首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《朊病毒》2013,7(4):195-201
Synaptic dysfunction is a key process in the evolution of many neurodegenerative diseases, with synaptic loss preceding the loss of neuronal cell bodies. In Alzheimer's, Huntington's, and prion diseases early synaptic changes correlate with cognitive and motor decline, and altered synaptic function may also underlie deficits in a number of psychiatric and neurodevelopmental conditions. The formation, remodelling and elimination of spines and synapses are continual physiological processes, moulding cortical architecture, underpinning the abilities to learn and remember. In disease, however, particularly in protein misfolding neurodegenerative disorders, lost synapses are not replaced and this loss is followed by neuronal death. These two processes are separately regulated, with mechanistic, spatial and temporal segregation of the death 'routines' of synapses and cell bodies. Recent insights into the reversibility of synaptic dysfunction in a mouse model of prion disease at neurophysiological, behavioral and morphological levels call for a deeper analysis of the mechanisms underlying neurotoxicity at the synapse, and have important implications for therapy of prion and other neurodegenerative disorders.  相似文献   

2.
In chronic neurodegenerative diseases associated with aggregates of misfolded proteins (such as Alzheimer''s, Parkinson''s and prion disease), there is an early degeneration of presynaptic terminals prior to the loss of the neuronal somata. Identifying the mechanisms that govern synapse degeneration is of paramount importance, as cognitive decline is strongly correlated with loss of presynaptic terminals in these disorders. However, very little is known about the processes that link the presence of a misfolded protein to the degeneration of synapses. It has been suggested that the process follows a simple linear sequence in which terminals that become dysfunctional are targeted for death, but there is also evidence that high levels of activity can speed up degeneration. To dissect the role of activity in synapse degeneration, we infused the synaptic blocker botulinum neurotoxin A (BoNT/A) into the hippocampus of mice with prion disease and assessed synapse loss at the electron microscopy level. We found that injection of BoNT/A in naïve mice caused a significant enlargement of excitatory presynaptic terminals in the hippocampus, indicating transmission impairment. Long-lasting blockade of activity by BoNT/A caused only minimal synaptic pathology and no significant activation of microglia. In mice with prion disease infused with BoNT/A, rates of synaptic degeneration were indistinguishable from those observed in control diseased mice. We conclude that silencing synaptic activity neither prevents nor enhances the degree of synapse degeneration in prion disease. These results challenge the idea that dysfunction of synaptic terminals dictates their elimination during prion-induced neurodegeneration.  相似文献   

3.
4.
One of the major current challenges to both medicine and neuroscience is the treatment of neurodegenerative diseases, which pose an ever-increasing medical, social and economic burden in the developed world. These disorders, which include Alzheimer's, Huntington's and Parkinson's diseases, and the rarer prion diseases, are separate entities clinically but have common features, including aggregates of misfolded proteins and varying patterns of neurodegeneration. A key barrier to effective treatment is that patients present clinically with advanced, irreversible, neuronal loss. Critically, mechanisms of neurotoxicity are poorly understood. Prevention of neuronal loss, ideally by targeting underlying pathogenic mechanisms, must be the aim of therapy. The present review describes the rationale and experimental approaches that have allowed such prevention, rescuing neurons in mice with prion disease. This rescue cured animals of a rapidly fatal neurodegenerative condition, resulting in symptom-free survival for their natural lifespan. Early pathological changes were reversed; behavioural, cognitive and neurophysiological deficits were recovered; and there was no neuronal loss. This was achieved by targeting the central pathogenic process in prion disease rather than the presumed toxic species, first by proof-of-principle experiments in transgenic mice and then by treatment using RNA interference for gene knockdown. The results have been a new therapeutic target for prion disease, further insight into mechanisms of prion neurotoxicity and the discovery of a window of reversibility in neuronal damage. Furthermore, the work gives rise to new concepts for treatment strategies for other neurodegenerative disorders, and highlights the need for clinical detection of early neuronal dysfunction, so that similar early rescue can also be achieved for these disorders.  相似文献   

5.
Mitochondrial dysfunction is a hallmark of many neurodegenerative diseases, yet its precise role in disease pathology remains unclear. To examine this link directly, we subtly perturbed electron transport chain function in the Drosophila retina, creating a model of Leigh Syndrome, an early-onset neurodegenerative disorder. Using mutations that affect mitochondrial complex II, we demonstrate that mild disruptions of mitochondrial function have no effect on the initial stages of photoreceptor development, but cause degeneration of their synapses and cell bodies in late pupal and adult animals. In this model, synapse loss is caused by reactive oxygen species (ROS) production, not energy depletion, as ATP levels are normal in mutant photoreceptors, and both pharmacological and targeted genetic manipulations that reduce ROS levels prevent synapse degeneration. Intriguingly, these manipulations of ROS uncouple synaptic effects from degenerative changes in the cell body, suggesting that mitochondrial dysfunction activates two genetically separable processes, one that induces morphological changes in the cell body, and another that causes synapse loss. Finally, by blocking mitochondrial trafficking into the axon using a mutation affecting a mitochondrial transport complex, we find that ROS action restricted to the cell body is sufficient to cause synaptic degeneration, demonstrating that ROS need not act locally at the synapse. Thus, alterations in electron transport chain function explain many of the neurodegenerative changes seen in both early- and late-onset disorders.  相似文献   

6.
Synapses are often located at great distances from the cell body and so must be capable of transducing signals into both local and distant responses. Although progress has been made in understanding biochemical cascades involved in neuronal death during development of the nervous system and in various neurodegenerative disorders, it is not known whether such cascades function locally in synaptic compartments. Prostate apoptosis response-4 (Par-4) is a leucine zipper and death domain-containing protein that plays a role in neuronal apoptosis. We now report that Par-4 levels are rapidly increased in cortical synaptosomes and in dendrites of hippocampal neurons in culture and in vivo, following exposure to apoptotic or excitotoxic insults. Par-4 expression is regulated at the translational level within synaptic compartments. Par-4 antisense treatment suppressed mitochondrial dysfunction and caspase activation in synaptosomes and prevented death of cultured hippocampal neurons following exposure to excitotoxic and apoptotic insults. Local translational regulation of death-related proteins in synaptic compartments may play a role in programmed cell death, adaptive remodeling of synapses, and neurodegenerative disorders.  相似文献   

7.
8.
Transmissible spongiform encephalopathies, or prion diseases, are lethal neurodegenerative disorders caused by the infectious agent named prion, whose main constituent is an aberrant conformational isoform of the cellular prion protein, PrP(C) . The mechanisms of prion-associated neurodegeneration and the physiologic function of PrP(C) are still unclear, although it is now increasingly acknowledged that PrP(C) plays a role in cell differentiation and survival. PrP(C) thus exhibits dichotomic attributes, as it can switch from a benign function under normal conditions to the triggering of neuronal death during disease. By reviewing data from models of prion infection and PrP-knockout paradigms, here we discuss the possibility that Ca(2+) is the hidden factor behind the multifaceted behavior of PrP(C) . By featuring in almost all processes of cell signaling, Ca(2+) might explain diverse aspects of PrP(C) pathophysiology, including the recently proposed one in which PrP(C) acts as a mediator of synaptic degeneration in Alzheimer's disease.  相似文献   

9.
Prion diseases are fatal neurodegenerative diseases of the CNS that are associated with the accumulation of misfolded cellular prion protein. There are several different strains of prion disease defined by different patterns of tissue vacuolation in the brain and disease time course, but features of neurodegeneration in these strains have not been extensively studied. Our previous studies using the prion strains ME7, 79A and 22L showed that infected mice developed behavioural deficits in the same sequence and temporal pattern despite divergent end-stage neuropathology. Here the objective was to address the hypothesis that synaptic loss would occur early in the disease in all three strains, would precede neuronal death and would be associated with the early behavioural deficits. C57BL/6 mice inoculated with ME7, 79A, or 22L-infected brain homogenates were behaviourally assessed on species typical behaviours previously shown to change during progression and euthanised when all three strains showed statistically significant impairment on these tasks. A decrease in labelling with the presynaptic marker synaptophysin was observed in the stratum radiatum of the hippocampus in all three strains, when compared to control animals. Negligible cell death was seen by TUNEL at this time point. Astrocyte and microglial activation and protease resistant prion protein (PrPSc) deposition were assessed in multiple brain regions and showed some strain specificity but also strongly overlapping patterns. This study shows that despite distinct pathology, multiple strains lead to early synaptic degeneration in the hippocampus, associated with similar behavioural deficits and supports the idea that the initiation of synaptic loss is a primary target of the misfolded prion agent.  相似文献   

10.

Background  

Prion diseases are fatal neurodegenerative disorders that accompany an accumulation of the disease-associated form(s) of prion protein (PrPSc) in the central nervous system. The neuropathological changes in the brain begin with focal deposits of PrPSc, followed by pathomorphological abnormalities of axon terminal degeneration, synaptic loss, atrophy of dendritic trees, and eventual neuronal cell death in the lesions. However, the underlying molecular basis for these neuropathogenic abnormalities is not fully understood.  相似文献   

11.
The pathological processes of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases engender synaptic and neuronal cell damage. While mild oxidative and nitrosative (nitric oxide (NO)-related) stress mediates normal neuronal signaling, excessive accumulation of these free radicals is linked to neuronal cell injury or death. In neurons, N-methyl-D-aspartate (NMDA) receptor (NMDAR) activation and subsequent Ca(2+) influx can induce the generation of NO via neuronal NO synthase. Emerging evidence has demonstrated that S-nitrosylation, representing covalent reaction of an NO group with a critical protein thiol, mediates the vast majority of NO signaling. Analogous to phosphorylation and other posttranslational modifications, S-nitrosylation can regulate the biological activity of many proteins. Here, we discuss recent studies that implicate neuropathogenic roles of S-nitrosylation in protein misfolding, mitochondrial dysfunction, synaptic injury, and eventual neuronal loss. Among a growing number of S-nitrosylated proteins that contribute to disease pathogenesis, in this review we focus on S-nitrosylated protein-disulfide isomerase (forming SNO-PDI) and dynamin-related protein 1 (forming SNO-Drp1). Furthermore, we describe drugs, such as memantine and newer derivatives of this compound that can prevent both hyperactivation of extrasynaptic NMDARs as well as downstream pathways that lead to nitrosative stress, synaptic damage, and neuronal loss.  相似文献   

12.
Prion diseases are infectious neurodegenerative diseases associated with the accumulation of protease-resistant prion protein, neuronal loss, spongiform change and astrogliosis. In the mouse model, the loss of dendritic spines is one of the earliest pathological changes observed in vivo, occurring 4–5 weeks after the first detection of protease-resistant prion protein in the brain. While there are cell culture models of prion infection, most do not recapitulate the neuropathology seen in vivo. Only the recently developed prion organotypic slice culture assay has been reported to undergo neuronal loss and the development of some aspects of prion pathology, namely small vacuolar degeneration and tubulovesicular bodies. Given the rapid replication of prions in this system, with protease-resistant prion protein detectable by 21 days, we investigated whether the dendritic spine loss and altered dendritic morphology seen in prion disease might also develop within the lifetime of this culture system. Indeed, six weeks after first detection of protease-resistant prion protein in tga20 mouse cerebellar slice cultures infected with RML prion strain, we found a statistically significant loss of Purkinje cell dendritic spines and altered dendritic morphology in infected cultures, analogous to that seen in vivo. In addition, we found a transient but statistically significant increase in Purkinje cell dendritic spine density during infection, at the time when protease-resistant prion protein was first detectable in culture. Our findings support the use of this slice culture system as one which recapitulates prion disease pathology and one which may facilitate study of the earliest stages of prion disease pathogenesis.  相似文献   

13.
Defects in axonal transport and synaptic dysfunctions are associated with early stages of several neurodegenerative diseases including Alzheimer's, Huntington's, Parkinson's, and prion diseases. Here, we tested the effect of full-length mammalian prion protein (rPrP) converted into three conformationally different isoforms to induce pathological changes regarded as early subcellular hallmarks of prion disease. We employed human embryonal teratocarcinoma NTERA2 cells (NT2) that were terminally differentiated into neuronal and glial cells and co-cultured together. We found that rPrP fibrils but not alpha-rPrP or soluble beta-sheet rich oligomers caused degeneration of neuronal processes. Degeneration of processes was accompanied by a collapse of microtubules and aggregation of cytoskeletal proteins, formation of neuritic beads, and a dramatic change in localization of synaptophysin. Our studies demonstrated the utility of NT2 cells as valuable human model system for elucidating subcellular events of prion pathogenesis, and supported the emerging hypothesis that defects in neuronal transport and synaptic abnormalities are early pathological hallmarks associated with prion diseases.  相似文献   

14.
Cell death mechanisms in neurodegeneration   总被引:5,自引:1,他引:5  
Progressive cell loss in specific neuronal populations often associated with typical cytoskeletal protein aggregations is a pathological hallmark of neurodegenerative disorders, but the nature, time course and molecular causes of cell death and their relation to cytoskeletal pathologies are still unresolved. Apoptosis or alternative pathways of cell death have been discussed in Alzheimer's disease and other neurodegenerative disorders. Apoptotic DNA fragmentation in human brain as a sign of neuronal injury is found too frequent as to account for continous neuron loss in these slowly progressive processes. Morphological studies revealed extremely rare apoptotic neuronal death in Alzheimer's disease but yielded mixed results for Parkinson's disease and other neurodegenerative disorders. Based on recent data in human brain, as well as in animal and cell culture models, a picture is beginning to emerge suggesting that, in addition to apoptosis, other forms of programmed cell death may participate in neurodegeneration. Better understanding of the molecular players will further elucidate the mechanisms of cell death in these disorders and their relations to cytoskeletal abnormalities. Susceptible cell populations in a proapoptotic environment show increased vulnerability towards multiple noxious factors discussed in the pathogenesis of neurodegeneration. In conclusion, although many in vivo and in vitro data are in favor of apoptosis involvement in neurodegenerative processes, there is considerable evidence that very complex events may contribute to neuronal death with possible repair mechanisms, the elucidation of which may prove useful for future prevention and therapy of neurodegenerative disorders.  相似文献   

15.
Prion diseases are neurodegenerative disorders characterized by the accumulation of a disease-associated prion protein and apoptotic neuronal death. Previous studies indicated that the ubiquitous expression of c-Abl tyrosine kinase transduces a variety of extrinsic and intrinsic cellular signals. In this study, we demonstrated that a synthetic neurotoxic prion fragment (PrP106-126) activated c-Abl tyrosine kinase, which in turn triggered the upregulation of MST1 and BIM, suggesting the activation of the c-Abl-BIM signaling pathway. The peptide fragment was found to result in cell death via mitochondrial dysfunction in neuron cultures. Knockdown of c-Abl using small interfering RNA protected neuronal cells from PrP106-126-induced mitochondrial dysfunction, production of reactive oxygen species, and apoptotic events inducing translocation of Bax to the mitochondria, cytochrome c release into the cytosol, and activation of caspase-9 and caspase-3. Blocking the c-Abl tyrosine kinase also prevented neuronal cells from PrP106-126-induced apoptotic morphological changes. This is the first study reporting that c-Abl tyrosine kinase as a novel upstream activator of MST1 and BIM plays an important role in prion-induced neuron apoptosis via mitochondrial dysfunction. Our findings suggest that c-Abl tyrosine kinase is a potential therapeutic target for prion disease.  相似文献   

16.
Prion diseases are irreversible progressive neurodegenerative diseases, leading to severe incapacity and death. They are characterized in the brain by prion amyloid deposits, vacuolisation, astrocytosis, neuronal degeneration, and by cognitive, behavioural and physical impairments. There is no treatment for these disorders and stem cell therapy therefore represents an interesting new approach. Gains could not only result from the cell transplantation, but also from the stimulation of endogenous neural stem cells (NSC) or by the combination of both approaches. However, the development of such strategies requires a detailed knowledge of the pathology, particularly concerning the status of the adult neurogenesis and endogenous NSC during the development of the disease. During the past decade, several studies have consistently shown that NSC reside in the adult mammalian central nervous system (CNS) and that adult neurogenesis occurs throughout the adulthood in the subventricular zone of the lateral ventricle or the Dentate Gyrus of the hippocampus. Adult NSC are believed to constitute a reservoir for neuronal replacement during normal cell turnover or after brain injury. However, the activation of this system does not fully compensate the neuronal loss that occurs during neurodegenerative diseases and could even contribute to the disease progression. We investigated here the status of these cells during the development of prion disorders. We were able to show that NSC accumulate and replicate prions. Importantly, this resulted in the alteration of their neuronal fate which then represents a new pathologic event that might underlie the rapid progression of the disease.  相似文献   

17.
Mitochondrial malfunction is a universal and critical step in the pathogenesis of many neurodegenerative diseases including prion diseases. Dynamin‐like protein 1 (DLP1) is one of the key regulators of mitochondrial fission. In this study, we investigated the role of DLP1 in mitochondrial fragmentation and dysfunction in neurons using in vitro and in vivo prion disease models. Mitochondria became fragmented and redistributed from axons to soma, correlated with increased mitochondrial DLP1 expression in murine primary neurons (N2a cells) treated with the prion peptide PrP106–126 in vitro as well as in prion strain‐infected hamster brain in vivo. Suppression of DLP1 expression by DPL1 RNAi inhibited prion‐induced mitochondrial fragmentation and dysfunction (measured by ADP/ATP ratio, mitochondrial membrane potential, and mitochondrial integrity). We also demonstrated that DLP1 RNAi is neuroprotective against prion peptide in N2a cells as shown by improved cell viability and decreased apoptosis markers, caspase 3 induced by PrP106–126. On the contrary, overexpression of DLP1 exacerbated mitochondrial dysfunction and cell death. Moreover, inhibition of DLP1 expression ameliorated PrP106–126‐induced neurite loss and synaptic abnormalities (i.e., loss of dendritic spine and PSD‐95, a postsynaptic scaffolding protein as a marker of synaptic plasticity) in primary neurons, suggesting that altered DLP1 expression and mitochondrial fragmentation are upstream events that mediate PrP106–126‐induced neuron loss and degeneration. Our findings suggest that DLP1‐dependent mitochondrial fragmentation and redistribution plays a pivotal role in PrPSc‐associated mitochondria dysfunction and neuron apoptosis. Inhibition of DLP1 may be a novel and effective strategy in the prevention and treatment of prion diseases.  相似文献   

18.
The prion diseases are neurodegenerative disorders characterized by the conversion of the PrPc (normal cellular prion) to the PrPsc (misfolded isoform). The accumulation of PrPsc within the central nervous system (CNS) leads to neurocytotoxicity by increasing oxidative stress. In addition, many neurodegenerative disorders including prion, Parkinson’s and Alzheimer’s diseases may be regulated by cholesterol homeostasis. The effects of cholesterol balance on prion protein-mediated neurotoxicity and ROS (reactive oxygen species) generation were the focus of this study. Cholesterol treatment inhibited PrP (106-126)-induced neuronal cell death and ROS generation in SH-SY5Y neuroblastoma cells. In addition, the PrP (106-126)-mediated increase of p53, p-p38, p-ERK and the decrease of Bcl-2 were blocked by cholesterol treatment. These results indicated that cellular cholesterol enrichment is a key regulator of PrP-106-126-mediated oxidative stress and neurotoxicity. Taken together, the results of this study suggest that modulation of cellular cholesterol appears to prevent the neuronal cell death caused by prion peptides.  相似文献   

19.
20.
Ubiquitinated inclusions and neuronal cell death   总被引:7,自引:0,他引:7  
Ubiquitinated inclusions and selective neuronal cell death are considered the pathological hallmarks of Parkinson's disease and other neurodegenerative diseases. Recent genetic, pathological and biochemical evidence suggests that dysfunction of ubiquitin-dependent protein degradation by the proteasome might be a contributing, if not initiating factor in the pathogenesis of these diseases. In neuronal cell culture models inhibition of the proteasome leads to cell death and formation of fibrillar ubiquitin and alpha-synuclein-positive inclusions, thus modeling some aspects of Lewy body diseases. The processes of inclusion formation and neuronal cell death share some common mechanisms, but can also be dissociated at a certain level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号