首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bojko  M.  Więckowski  S. 《Photosynthetica》2001,39(4):553-556
The effects of phenylmercuric acetate (PMA) and apoferredoxin (apoFd) on the diaphorase activity of spinach ferredoxin:NADP+ oxidoreductase (FNR) in the presence of dibromothymoquinone (DBMIB) or cytochrome c (Cyt c) were studied. PMA inhibited effectively (I50 = < 5 M) ferredoxin-dependent Cyt c reduction but did not affect evidently the enzyme activity in the presence of DBMIB as an electron acceptor. ApoFd caused also inhibition of Cyt c reduction but slightly stimulated, like ferredoxin, DBMIB reduction. We confirm a hypothesis according to which three binding sites for substrates [NADP(H), Fd-Cyt c, quinone/dichlorophenol indophenol] occur within the molecule of isolated FNR.  相似文献   

2.
Grzyb  J.  Bojko  M.  Więckowski  S. 《Photosynthetica》2003,41(4):627-630
Effects of selective reagents of amino groups (fluorescamine, Fc) and thiol [5,5-dithio-bis(2-nitrobenzoic) acid, DTNB] groups on the diaphorase activity of spinach ferredoxin:NADP+ oxidoreductase (FNR, E.C 1.18.1.2) in the presence of dibromothymoquinone (DBMIB) as an electron acceptor were studied. The incubation of FNR with 250 M Fc in the time range from 0 to 120 min led to the gradual decrease of FNR activity according to biphasic kinetics. At the initial phase the activity (defined as the rate of NADPH oxidation) decreased about 4-time faster than at the subsequent second slower phase. Incubation of FNR simultaneously with Fc and DBMIB for more than 20 min caused restoration of the activity to about 80 % of the control. The inhibitory effect of Fc on the FNR-catalysed DBMIB reduction had non-competitive character. Incubation of FNR with DTNB led also to a gradual decrease of the enzyme activity, which reached about 45 % of the control after 2 h of incubation. Thus neither amino nor thiol groups in the FNR molecule are involved directly in the DBMIB reduction. However, the presence of DBMIB in the incubation medium influenced the inhibitory pattern of Fc and DTNB, and this suggests that DBMIB modified the conformational state of the FNR molecule.  相似文献   

3.
NADH-dependent reduced ferredoxin:NADP oxidoreductase (NfnAB) is found in the cytoplasm of various anaerobic bacteria and archaea. The enzyme reversibly catalyzes the endergonic reduction of ferredoxin with NADPH driven by the exergonic transhydrogenation from NADPH onto NAD+. Coupling is most probably accomplished via the mechanism of flavin-based electron bifurcation. To understand this process on a structural basis, we heterologously produced the NfnAB complex of Thermotoga maritima in Escherichia coli, provided kinetic evidence for its bifurcating behavior, and determined its x-ray structure in the absence and presence of NADH. The structure of NfnAB reveals an electron transfer route including the FAD (a-FAD), the [2Fe-2S] cluster of NfnA and the FAD (b-FAD), and the two [4Fe-4S] clusters of NfnB. Ferredoxin is presumably docked onto NfnB close to the [4Fe-4S] cluster distal to b-FAD. NAD(H) binds to a-FAD and NADP(H) consequently to b-FAD, which is positioned in the center of the NfnAB complex and the site of electron bifurcation. Arg187 is hydrogen-bonded to N5 and O4 of the bifurcating b-FAD and might play a key role in adjusting a low redox potential of the FADH/FAD pair required for ferredoxin reduction. A mechanism of FAD-coupled electron bifurcation by NfnAB is proposed.  相似文献   

4.
Ferredoxin:NADP+ oxidoreductase (ferredoxin: NADP+ reductase, EC 1.18.1.2) was shown to form a ternary complex with its substrates ferredoxin (Fd) and NADP(H), but the ternary complex was less stable than the separate binary complexes. Kd for oxidized binary Fd-ferredoxin NADP+ reductase complex was less than 50 nM; Kd(Fd) increased with NADP+ concentration, approaching 0.5-0.6 microM when the flavoprotein was saturated with NADP+ K(NADP+) also increased from about 14 microM to about 310 microM, on addition of excess Fd. The changes in Kd were consistent with negative cooperativity between the associations of Fd and NADP+ and with our unpublished observations which suggest that product dissociation is rate-limiting in the reaction mechanism. Similar interference in binding was observed in more reduced states; NADPH released much ferredoxin:NADP+ reductase from Fd-Sepharose whether the proteins were initially oxidized or reduced. Complexation between Fd and ferredoxin: NADP+ reductase was found to shield each center from paramagnetic probes; charge specificity suggested that the active sites of Fd and ferredoxin:NADP+ reductase were, respectively, negatively and positively charged.  相似文献   

5.
Ferredoxin reductase (FNR) is ubiquitous among photosynthetic organisms as the enzyme directly responsible for the generation of NADPH. Structural studies over the last 15 years have generated over 30 crystal structures of wild-type and mutant FNRs that have yielded a great deal of insight into its structure-function relations. These insights are summarized and combined to propose a structurally informed cycle for FNR catalysis in vivo.  相似文献   

6.
In order to explain the fermentation mechanism of xylitol production from d-xylose by Pichia quercuum, enzymatic study was carried out. Three kinds of enzymes that catalyzed the reduction of d-xylose to xylitol were purified from the extract of the yeast cells by ammonium sulfate fractionation, Sephadex G-200 gel filtration, hydroxylapatite chromatography and disc electrophoresis. The purification showed 27-fold, 135-fold and 93-fold increases of specific activities of reductase I, IIa and lib, respectively, over the crude extract. The reductase Ha was homogeneous in disc gel electrophoresis. The activity ratio of reductase I: IIa: IIb in the crude extract was estimated to be approximately 2: 1:1. The three enzymes were active with a variety of aldoses and had a specific requirement for NADPH. On the basis of the substrate specificity, coenzyme requirement and the stoichiometry of the reaction, the enzymes belong to polyol: NADP oxidoreductase (EC 1.1.1.21, trivial name, aldose reductase). The molecular weights for reductase I, IIa and IIb were estimated to be 160,000, 61,000 and 61,000, respectively, by gel filtration. Disc gel electrophoresis suggested that reductase Ila and lib were charge isomeric proteins with the same molecular size. Some other properties of the three enzymes were also described.  相似文献   

7.
The ferredoxin:NADP+ oxidoreductase (FNR) catalyses the ferredoxin-dependent reduction of NADP+ to NADPH in linear photosynthetic electron transport. The enzyme also transfers electrons from reduced ferredoxin (Fd) or NADPH to the cytochrome b6f complex in cyclic electron transport. In vitro, the enzyme catalyses the NADPH-dependent reduction of various substrates, including ferredoxin, the analogue of its redox centre - ferricyanide, and the analogue of quinones, which is dibromothymoquinone. This paper presents results on the cadmium-induced inhibition of FNR. The Ki value calculated for research condition was 1.72 mM.FNR molecule can bind a large number of cadmium ions, as shown by the application of cadmium-selective electrode, but just one ion remains bound after dialysis. The effect of cadmium binding is significant disturbance in the electron transfer process from flavin adenine dinucleotide (FAD) to dibromothymoqinone, but less interference with the reduction of ferricyanide. However, it caused a strong inhibition of Fd reduction, indicating that Cd-induced changes in the FNR structure disrupt Fd binding. Additionally, the protonation of the thiol groups is shown to be of great importance in the inhibition process. A mechanism for cadmium-caused inhibition is proposed and discussed with respect to the in vitro and in vivo situation.  相似文献   

8.
It was recently found that the cytoplasmic butyryl-coenzyme A (butyryl-CoA) dehydrogenase-EtfAB complex from Clostridium kluyveri couples the exergonic reduction of crotonyl-CoA to butyryl-CoA with NADH and the endergonic reduction of ferredoxin with NADH via flavin-based electron bifurcation. We report here on a second cytoplasmic enzyme complex in C. kluyveri capable of energetic coupling via this novel mechanism. It was found that the purified iron-sulfur flavoprotein complex NfnAB couples the exergonic reduction of NADP+ with reduced ferredoxin (Fdred) and the endergonic reduction of NADP+ with NADH in a reversible reaction: Fdred2− + NADH + 2 NADP+ + H+ = Fdox + NAD+ + 2 NADPH. The role of this energy-converting enzyme complex in the ethanol-acetate fermentation of C. kluyveri is discussed.Clostridium kluyveri is unique in fermenting ethanol and acetate to butyrate, caproate, and H2 (reaction 1) and in deriving a large (30%) portion of its cell carbon from CO2. Both the energy metabolism and the pathways of biosynthesis have therefore been the subject of many investigations (for relevant literature, see references 12 and 27). (1)During growth of C. kluyveri on ethanol and acetate, approximately five ethanol and four acetate molecules are converted to three butyrate molecules and one caproate molecule (reaction 1a), and one ethanol molecule is oxidized to one acetate, one H+, and two H2 (reaction 1b) molecules (23, 31). How exergonic reaction 1a is coupled with endergonic reaction 1b and with ATP synthesis from ADP and Pi (ΔGo′ = +32 kJ/mol) has remained unclear for many years. (1a) (1b)We recently showed (12) that, in Clostridium kluyveri, the exergonic reduction of crotonyl-coenzyme A (crotonyl-CoA) (Eo′ = −10 mV) with NADH (Eo′ = −320 mV) involved in reaction 1a is coupled with the endergonic reduction of ferredoxin (Fdox) (Eo′ = −420 mV) with NADH (Eo′ = −320 mV) involved in reaction 1b via the recently proposed mechanism of flavin-based electron bifurcation (7). The coupling reaction is catalyzed by the cytoplasmic butyryl-CoA dehydrogenase-EtfAB complex (reaction 2) (12): (2)The reduced ferredoxin (Fdred2−) is assumed to be used for rereduction of NAD+ via a membrane-associated, proton-translocating ferredoxin:NAD oxidoreductase (RnfABCDEG) (reaction 3), and the proton motive force thus generated is assumed to drive the phosphorylation of ADP via a membrane-associated F1F0 ATP synthetase (reaction 4): (3) (4)The novel coupling mechanism represented by reactions 2 and 3 allowed for the first time the possibility of formulating a metabolic scheme for the ethanol-acetate fermentation that could account for the observed fermentation products and growth yields and thus for the observed ATP gains (27). One issue, however, remained open, namely, why the formation of butyrate from ethanol and acetate in the fermentation involves both an NADP+- and an NAD+-specific β-hydroxybutyryl-CoA dehydrogenase (16), considering that, in the oxidative part of the fermentation (ethanol oxidation to acetyl-CoA), only NADH is generated (8, 9, 13).The presence of a reduced ferredoxin:NADP+ oxidoreductase was proposed based on results of enzymatic studies performed 40 years ago. Cell extracts of Clostridium kluyveri were found to catalyze the formation of H2 from NADPH in a ferredoxin- and NAD+-dependent reaction (34). The results were interpreted to indicate that C. kluyveri contains a ferredoxin-dependent hydrogenase and an NADPH:ferredoxin oxidoreductase with transhydrogenase activity. H2 formation from NADPH was strictly dependent on the presence of NAD+ and was inhibited by NADH, inhibition being competitive with the presence of NAD+, indicating that ferredoxin reduction with NADPH is under the allosteric control of the NAD+/NADH couple. The cell extracts also catalyzed the NADH-dependent reduction of NADP+ with reduced ferredoxin (21, 34). Purification of the enzyme catalyzing these reactions was not achieved, and no function in the energy metabolism of C. kluyveri was assigned.In this communication, we report on the properties of the recombinant enzyme that catalyzes the NAD+-dependent reduction of ferredoxin with NADPH and the NADH-dependent reduction of NADP+ with reduced ferredoxin and show that the cytoplasmic heterodimeric enzyme couples the exergonic reduction of NADP+ with reduced ferredoxin with the endergonic reduction of NADP+ with NADH in a fully reversible reaction. The transhydrogenation reaction is endergonic, because in vivo the NADH/NAD+ ratio is generally near 0.3 and the NADPH/NADP+ ratio is generally above 1 (2, 30). (5)NADP+ reduction is most probably the physiological function of the enzyme, which is why we chose the abbreviation NfnAB (for NADH-dependent reduced ferredoxin:NADP+ oxidoreductase).  相似文献   

9.
10.
THE ACTIVITY OF REDUCED FERREDOXIN: CO(2) oxidoreductase in Clostridium pasteurianum was correlated with the accumulation of formate in the growth medium. The data indicate that the in vivo function of the enzyme is to mediate formate synthesis rather than its degradation.  相似文献   

11.
To adapt to different light intensities, photosynthetic organisms manipulate the flow of electrons through several alternative pathways at the thylakoid membrane. The enzyme ferredoxin:NADP(+) reductase (FNR) has the potential to regulate this electron partitioning because it is integral to most of these electron cascades and can associate with several different membrane complexes. However, the factors controlling relative localization of FNR to different membrane complexes have not yet been established. Maize (Zea mays) contains three chloroplast FNR proteins with totally different membrane association, and we found that these proteins have variable distribution between cells conducting predominantly cyclic electron transport (bundle sheath) and linear electron transport (mesophyll). Here, the crystal structures of all three enzymes were solved, revealing major structural differences at the N-terminal domain and dimer interface. Expression in Arabidopsis thaliana of maize FNRs as chimeras and truncated proteins showed the N-terminal determines recruitment of FNR to different membrane complexes. In addition, the different maize FNR proteins localized to different thylakoid membrane complexes on expression in Arabidopsis, and analysis of chlorophyll fluorescence and photosystem I absorbance demonstrates the impact of FNR location on photosynthetic electron flow.  相似文献   

12.
Purified detergent-soluble cytochrome b6f complex from chloroplast thylakoid membranes (spinach) and cyanobacteria (Mastigocladus laminosus) was highly active, transferring 300-350 electrons per cyt f/s. Visible absorbance spectra showed a red shift of the cytochrome f alpha-band and the Qy chlorophyll a band in the cyanobacterial complex and an absorbance band in the flavin 450-480-nm region of the chloroplast complex. An additional high molecular weight (M(r) approximately 35,000) polypeptide in the chloroplast complex was seen in SDS-polyacrylamide gel electrophoresis at a stoichiometry of approximately 0.9 (cytochrome f)(-1). The extra polypeptide did not stain for heme and was much more accessible to protease than cytochrome f. Electrospray ionization mass spectrometry of CNBr fragments of the 35-kDa polypeptide was diagnostic for ferredoxin:NADP+ oxidoreductase (FNR), as were antibody reactivity to FNR and diaphorase activity. The absence of FNR in the cyanobacterial complex did not impair decyl-plastoquinol-ferricyanide activity. The activity of the FNR in the chloroplast b6f complex was also shown by NADPH reduction, in the presence of added ferredoxin, of 0.8 heme equivalents of the cytochrome b6 subunit. It was inferred that the b6f complex with bound FNR, one equivalent per monomer, provides the membrane protein connection to the main electron transfer chain for ferredoxin-dependent cyclic electron transport.  相似文献   

13.
14.
Ferredoxin-NAD(P)+ oxidoreductase (FNR) catalyzes the reduction of NAD(P)+ to NAD(P)H with the reduced ferredoxin (Fd) during the final step of the photosynthetic electron transport chain. FNR from the green sulfur bacterium Chlorobaculum tepidum is functionally analogous to plant-type FNR but shares a structural homology to NADPH-dependent thioredoxin reductase (TrxR). Here, we report the crystal structure of C. tepidum FNR to 2.4 Å resolution, which reveals a unique structure-function relationship. C. tepidum FNR consists of two functional domains for binding FAD and NAD(P)H that form a homodimer in which the domains are arranged asymmetrically. One NAD(P)H domain is present as the open form, the other with the equivalent NAD(P)H domain as the relatively closed form. We used site-directed mutagenesis on the hinge region connecting the two domains in order to investigate the importance of the flexible hinge. The asymmetry of the NAD(P)H domain and the comparison with TrxR suggested that the hinge motion might be involved in pyridine nucleotide binding and binding of Fd. Surprisingly, the crystal structure revealed an additional C-terminal sub-domain that tethers one protomer and interacts with the other protomer by π-π stacking of Phe337 and the isoalloxazine ring of FAD. The position of this stacking Phe337 is almost identical with both of the conserved C-terminal Tyr residues of plant-type FNR and the active site dithiol of TrxR, implying a unique structural basis for enzymatic reaction of C. tepidum FNR.  相似文献   

15.
16.
Trichomonas vaginalis is a flagellate protozoan parasite and commonly infected the lower genital tract in women and men. Iron is a known nutrient for growth of various pathogens, and also reported to be involved in establishment of trichomoniasis. However, the exact mechanism was not clarified. In this study, the author investigated whether the 120 kDa protein of T. vaginalis may be involved in pathogenicity of trichomonads. Antibodies against 120 kDa protein of T. vaginalis, which was identified as pyruvate:ferredoxin oxidoreductase (PFOR) by peptide analysis of MALDI-TOF-MS, were prepared in rabbits. Pretreatment of T. vaginalis with anti-120 kDa Ab decreased the proliferation and adherence to vaginal epithelial cells (MS74) of T. vaginalis. Subcutaneous tissue abscess in anti-120 kDa Ab-treated T. vaginalis-injected mice was smaller in size than that of untreated T. vaginalis-infected mice. Collectively, the 120 kDa protein expressed by iron may be involved in proliferation, adhesion to host cells, and abscess formation, thereby may influence on the pathogenicity of T. vaginalis.  相似文献   

17.
Phycocyanobilin:ferredoxin oxidoreductase (PcyA) is the best characterized member of the ferredoxin-dependent bilin reductase family. Unlike other ferredoxin-dependent bilin reductases that catalyze a two-electron reduction, PcyA sequentially reduces D-ring (exo) and A-ring (endo) vinyl groups of biliverdin IXα (BV) to yield phycocyanobilin, a key pigment precursor of the light-harvesting antennae complexes of red algae, cyanobacteria, and cryptophytes. To address the structural basis for the reduction regiospecificity of PcyA, we report new high resolution crystal structures of bilin substrate complexes of PcyA from Synechocystis sp. PCC6803, all of which lack exo-vinyl reduction activity. These include the BV complex of the E76Q mutant as well as substrate-bound complexes of wild-type PcyA with the reaction intermediate 181,182-dihydrobiliverdin IXα (18EtBV) and with biliverdin XIIIα (BV13), a synthetic substrate that lacks an exo-vinyl group. Although the overall folds and the binding sites of the U-shaped substrates of all three complexes were similar with wild-type PcyA-BV, the orientation of the Glu-76 side chain, which was in close contact with the exo-vinyl group in PcyA-BV, was rotated away from the bilin D-ring. The local structures around the A-rings in the three complexes, which all retain the ability to reduce the A-ring of their bound pigments, were nearly identical with that of wild-type PcyA-BV. Consistent with the proposed proton-donating role of the carboxylic acid side chain of Glu-76 for exo-vinyl reduction, these structures reveal new insight into the reduction regiospecificity of PcyA.  相似文献   

18.
Cinnamoyl-coenzyme A:NADP oxidoreductase (CCR, EC 1.2.1.44), the entry-point enzyme into the monolignol biosynthetic pathway, was purified to apparent electrophoretic homogeneity from differentiating xylem of Eucalyptus gunnii Hook. The purified protein is a monomer of 38 kD and has an isoelectric point of 7. Although Eucalyptus gunnii CCR has approximately equal affinities for all possible substrates (p-coumaroyl-coenzyme A, feruloyl-coenzyme A, and sinapoyl-coenzyme A), it is approximately three times more effective at converting feruloyl-coenzyme A than the other substrates. To gain a better understanding of the catalytic regulation of Eucalyptus CCR, a variety of compounds were tested to determine their effect on CCR activity. CCR activity is inhibited by NADP and coenzyme A. Effectors that bind lysine and cysteine residues also inhibit CCR activity. As a prerequisite to the study of the regulation of CCR at the molecular level, polyclonal antibodies were obtained.  相似文献   

19.
The anaerobic acetogenic bacterium Acetobacterium woodii has a novel Na+-translocating electron transport chain that couples electron transfer from reduced ferredoxin to NAD+ with the generation of a primary electrochemical Na+ potential across its cytoplasmic membrane. In previous assays in which Ti3+ was used to reduce ferredoxin, Na+ transport was observed, but not a Na+ dependence of the electron transfer reaction. Here, we describe a new biological reduction system for ferredoxin in which ferredoxin is reduced with CO, catalyzed by the purified acetyl-CoA synthase/CO dehydrogenase from A. woodii. Using CO-reduced ferredoxin, NAD+ reduction was highly specific and strictly dependent on ferredoxin and occurred at a rate of 50 milliunits/mg of protein. Most important, this assay revealed for the first time a strict Na+ dependence of this electron transfer reaction. The Km was 0.2 mm. Na+ could be partly substituted by Li+. Na+ dependence was observed at neutral and acidic pH values, indicating the exclusive use of Na+ as a coupling ion. Electron transport from reduced ferredoxin to NAD+ was coupled to electrogenic Na+ transport, indicating the generation of Δμ̃Na+. Vice versa, endergonic ferredoxin reduction with NADH as reductant was possible, but only in the presence of Δμ̃Na+, and was accompanied by Na+ efflux out of the vesicles. This is consistent with the hypothesis that Rnf also catalyzes ferredoxin reduction at the expense of an electrochemical Na+ gradient. The physiological significance of this finding is discussed.  相似文献   

20.
The thermodynamics of the formation of binary and ternary complexes between Anabaena PCC 7119 FNR and its substrates, NADP+ and Fd, or Fld, has been studied by ITC. Despite structural dissimilarities, the main difference between Fd and Fld binding to FNR relates to hydrophobicity, reflected in different binding heat capacity and number of water molecules released from the interface. At pH 8, the formation of the binary complexes is both enthalpically and entropically driven, accompanied by the protonation of at least one ionizable group. His299 FNR has been identified as the main responsible for the proton exchange observed. However, at pH 10, where no protonation occurs and intrinsic binding parameters can be obtained, the formation of the binary complexes is entropically driven, with negligible enthalpic contribution. Absence of the FMN cofactor in Fld does not alter significantly the strength of the interaction, but considerably modifies the enthalpic and entropic contributions, suggesting a different binding mode. Ternary complexes show negative cooperativity (6-fold and 11-fold reduction in binding affinity, respectively), and an increase in the enthalpic contribution (more favorable) and a decrease in the entropic contribution (less favorable), with regard to the binary complexes energetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号