateau of 3.1-fold above basal level (P < 0.001 vs basal). Co-treatment with inhibitors of inhibitory kappa B kinase kinase beta (IKKβ) or NF-κB inhibited LPS-induced glycerol release. Co-treatment with the protein kinase A (PKA) inhibitor H-89, the lipase inhibitor orlistat or the hormone-sensitive lipase (HSL) inhibitor CAY10499 abolished the lipolytic effects of LPS. Co-treatment with the MAPK inhibitor, U0126 also reduced LPS-induced glycerol release. Inhibition of lipolysis by orlistat or CAY10499 reduced LPS-induced IL-6 and IL-8 mRNA expression. Induction of lipolysis by the synthetic catecholamine isoproterenol or the phosphodiesterase type III inhibitor milrinone did not alter basal IL-6 and IL-8 mRNA expression after 24 treatments whereas these compounds enhanced LPS-induced IL-6 and IL-8 mRNA expression. Both the inflammatory IKKβ/NF-κB pathway and the lipolytic PKA/HSL pathways mediate LPS-induced lipolysis. In turn, LPS-induced lipolysis reinforces the expression of pro-inflammatory cytokines and, thereby, triggers its own lipolytic activity.  相似文献   

16.
Genistein affects lipogenesis and lipolysis in isolated rat adipocytes   总被引:2,自引:0,他引:2  
Genistein is a phytoestrogen found in several plants eaten by humans and food-producing animals and exerting a wide spectrum of biological activity. In this experiment, the impact of genistein on lipogenesis and lipolysis was studied in isolated rat adipocytes. Incubation of the cells (106 cells/ml in plastic tubes at 37°C with Krebs-Ringer buffer, 90 min) with genistein (0.01, 0.3, 0.6 and 1 mM) clearly restricted (1 nM) [U-14C]glucose conversion to total lipids in the absence and presence of insulin. When [14C]acetate was used as the substrate for lipogenesis, genistein (0.01, 0.1 and 1 mM) exerted a similar effect. Thus, the anti-lipogenetic action of genistein may be an effect not only of alteration in glucose transport and metabolism, but this phytoestrogen can also restrict the fatty acids synthesis and/or their estrification. Incubation of adipocytes with estradiol at the same concentrations also resulted in restriction of lipogenesis, but the effect was less marked. Genistein (0.1 and 1 mM) augmented basal lipolysis in adipocytes. This process was strongly restricted by insulin (1 μM) and H-89 (an inhibitor of protein kinase A; 50 μM) and seems to be primarily due to the inhibitory action of the phytoestrogen on cAMP phosphodiesterase in adipocytes. Genistein at the smallest concentration (0.01 mM) augmented epinephrine-stimulated (1 μM) lipolysis but failed to potentiate lipolysis induced by forskolin (1 μM) or dibutyryl-cAMP (1 mM). These results suggest genistein action on the lipolytic pathways before activation of adenylate cyclase. The restriction of lipolysis stimulated by several lipolytic agents – epinephrine, forskolin and dibutyryl-cAMP were observed when adipocytes were incubated with genistein at highest concentrations (0.1 and 1 mM). These results prove the inhibitory action of this phyestrogen on the final steps of the lipolytic cascade, i.e. on protein kinase A or hormone sensitive lipase. Estradiol, added to the incubation medium, did not affect lipolysis. It can be concluded that genistein significantly affects lipogenesis and lipolysis in isolated rat adipocytes.  相似文献   

17.
The present investigation was directed to study the effect of in vitro or ex vivo NO donors, sodium nitroprusside and molsidomine, using isolated sliced adipose tissue or in the form of immobilized and perfused adipocytes on the basal and isoprenaline-stimulated lipolysis. The results demonstrated that 1) in vitro application of sodium nitroprusside to perfused adipocytes or molsidomine to sliced adipose tissues affects isoprenaline-induced lipolysis in two ways, an increase in lipolysis at low isoprenaline concentrations (which means the sensitization of adipose tissues to adrenergic effect by NO) and decreased adrenergic agonist-stimulated lipolysis at higher concentration of isoprenaline (a decrease in the maximum lipolytic effect of isoprenaline), 2) low concentrations of molsidomine alone induced lipolysis from adipose tissue which attained more than 60% of that by isoprenaline (pD2 value for molsidomine = 11.2, while pD2 for isoprenaline = 8.17) while sodium nitroprusside did not affect the basal lipolysis significantly, 3) in vivo administration of molsidomine for 2 days reduced the maximum lipolytic effect of isoprenaline and (only non-significantly) increased the sensitivity to low doses of isoprenaline. In conclusion the present data demonstrate that NO plays an important role in adrenergic lipolysis in adipose tissues and further investigations are needed to unravel the exact role of NO in lipolysis.  相似文献   

18.
1. Isolated white and brown adipocytes (WFA and BFA) from the rat were compared with respect to their lipolytic responsiveness towards norepinephrine (NE) and adrenocorticotrophic hormone (ACTH). 2. NE yielded a Km value of 702.7 +/- 30.6 nM for WFA and 142.5 +/- 7.2 nM for BFA. The maximum lipolytic response (Vm) was 145.7 +/- 1.2 nmol glycerol/micrograms DNA/90 min for WFA and 23.7 +/- 0.2 nmol glycerol/micrograms DNA/90 min for BFA. 3. ACTH yield Km values of 31.6 +/- 1.5 and 31.9 +/- 3.1 nM for WFA and BFA, respectively. Vm values of 141.9 +/- 1.0 and 34.2 +/- 0.5 nmol glycerol/micrograms DNA/90 min were observed for WFA and BFA, respectively.  相似文献   

19.
The ability of catecholamines to maximally stimulate adipocyte lipolysis (lipolytic capacity) is decreased in obesity. It is not known whether the lipolytic capacity is determined by the ability of adipocytes to differentiate. The aim of the study was to investigate if lipolytic capacity is related to preadipocyte differentiation and if the latter can predict lipolysis in mature adipocytes. IN VITRO experiments were performed on differentiating preadipocytes and isolated mature adipocytes from human subcutaneous adipose tissue. In preadipocytes, noradrenaline-induced lipolysis increased significantly until terminal differentiation (day 12). However, changes in the expression of genes involved in lipolysis (hormone sensitive lipase, adipocyte triglyceride lipase, the alpha2-and beta1-adrenoceptors, perilipin, and fatty acid binding protein) reached a plateau much earlier during differentiation (day 8). A significant positive correlation between lipolysis in differentiated preadipocytes and mature adipocytes was observed for noradrenaline (r=0.5, p<0.01). The late differentiation capacity of preadipocytes measured as glycerol-3-phosphate dehydrogenase activity was positively correlated with noradrenaline-induced lipolysis in preadipocytes (r=0.51, p<0.005) and mature fat cells (r=0.35, p<0.05). In conclusion, intrinsic properties related to terminal differentiation determine the ability of catecholamines to maximally stimulate lipolysis in fat cells. The inability to undergo full differentiation might in part explain the low lipolytic capacity of fat cells among the obese.  相似文献   

20.
Endothelin-1 (ET-1) affects glucose uptake in adipocytes and may play an important role in adipose physiology. One of the principal functions of adipose tissue is the provision of energy substrate through lipolysis. In the present study, we investigated the effects of ET-1 on lipolysis in 3T3-L1 adipocytes. When glycerol release in the culture medium was measured as an index of lipolysis, the results showed that ET-1 caused a significant increase that was time and dose dependent. With a concentration of 10 nM ET-1, stimulation of glycerol release plateaued after 4 h of exposure. This effect was inhibited by the ETA receptor antagonist BQ-610 (10 microM) but not by the ETB receptor antagonist BQ-788 (10 microM). To further explore the underlying mechanisms of ET-1 action, we examined the involvement of the cAMP-dependent protein kinase A-mediated, phospholipase A2 (PLA2)-mediated, protein kinase C (PKC)-mediated, phosphatidylinositol 3 (PI 3)-kinase-mediated, and the mitogen-activated protein kinase (MAPK)-mediated pathways. Inhibition of adenylyl cyclase activation by SQ-22536 (100 microM) did not block ET-1-induced lipolysis. Pretreatment of adipocytes with the PLA2 inhibitor dexamethasone (100 nM), the PKC inhibitor H-7 (6 microM), or the PI 3-kinase inhibitor wortmannin (100 nM) also had no effect. ET-1-induced lipolysis was blocked by inhibition of extracellular signal-regulated kinase (ERK) activation using PD-98059 (75 microM), whereas a p38 MAPK inhibitor (SB-203580; 20 microM) had no effect. Results of Western blot further demonstrated that ET-1 induced ERK phosphorylation. These data show that ET-1 induces lipolysis in 3T3-L1 adipocytes via a pathway that is different from the conventional cAMP-dependent pathway used by isoproterenol and that involves ERK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号