首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding causal relationships, or effective connectivity, between parts of the brain is of utmost importance because a large part of the brain’s activity is thought to be internally generated and, hence, quantifying stimulus response relationships alone does not fully describe brain dynamics. Past efforts to determine effective connectivity mostly relied on model based approaches such as Granger causality or dynamic causal modeling. Transfer entropy (TE) is an alternative measure of effective connectivity based on information theory. TE does not require a model of the interaction and is inherently non-linear. We investigated the applicability of TE as a metric in a test for effective connectivity to electrophysiological data based on simulations and magnetoencephalography (MEG) recordings in a simple motor task. In particular, we demonstrate that TE improved the detectability of effective connectivity for non-linear interactions, and for sensor level MEG signals where linear methods are hampered by signal-cross-talk due to volume conduction.  相似文献   

2.
Estimating the causal interaction between neurons is very important for better understanding the functional connectivity in neuronal networks. We propose a method called normalized permutation transfer entropy (NPTE) to evaluate the temporal causal interaction between spike trains, which quantifies the fraction of ordinal information in a neuron that has presented in another one. The performance of this method is evaluated with the spike trains generated by an Izhikevich’s neuronal model. Results show that the NPTE method can effectively estimate the causal interaction between two neurons without influence of data length. Considering both the precision of time delay estimated and the robustness of information flow estimated against neuronal firing rate, the NPTE method is superior to other information theoretic method including normalized transfer entropy, symbolic transfer entropy and permutation conditional mutual information. To test the performance of NPTE on analyzing simulated biophysically realistic synapses, an Izhikevich’s cortical network that based on the neuronal model is employed. It is found that the NPTE method is able to characterize mutual interactions and identify spurious causality in a network of three neurons exactly. We conclude that the proposed method can obtain more reliable comparison of interactions between different pairs of neurons and is a promising tool to uncover more details on the neural coding.  相似文献   

3.
Whether the balance between integration and segregation of information in the brain is damaged in Mild Cognitive Impairment (MCI) subjects is still a matter of debate. Here we characterize the functional network architecture of MCI subjects by means of complex networks analysis. Magnetoencephalograms (MEG) time series obtained during a memory task were evaluated by synchronization likelihood (SL), to quantify the statistical dependence between MEG signals and to obtain the functional networks. Graphs from MCI subjects show an enhancement of the strength of connections, together with an increase in the outreach parameter, suggesting that memory processing in MCI subjects is associated with higher energy expenditure and a tendency toward random structure, which breaks the balance between integration and segregation. All features are reproduced by an evolutionary network model that simulates the degenerative process of a healthy functional network to that associated with MCI. Due to the high rate of conversion from MCI to Alzheimer Disease (AD), these results show that the analysis of functional networks could be an appropriate tool for the early detection of both MCI and AD.  相似文献   

4.
Empirical studies over the past two decades have provided support for the hypothesis that schizophrenia is characterized by altered connectivity patterns in functional brain networks. These alterations have been proposed as genetically mediated diagnostic biomarkers and are thought to underlie altered cognitive functions such as working memory. However, the nature of this dysconnectivity remains far from understood. In this study, we perform an extensive analysis of functional connectivity patterns extracted from MEG data in 14 subjects with schizophrenia and 14 healthy controls during a 2-back working memory task. We investigate uni-, bi- and multivariate properties of sensor time series by computing wavelet entropy of and correlation between time series, and by constructing binary networks of functional connectivity both within and between classical frequency bands (, , , and ). Networks are based on the mutual information between wavelet time series, and estimated for each trial window separately, enabling us to consider both network topology and network dynamics. We observed significant decreases in time series entropy and significant increases in functional connectivity in the schizophrenia group in comparison to the healthy controls and identified an inverse relationship between these measures across both subjects and sensors that varied over frequency bands and was more pronounced in controls than in patients. The topological organization of connectivity was altered in schizophrenia specifically in high frequency and band networks as well as in the - cross-frequency networks. Network topology varied over trials to a greater extent in patients than in controls, suggesting disease-associated alterations in dynamic network properties of brain function. Our results identify signatures of aberrant neurophysiological behavior in schizophrenia across uni-, bi- and multivariate scales and lay the groundwork for further clinical studies that might lead to the discovery of new intermediate phenotypes.  相似文献   

5.
Boh B  Herholz SC  Lappe C  Pantev C 《PloS one》2011,6(7):e21458
In the present study we investigated the capacity of the memory store underlying the mismatch negativity (MMN) response in musicians and nonmusicians for complex tone patterns. While previous studies have focused either on the kind of information that can be encoded or on the decay of the memory trace over time, we studied capacity in terms of the length of tone sequences, i.e., the number of individual tones that can be fully encoded and maintained. By means of magnetoencephalography (MEG) we recorded MMN responses to deviant tones that could occur at any position of standard tone patterns composed of four, six or eight tones during passive, distracted listening. Whereas there was a reliable MMN response to deviant tones in the four-tone pattern in both musicians and nonmusicians, only some individuals showed MMN responses to the longer patterns. This finding of a reliable capacity of the short-term auditory store underlying the MMN response is in line with estimates of a three to five item capacity of the short-term memory trace from behavioural studies, although pitch and contour complexity covaried with sequence length, which might have led to an understatement of the reported capacity. Whereas there was a tendency for an enhancement of the pattern MMN in musicians compared to nonmusicians, a strong advantage for musicians could be shown in an accompanying behavioural task of detecting the deviants while attending to the stimuli for all pattern lengths, indicating that long-term musical training differentially affects the memory capacity of auditory short-term memory for complex tone patterns with and without attention. Also, a left-hemispheric lateralization of MMN responses in the six-tone pattern suggests that additional networks that help structuring the patterns in the temporal domain might be recruited for demanding auditory processing in the pitch domain.  相似文献   

6.
A challenge for physiologists and neuroscientists is to map information transfer between components of the systems that they study at different scales, in order to derive important knowledge on structure and function from the analysis of the recorded dynamics. The components of physiological networks often interact in a nonlinear way and through mechanisms which are in general not completely known. It is then safer that the method of choice for analyzing these interactions does not rely on any model or assumption on the nature of the data and their interactions. Transfer entropy has emerged as a powerful tool to quantify directed dynamical interactions. In this paper we compare different approaches to evaluate transfer entropy, some of them already proposed, some novel, and present their implementation in a freeware MATLAB toolbox. Applications to simulated and real data are presented.  相似文献   

7.
In complex networks such as gene networks, traffic systems or brain circuits it is important to understand how long it takes for the different parts of the network to effectively influence one another. In the brain, for example, axonal delays between brain areas can amount to several tens of milliseconds, adding an intrinsic component to any timing-based processing of information. Inferring neural interaction delays is thus needed to interpret the information transfer revealed by any analysis of directed interactions across brain structures. However, a robust estimation of interaction delays from neural activity faces several challenges if modeling assumptions on interaction mechanisms are wrong or cannot be made. Here, we propose a robust estimator for neuronal interaction delays rooted in an information-theoretic framework, which allows a model-free exploration of interactions. In particular, we extend transfer entropy to account for delayed source-target interactions, while crucially retaining the conditioning on the embedded target state at the immediately previous time step. We prove that this particular extension is indeed guaranteed to identify interaction delays between two coupled systems and is the only relevant option in keeping with Wiener’s principle of causality. We demonstrate the performance of our approach in detecting interaction delays on finite data by numerical simulations of stochastic and deterministic processes, as well as on local field potential recordings. We also show the ability of the extended transfer entropy to detect the presence of multiple delays, as well as feedback loops. While evaluated on neuroscience data, we expect the estimator to be useful in other fields dealing with network dynamics.  相似文献   

8.
9.
Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM). First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience.  相似文献   

10.
Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the rich information embedded in these networks, these networks face important data quality challenges of noise and incompleteness that adversely affect the results obtained from their analysis. Here, we apply a robust measure of local network structure called common neighborhood similarity (CNS) to address these challenges. Although several CNS measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network with those from the original network. Using a large set of human and fly protein interactions, and a set of over GO terms for both, we find that several of the transformed networks produce more accurate predictions than those obtained from the original network. In particular, the measure and other continuous CNS measures perform well this task, especially for large networks. Further investigation reveals that the two major factors contributing to this improvement are the abilities of CNS measures to prune out noisy edges and enhance functional coherence in the transformed networks.  相似文献   

11.
Wu K  Taki Y  Sato K  Sassa Y  Inoue K  Goto R  Okada K  Kawashima R  He Y  Evans AC  Fukuda H 《PloS one》2011,6(5):e19608
Community structure is a universal and significant feature of many complex networks in biology, society, and economics. Community structure has also been revealed in human brain structural and functional networks in previous studies. However, communities overlap and share many edges and nodes. Uncovering the overlapping community structure of complex networks remains largely unknown in human brain networks. Here, using regional gray matter volume, we investigated the structural brain network among 90 brain regions (according to a predefined anatomical atlas) in 462 young, healthy individuals. Overlapped nodes between communities were defined by assuming that nodes (brain regions) can belong to more than one community. We demonstrated that 90 brain regions were organized into 5 overlapping communities associated with several well-known brain systems, such as the auditory/language, visuospatial, emotion, decision-making, social, control of action, memory/learning, and visual systems. The overlapped nodes were mostly involved in an inferior-posterior pattern and were primarily related to auditory and visual perception. The overlapped nodes were mainly attributed to brain regions with higher node degrees and nodal efficiency and played a pivotal role in the flow of information through the structural brain network. Our results revealed fuzzy boundaries between communities by identifying overlapped nodes and provided new insights into the understanding of the relationship between the structure and function of the human brain. This study provides the first report of the overlapping community structure of the structural network of the human brain.  相似文献   

12.
The majority of brain activities are performed by functionally integrating separate regions of the brain. Therefore, the synchronous operation of the brain’s multiple regions or neuronal assemblies can be represented as a network with nodes that are interconnected by links. Because of the complexity of brain interactions and their varying effects at different levels of complexity, one of the corresponding authors of this paper recently proposed the brainnetome as a new –ome to explore and integrate the brain network at different scales. Because electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive and have outstanding temporal resolution and because they are the primary clinical techniques used to capture the dynamics of neuronal connections, they lend themselves to the analysis of the neural networks comprising the brainnetome. Because of EEG/MEG’s applicability to brainnetome analyses, the aim of this review is to identify the procedures that can be used to form a network using EEG/MEG data in sensor or source space and to promote EEG/MEG network analysis for either neuroscience or clinical applications. To accomplish this aim, we show the relationship of the brainnetome to brain networks at the macroscale and provide a systematic review of network construction using EEG and MEG. Some potential applications of the EEG/MEG brainnetome are to use newly developed methods to associate the properties of a brainnetome with indices of cognition or disease conditions. Associations based on EEG/MEG brainnetome analysis may improve the comprehension of the functioning of the brain in neuroscience research or the recognition of abnormal patterns in neurological disease.  相似文献   

13.
The balance of global integration and functional specialization is a critical feature of efficient brain networks, but the relationship of global topology, local node dynamics and information flow across networks has yet to be identified. One critical step in elucidating this relationship is the identification of governing principles underlying the directionality of interactions between nodes. Here, we demonstrate such principles through analytical solutions based on the phase lead/lag relationships of general oscillator models in networks. We confirm analytical results with computational simulations using general model networks and anatomical brain networks, as well as high-density electroencephalography collected from humans in the conscious and anesthetized states. Analytical, computational, and empirical results demonstrate that network nodes with more connections (i.e., higher degrees) have larger amplitudes and are directional targets (phase lag) rather than sources (phase lead). The relationship of node degree and directionality therefore appears to be a fundamental property of networks, with direct applicability to brain function. These results provide a foundation for a principled understanding of information transfer across networks and also demonstrate that changes in directionality patterns across states of human consciousness are driven by alterations of brain network topology.  相似文献   

14.
短时记忆的神经网络模型   总被引:2,自引:1,他引:1  
提出一个带有指针环路的短时记忆神经网络模型,模型包含两个神经网络,其中一个是与长时记忆共有的存贮内容表达网络,另一个为短时指针神经元环路,由于指针环路仅作为记忆内容的临时指针,因此,仅用很少的存贮单元即可完成各种短时记忆任务,计算机仿真证明,本模型确能表现出短时记忆的存贮容量有限和组块编码两个基本特征。  相似文献   

15.
This review is devoted to describing, summarizing, and analyzing of dynamic proteomics data obtained over the last few years and concerning the role of protein-protein interactions in modeling of the living cell. Principles of modern high-throughput experimental methods for investigation of protein-protein interactions are described. Systems biology approaches based on integrative view on cellular processes are used to analyze organization of protein interaction networks. It is proposed that finding of some proteins in different protein complexes can be explained by their multi-modular and polyfunctional properties; the different protein modules can be located in the nodes of protein interaction networks. Mathematical and computational approaches to modeling of the living cell with emphasis on molecular dynamics simulation are provided. The role of the network analysis in fundamental medicine is also briefly reviewed.  相似文献   

16.
Perception of our environment is a multisensory experience; information from different sensory systems like the auditory, visual and tactile is constantly integrated. Complex tasks that require high temporal and spatial precision of multisensory integration put strong demands on the underlying networks but it is largely unknown how task experience shapes multisensory processing. Long-term musical training is an excellent model for brain plasticity because it shapes the human brain at functional and structural levels, affecting a network of brain areas. In the present study we used magnetoencephalography (MEG) to investigate how audio-tactile perception is integrated in the human brain and if musicians show enhancement of the corresponding activation compared to non-musicians. Using a paradigm that allowed the investigation of combined and separate auditory and tactile processing, we found a multisensory incongruency response, generated in frontal, cingulate and cerebellar regions, an auditory mismatch response generated mainly in the auditory cortex and a tactile mismatch response generated in frontal and cerebellar regions. The influence of musical training was seen in the audio-tactile as well as in the auditory condition, indicating enhanced higher-order processing in musicians, while the sources of the tactile MMN were not influenced by long-term musical training. Consistent with the predictive coding model, more basic, bottom-up sensory processing was relatively stable and less affected by expertise, whereas areas for top-down models of multisensory expectancies were modulated by training.  相似文献   

17.
We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances—that naturally balances the network with excitatory and inhibitory synapses—and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest.  相似文献   

18.
Signal transduction networks: topology, response and biochemical processes   总被引:2,自引:0,他引:2  
Conventionally, biological signal transduction networks are analysed using experimental and theoretical methods to describe specific protein components, interactions, and biochemical processes and to model network behavior under various conditions. While these studies provide crucial information on specific networks, this information is not easily converted to a broader understanding of signal transduction systems. Here, using a specific model of protein interaction we analyse small network topologies to understand their response and general properties. In particular, we catalogue the response for all possible topologies of a given network size to generate a response distribution, analyse the effects of specific biochemical processes on this distribution, and analyse the robustness and diversity of responses with respect to internal fluctuations or mutations in the network. The results show that even three- and four-protein networks are capable of creating diverse and biologically relevant responses, that the distribution of response types changes drastically as a function of biochemical processes at protein level, and that certain topologies strongly pre-dispose a specific response type while others allow for diverse types of responses. This study sheds light on the response types and properties that could be expected from signal transduction networks, provides possible explanations for the role of certain biochemical processes in signal transduction and suggests novel approaches to interfere with signaling pathways at the molecular level. Furthermore it shows that network topology plays a key role on determining response type and properties and that proper representation of network topology is crucial to discover and understand so-called building blocks of large networks.  相似文献   

19.
1. Ants establish mutualistic interactions involving a wide range of protective relationships (myrmecophily), in which they provide defence against enemies and partners provide food rewards and/or refuge. Although similar in the general outcome, myrmecophilic interactions differ in some characteristics such as quantity and quality of rewards offered by partners which may lead to different specialisation levels and, consequently, to different network properties. 2. The aim of this study was to identify structural patterns in myrmecophilic interaction networks, focusing on aspects related to specialisation: network modularity, nestedness and taxonomic relatedness of interaction ranges. To achieve this, a database of networks was compiled, including the following interactions: ants and domatia‐bearing plants (myrmecophytes); ants and extrafloral nectary‐bearing plants (EFNs); ants and floral nectary‐bearing plants (FNs); ants and Lepidoptera caterpillars; and ants and Hemiptera. 3. Myrmecophilic networks differed in their topology, with ant–myrmecophyte and ant–Lepidoptera networks being similar in their structural properties. A continuum was found, ranging from highly modular networks and phylogenetically structured interaction ranges in ant–myrmecophyte followed by ant–Lepidoptera networks to low modularity and taxonomically unrelated interaction ranges in ant–Hemiptera, EFN and FN networks. 4. These results suggest that different network topologies may be found across communities of species with similar interaction types, but also, that similar network topologies can be achieved through different mechanisms such as those between ants and myrmecophytes or Lepidoptera larvae. This study contributes to a generalisation of myrmecophilic network patterns and a better understanding of the relationship between specialisation and network topology.  相似文献   

20.
Hipp JF  Engel AK  Siegel M 《Neuron》2011,69(2):387-396
Normal brain function requires the dynamic interaction of functionally specialized but widely distributed cortical regions. Long-range synchronization of oscillatory signals has been suggested to mediate these interactions within large-scale cortical networks, but direct evidence is sparse. Here we show that oscillatory synchronization is organized in such large-scale networks. We implemented an analysis approach that allows for imaging synchronized cortical networks and applied this technique to EEG recordings in humans. We identified two networks: beta-band synchronization (~20 Hz) in a fronto-parieto-occipital network and gamma-band synchronization (~80 Hz) in a centro-temporal network. Strong perceptual correlates support their functional relevance: the strength of synchronization within these networks predicted the subjects' perception of an ambiguous audiovisual stimulus as well as the integration of auditory and visual information. Our results provide evidence that oscillatory neuronal synchronization mediates neuronal communication within frequency-specific, large-scale cortical networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号