首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The scabies mite (Sarcoptes scabiei) is a parasite responsible for major morbidity in disadvantaged communities and immuno-compromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by Streptococcal species via skin lesions, resulting in a high prevalence of rheumatic fever/heart disease in affected communities. The scabies mite produces 33 proteins that are closely related to those in the dust mite group 3 allergen and belong to the S1-like protease family (chymotrypsin-like). However, all but one of these molecules contain mutations in the conserved active-site catalytic triad that are predicted to render them catalytically inactive. These molecules are thus termed scabies mite inactivated protease paralogues (SMIPPs). The precise function of SMIPPs is unclear; however, it has been suggested that these proteins might function by binding and protecting target substrates from cleavage by host immune proteases, thus preventing the host from mounting an effective immune challenge. In order to begin to understand the structural basis for SMIPP function, we solved the crystal structures of SMIPP-S-I1 and SMIPP-S-D1 at 1.85 Å and 2.0 Å resolution, respectively. Both structures adopt the characteristic serine protease fold, albeit with large structural variations over much of the molecule. In both structures, mutations in the catalytic triad together with occlusion of the S1 subsite by a conserved Tyr200 residue is predicted to block substrate ingress. Accordingly, we show that both proteases lack catalytic function. Attempts to restore function (via site-directed mutagenesis of catalytic residues as well as Tyr200) were unsuccessful. Taken together, these data suggest that SMIPPs have lost the ability to bind substrates in a classical “canonical” fashion, and instead have evolved alternative functions in the lifecycle of the scabies mite.  相似文献   

2.
No commercial immunodiagnostic tests for human scabies are currently available, and existing animal tests are not sufficiently sensitive. The recombinant Sarcoptes scabiei apolipoprotein antigen Sar s 14.3 is a promising immunodiagnostic, eliciting high levels of IgE and IgG in infected people. Limited data are available regarding the temporal development of antibodies to Sar s 14.3, an issue of relevance in terms of immunodiagnosis. We utilised a porcine model to prospectively compare specific antibody responses to a primary infestation by ELISA, to Sar s 14.3 and to S. scabiei whole mite antigen extract (WMA). Differences in the antibody profile between antigens were apparent, with Sar s 14.3 responses detected earlier, and declining significantly after peak infestation compared to WMA. Both antigens resulted in >90% diagnostic sensitivity from weeks 8–16 post infestation. These data provide important information on the temporal development of humoral immune responses in scabies and further supports the development of recombinant antigen based immunodiagnostic tests for recent scabies infestations.  相似文献   

3.

Background

Scabies is a disease of worldwide significance, causing considerable morbidity in both humans and other animals. The scabies mite Sarcoptes scabiei burrows into the skin of its host, obtaining nutrition from host skin and blood. Aspartic proteases mediate a range of diverse and essential physiological functions such as tissue invasion and migration, digestion, moulting and reproduction in a number of parasitic organisms. We investigated whether aspartic proteases may play role in scabies mite digestive processes.

Methodology/Principle Findings

We demonstrated the presence of aspartic protease activity in whole scabies mite extract. We then identified a scabies mite aspartic protease gene sequence and produced recombinant active enzyme. The recombinant scabies mite aspartic protease was capable of digesting human haemoglobin, serum albumin, fibrinogen and fibronectin, but not collagen III or laminin. This is consistent with the location of the scabies mites in the upper epidermis of human skin.

Conclusions/Significance

The development of novel therapeutics for scabies is of increasing importance given the evidence of emerging resistance to current treatments. We have shown that a scabies mite aspartic protease plays a role in the digestion of host skin and serum molecules, raising the possibility that interference with the function of the enzyme may impact on mite survival.  相似文献   

4.
The scabies mite, Sarcoptes scabiei, is an obligate parasite of the skin that infects humans and other animal species, causing scabies, a contagious disease characterized by extreme itching. Scabies infections are a major health problem, particularly in remote Indigenous communities in Australia, where co-infection of epidermal scabies lesions by Group A Streptococci or Staphylococcus aureus is thought to be responsible for the high rate of rheumatic heart disease and chronic kidney disease. We collected and separately sequenced mite DNA from several pools of thousands of whole mites from a porcine model of scabies (S. scabiei var. suis) and two human patients (S. scabiei var. hominis) living in different regions of northern Australia. Our sequencing samples the mite and its metagenome, including the mite gut flora and the wound micro-environment. Here, we describe the mitochondrial genome of the scabies mite. We developed a new de novo assembly pipeline based on a bait-and-reassemble strategy, which produced a 14 kilobase mitochondrial genome sequence assembly. We also annotated 35 genes and have compared these to other Acari mites. We identified single nucleotide polymorphisms (SNPs) and used these to infer the presence of six haplogroups in our samples, Remarkably, these fall into two closely-related clades with one clade including both human and pig varieties. This supports earlier findings that only limited genetic differences may separate some human and animal varieties, and raises the possibility of cross-host infections. Finally, we used these mitochondrial haplotypes to show that the genetic diversity of individual infections is typically small with 1–3 distinct haplotypes per infestation.  相似文献   

5.

Background

Pruritic scabies lesions caused by Sarcoptes scabiei burrowing in the stratum corneum of human skin facilitate opportunistic bacterial infections. Emerging resistance to current therapeutics emphasizes the need to identify novel targets for protective intervention. We have characterized several protein families located in the mite gut as crucial factors for host-parasite interactions. Among these multiple proteins inhibit human complement, presumably to avoid complement-mediated damage of gut epithelial cells. Peritrophins are major components of the peritrophic matrix often found in the gut of arthropods. We hypothesized that a peritrophin, if abundant in the scabies mite gut, could be an activator of complement.

Methodology/Principal Findings

A novel full length scabies mite peritrophin (SsPTP1) was identified in a cDNA library from scabies mites. The amino acid sequence revealed four putative chitin binding domains (CBD). Recombinant expression of one CBD of the highly repetitive SsPTP1 sequence as TSP-hexaHis-fusion protein resulted in soluble protein, which demonstrated chitin binding activity in affinity chromatography assays. Antibodies against a recombinant SsPTP1 fragment were used to immunohistochemically localize native SsPTP1 in the mite gut and in fecal pellets within the upper epidermis, co-localizing with serum components such as host IgG and complement. Enzymatic deglycosylation confirmed strong N- and O-glycosylation of the native peritrophin. Serum incubation followed by immunoblotting with a monoclonal antibody against mannan binding lectin (MBL), the recognition molecule of the lectin pathway of human complement activation, indicated that MBL may specifically bind to glycosylated SsPTP1.

Conclusions/Significance

This study adds a new aspect to the accumulating evidence that complement plays a major role in scabies mite biology. It identifies a novel peritrophin localized in the mite gut as a potential target of the lectin pathway of the complement cascade. These initial findings indicate a novel role of scabies mite peritrophins in triggering a host innate immune response within the mite gut.  相似文献   

6.

Background

Scabies is highly prevalent in socially disadvantaged communities such as indigenous populations and in developing countries. Generalized itching causes discomfort to the patient; however, serious complications can occur as a result of secondary bacterial pyoderma, commonly caused by Streptococcus pyogenes (GAS) or Staphylococcus aureus. In the tropics, skin damage due to scabies mite infestations has been postulated to be an important link in the pathogenesis of disease associated with acute rheumatic fever and heart disease, poststreptococcal glomerulonephritis and systemic sepsis. Treatment of scabies decreases the prevalence of infections by bacteria. This study aims to identify the molecular mechanisms underlying the link between scabies and GAS infections.

Methodology/Principal Findings

GAS bacteria were pre-incubated with blood containing active complement, phagocytes and antibodies against the bacteria, and subsequently tested for viability by plate counts. Initial experiments were done with serum from an individual previously exposed to GAS with naturally acquired anti-GAS antibodies. The protocol was optimized for large-scale testing of low-opsonic whole blood from non-exposed human donors by supplementing with a standard dose of heat inactivated human sera previously exposed to GAS. This allowed an extension of the dataset to two additional donors and four proteins tested at a range of concentrations. Shown first is the effect of scabies mite complement inhibitors on human complement using ELISA-based complement activation assays. Six purified recombinant mite proteins tested at a concentration of 50 µg/ml blocked all three complement activation pathways. Further we demonstrate in human whole blood assays that each of four scabies mite complement inhibitors tested increased GAS survival rates by 2–15 fold.

Conclusions/Significance

We propose that local complement inhibition plays an important role in the development of pyoderma in scabies infested skin. This molecular link between scabies and bacterial infections may provide new avenues to develop alternative treatment options against this neglected disease.  相似文献   

7.

Background

Scabies is a parasitic skin infestation caused by the burrowing mite Sarcoptes scabiei. It is common worldwide and spreads rapidly under crowded conditions, such as those found in socially disadvantaged communities of Indigenous populations and in developing countries. Pruritic scabies lesions facilitate opportunistic bacterial infections, particularly Group A streptococci. Streptococcal infections cause significant sequelae and the increased community streptococcal burden has led to extreme levels of acute rheumatic fever and rheumatic heart disease in Australia''s Indigenous communities. In addition, emerging resistance to currently available therapeutics emphasizes the need to identify potential targets for novel chemotherapeutic and/or immunological intervention. Scabies research has been severely limited by the availability of parasites, and scabies remains a truly neglected infectious disease. We report development of a tractable model for scabies in the pig, Sus domestica.

Methodology/Principal Findings

Over five years and involving ten independent cohorts, we have developed a protocol for continuous passage of Sarcoptes scabiei var. suis. To increase intensity and duration of infestation without generating animal welfare issues we have optimised an immunosuppression regimen utilising daily oral treatment with 0.2mg/kg dexamethasone. Only mild, controlled side effects are observed, and mange infection can be maintained indefinitely providing large mite numbers (>6000 mites/g skin) for molecular-based research on scabies. In pilot experiments we explore whether any adaptation of the mite population is reflected in genetic changes. Phylogenetic analysis was performed comparing sets of genetic data obtained from pig mites collected from naturally infected pigs with data from pig mites collected from the most recent cohort.

Conclusions/Significance

A reliable pig/scabies animal model will facilitate in vivo studies on host immune responses to scabies including the relations to the associated bacterial pathogenesis and more detailed studies of molecular evolution and host adaption. It is a most needed tool for the further investigation of this important and widespread parasitic disease.  相似文献   

8.
Ubiquitin ligases (E3s) determine specificity of ubiquitination by recognizing target substrates. However, most of their substrates are unknown. Most known substrates have been identified using distinct approaches in different laboratories. We developed a high-throughput strategy using a live phage display library as E3 substrates in in vitro screening. His-ubiquitinated phage, enriched with Ni-beads, could effectively infect E. coli for amplification. Sixteen natural potential substrates and many unnatural potential substrates of E3 MDM2 were identified through 4 independent screenings. Some substrates were identified in different independent experiments. Additionally, 10 of 12 selected candidates were ubiquitinated by MDM2 in vitro, and 3 novel substrates, DDX42, TP53RK and RPL36a were confirmed ex vivo. The whole strategy is rather simple and efficient. Non-degradation substrates can be discovered. This strategy can be extended to any E3s as long as the E3 does not ubiquitinate the empty phage.  相似文献   

9.

Background

Scabies is a contagious skin disease caused by the parasitic mite Sarcoptes scabiei. The disease is highly prevalent worldwide and known to predispose to secondary bacterial infections, in particular by Streptococcus pyogenes and Staphylococcus aureus. Reports of scabies patients co-infected with methicillin resistant S. aureus (MRSA) pose a major concern for serious down-stream complications. We previously reported that a range of complement inhibitors secreted by the mites promoted the growth of S. pyogenes. Here, we show that a recently characterized mite serine protease inhibitor (SMSB4) inhibits the complement-mediated blood killing of S. aureus.

Methodology/Principal Findings

Blood killing of S. aureus was measured in whole blood bactericidal assays, counting viable bacteria recovered after treatment in fresh blood containing active complement and phagocytes, treated with recombinant SMSB4. SMSB4 inhibited the blood killing of various strains of S. aureus including methicillin-resistant and methicillin-sensitive isolates. Staphylococcal growth was promoted in a dose-dependent manner. We investigated the effect of SMSB4 on the complement-mediated neutrophil functions, namely phagocytosis, opsonization and anaphylatoxin release, by flow cytometry and in enzyme linked immuno sorbent assays (ELISA). SMSB4 reduced phagocytosis of S. aureus by neutrophils. It inhibited the deposition of C3b, C4b and properdin on the bacteria surface, but did not affect the depositions of C1q and MBL. SMSB4 also inhibited C5 cleavage as indicated by a reduced C5b-9 deposition.

Conclusions/Significance

We postulate that SMSB4 interferes with the activation of all three complement pathways by reducing the amount of C3 convertase formed. We conclude that SMSB4 interferes with the complement-dependent killing function of neutrophils, thereby reducing opsonization, phagocytosis and further recruitment of neutrophils to the site of infection. As a consequence secreted scabies mites complement inhibitors, such as SMSB4, provide favorable conditions for the onset of S. aureus co-infection in the scabies-infected microenvironment by suppressing the immediate host immune response.  相似文献   

10.

Background

The resident skin microbiota plays an important role in restricting pathogenic bacteria, thereby protecting the host. Scabies mites (Sarcoptes scabiei) are thought to promote bacterial infections by breaching the skin barrier and excreting molecules that inhibit host innate immune responses. Epidemiological studies in humans confirm increased incidence of impetigo, generally caused by Staphylococcus aureus and Streptococcus pyogenes, secondary to the epidermal infestation with the parasitic mite. It is therefore possible that mite infestation could alter the healthy skin microbiota making way for the opportunistic pathogens. A longitudinal study to test this hypothesis in humans is near impossible due to ethical reasons. In a porcine model we generated scabies infestations closely resembling the disease manifestation in humans and investigated the scabies associated changes in the skin microbiota over the course of a mite infestation.

Methodology/Principal Findings

In a 21 week trial, skin scrapings were collected from pigs infected with S. scabies var. suis and scabies-free control animals. A total of 96 skin scrapings were collected before, during infection and after acaricide treatment, and analyzed by bacterial 16S rDNA tag-encoded FLX-titanium amplicon pyrosequencing. We found significant changes in the epidermal microbiota, in particular a dramatic increase in Staphylococcus correlating with the onset of mite infestation in animals challenged with scabies mites. This increase persisted beyond treatment from mite infection and healing of skin. Furthermore, the staphylococci population shifted from the commensal S. hominis on the healthy skin prior to scabies mite challenge to S. chromogenes, which is increasingly recognized as being pathogenic, coinciding with scabies infection in pigs. In contrast, all animals in the scabies-free cohort remained relatively free of Staphylococcus throughout the trial.

Conclusions/Significance

This is the first experimental in vivo evidence supporting previous assumptions that establishment of pathogens follow scabies infection. Our findings provide an explanation for a biologically important aspect of the disease pathogenesis. The methods developed from this pig trial will serve as a guide to analyze human clinical samples. Studies building on this will offer implications for development of novel intervention strategies against the mites and the secondary infections.  相似文献   

11.
N-Deacetylase-N-sulfotransferase 1 (Ndst1) catalyzes the initial modification of heparan sulfate and heparin during their biosynthesis by removal of acetyl groups from subsets of N-acetylglucosamine units and subsequent sulfation of the resulting free amino groups. In this study, we used a phage display library to select peptides that interact with Ndst1, with the aim of finding inhibitors of the enzyme. The phage library consisted of cyclic random 10-mer peptides expressed in the phage capsid protein pIII. Selection was based on the ability of engineered phage to bind to recombinant murine Ndst1 (mNdst1) and displacement with heparin. Peptides that were enriched through multiple cycles of binding and disassociation displayed two specific sequences, CRGWRGEKIGNC and CNMQALSMPVTC. Both peptides inhibited mNdst1 activity in vitro, however, by distinct mechanisms. The peptide CRGWRGEKIGNC presents a chemokine-like repeat motif (BXX, where B represents a basic amino acid and X is a noncharged amino acid) and binds to heparan sulfate, thus blocking the binding of substrate to the enzyme. The peptide NMQALSMPVT inhibits mNdst1 activity by direct interaction with the enzyme near the active site. The discovery of inhibitory peptides in this way suggests a method for developing peptide inhibitors of heparan sulfate biosynthesis.  相似文献   

12.

Objectives

To identify a new member of serine proteases from Deinagkistrodon acutus via phage display technique and appraise its biocatalytic activities.

Results

A novel thrombin-like enzyme gene was cloned by screening the phage display library of D. acutus venom gland. The gene has a 783 bp ORF encoding 260 amino acids. A recombinant enzyme expression vector was constructed and the fused protein was expressed in Escherichia coli. The protein was purified showing a single band of approx. 49.4 kDa after SDS-PAGE. The recombinant enzyme was capable of congealing normal human plasma in vitro with the minimum coagulant dose of 6 µg in 57 s. It exhibited fibrinogenolytic activity by hydrolyzing the Aα-chain of human fibrinogen. It was most active at pH 7.5–8.0 and 35–40 °C with the highest clotting activity of 120 NIH units/mg. It was completely inhibited by PMSF but not by EDTA. Multiple sequence alignments demonstrate that this protein shares high identity with other thrombin-like enzymes from snake venoms.

Conclusions

A novel thrombin-like protein from D. acutus venom was identified, expressed and biologically characterized in vitro. Its fibrinogenolytic properties make the enzyme applicable for biochemical research and drug development on thrombolytic therapy.
  相似文献   

13.
The substrate specificity of human collagenase 3 (MMP-13), a member of the matrix metalloproteinase family, is investigated using a phage-displayed random hexapeptide library containing 2 x 10(8) independent recombinants. A total of 35 phage clones that express a peptide sequence that can be hydrolyzed by the recombinant catalytic domain of human collagenase 3 are identified. The translated DNA sequence of these clones reveals highly conserved putative P1, P2, P3 and P1', P2', and P3' subsites of the peptide substrates. Kinetic analysis of synthetic peptide substrates made from human collagenase 3 selected phage clones reveals that some of the substrates are highly active and selective. The most active substrate, 2, 4-dinitrophenyl-GPLGMRGL-NH(2) (CP), has a k(cat)/K(m) value of 4.22 x 10(6) m(-)(1) s(-)(1) for hydrolysis by collagenase 3. CP was synthesized as a consensus sequence deduced from the preferred subsites of the aligned 35 phage clones. Peptide substrate CP is 1300-, 11-, and 820-fold selective for human collagenase 3 over the MMPs stromelysin-1, gelatinase B, and collagenase 1, respectively. In addition, cleavage of CP is 37-fold faster than peptide NF derived from the major MMP-processing site in aggrecan. Phage display screening also selected five substrate sequences that share sequence homology with a major MMP cleavage sequence in aggrecan and seven substrate sequences that share sequence homology with the primary collagenase cleavage site of human type II collagen. In addition, putative cleavage sites similar to the consensus sequence are found in human type IV collagen. These findings support previous observations that human collagenase 3 can degrade aggrecan, type II and type IV collagens.  相似文献   

14.
We report a high-throughput phage selection method to identify mutants of Sfp phosphopantetheinyl transferase with altered substrate specificities from a large library of the Sfp enzyme. In this method, Sfp and its peptide substrates are co-displayed on the M13 phage surface as fusions to the phage capsid protein pIII. Phage-displayed Sfp mutants that are active with biotin-conjugated coenzyme A (CoA) analogues would covalently transfer biotin to the peptide substrates anchored on the same phage particle. Affinity selection for biotin-labeled phages would enrich Sfp mutants that recognize CoA analogues for carrier protein modification. We used this method to successfully change the substrate specificity of Sfp and identified mutant enzymes with more than 300-fold increase in catalytic efficiency with 3′-dephospho CoA as the substrate. The method we developed in this study provides a useful platform to display enzymes and their peptide substrates on the phage surface and directly couples phage selection with enzyme catalysis. We envision this method to be applied to engineering the catalytic activities of other protein posttranslational modification enzymes.  相似文献   

15.
Human monoclonal antibodies (mAbs) can routinely be isolated from phage display libraries against virtually any protein available in sufficient purity and quantity, but library design can influence epitope coverage on the target antigen. Here we describe the construction of a novel synthetic human antibody phage display library that incorporates hydrophilic or charged residues at position 52 of the CDR2 loop of the variable heavy chain domain, instead of the serine residue found in the corresponding germline gene. The novel library was used to isolate human mAbs to various antigens, including the alternatively-spliced EDA domain of fibronectin, a marker of tumor angiogenesis. In particular, the mAb 2H7 was proven to bind to a novel epitope on EDA, which does not overlap with the one recognized by the clinical-stage F8 antibody. F8 and 2H7 were used for the construction of chelating recombinant antibodies (CRAbs), whose tumor-targeting properties were assessed in vivo in biodistribution studies in mice bearing F9 teratocarcinoma, revealing a preferential accumulation at the tumor site.Key words: human antibody library, phage display, oncofetal fibronectin, vascular tumor targeting, scFv antibody fragments, chelating recombinant antibody (CRAb)  相似文献   

16.
The functional decryption of the human proteome is the challenge which follows the sequencing of the human genome. Specific binders to every human protein are key reagents for this purpose. In vitro antibody selection using phage display offers one possible solution that can meet the demand for 25,000 or more antibodies, but needs substantial standardisation and minimalisation. To evaluate this potential, three human, naive antibody gene libraries (HAL4/7/8) were constructed and a standardised antibody selection pipeline was set up. The quality of the libraries and the selection pipeline was validated with 110 antigens, including human, other mammalian, fungal or bacterial proteins, viruses or haptens. Furthermore, the abundance of VH, kappa and lambda subfamilies during library cloning and the E. coli based phage display system on library packaging and the selection of scFvs was evaluated from the analysis of 435 individual antibodies, resulting in the first comprehensive comparison of V gene subfamily use for all steps of an antibody phage display pipeline. Further, a compatible cassette vector set for E. coli and mammalian expression of antibody fragments is described, allowing in vivo biotinylation, enzyme fusion and Fc fusion.  相似文献   

17.
The substrate specificity of furin, a mammalian enzyme involved in the cleavage of many constitutively expressed protein precursors, was studied using substrate phage display. In this method, a multitude of substrate sequences are displayed as fusion proteins on filamentous phage particles and ones that are cleaved can be purified by affinity chromatography. The cleaved phage are propagated and submitted to additional rounds of protease selection to further enrich for good substrates. DNA sequencing of the cleaved phage is used to identify the substrate sequence. After 6 rounds of sorting a substrate phage library comprising 5 randomized amino acids (xxxxx), virtually all clones had an RxxR motif and many had Lys, Arg, or Pro before the second Arg. Nine of the selected sequences were assayed using a substrate-alkaline phosphatase fusion protein system. All were cleaved after the RxxR, and some substrates with Pro or Thr in P2 were also found to be cleaved as efficiently as RxKR or RxRR. To further elaborate surrounding determinants, we constructed 2 secondary libraries (xxRx(K/R)Rx and xxRxPRx). Although no consensus developed for the latter library, many of the sequences in the the former library had the 7-residue motif (L/P)RRF(K/R)RP, suggesting that the furin recognition sequence may extend over more than 4 residues. These studies further clarify the substrate specificity of furin and suggest the substrate phage method may be useful for identifying consensus substrate motifs in other protein processing enzymes.  相似文献   

18.
Phage display libraries are used to screen for nucleotide sequences that encode immunoglobulin variable (V) regions that are specific for a target antigen. We previously constructed an immunoglobulin new antigen receptor (IgNAR) phage display library. Here we used this library to obtain an IgNAR V region that is specific for viral hemorrhagic septicemia virus (VHSV). A phage clone (clone 653) was found to be specific for VHSV by the biopanning method. The V region of clone 653 was used to construct a 6 × His tagged recombinant IgNAR-653 V protein (rIgNAR-653) using the Escherichia coli pET system. The rIgNAR-653 protein bound specifically to VHSV, confirming its activity.  相似文献   

19.

Background

Scabies afflicts millions of people worldwide, but it is very difficult to diagnose by the usual skin scrape test, and a presumptive diagnosis is often made based on clinical signs such as rash and intense itch. A sensitive and specific blood test to detect scabies would allow a physician to quickly make a correct diagnosis.

Objective

Our objective was to profile the mite-specific antibodies present in the sera of patients with ordinary scabies.

Methods

Sera of 91 patients were screened for Ig, IgD, IgE, IgG and IgM antibodies to S. scabiei, as well as to the house dust mites Dermatophagoides farinae, D. pteronyssinus and Euroglyphus maynei.

Results

45%, 27% and 2.2% of the patients had measurable amounts of mixed Ig, IgG and IgE that recognized scabies mite antigens. However, 73.6% of the scabies patients had serum IgM that recognized scabies proteins, and all except two of them also had IgM that recognized all of the three species of dust mites. No patient had serum antibody exclusively reactive to scabies mite antigens.

Conclusions

Co-sensitization or cross-reactivity between antigens from scabies and house dust mites confounds developing a blood test for scabies.  相似文献   

20.
An expression system designed for cell surface display of hybrid proteins on Staphylococcus carnosus has been evaluated for the display of Staphylococcus aureus protein A (SpA) domains, normally binding to immunoglobulin G (IgG) Fc but here engineered by combinatorial protein chemistry to yield SpA domains, denoted affibodies, with new binding specificities. Such affibodies, with human IgA or IgE binding activity, have previously been selected from a phage library, based on an SpA domain. In this study, these affibodies have been genetically introduced in monomeric or dimeric forms into chimeric proteins expressed on the surface of S. carnosus by using translocation signals from a Staphylococcus hyicus lipase construct together with surface-anchoring regions of SpA. The recombinant surface proteins, containing the IgA- or IgE-specific affibodies, were demonstrated to be expressed as full-length proteins, localized and properly exposed at the cell surface of S. carnosus. Furthermore, these chimeric receptors were found to be functional, since recombinant S. carnosus cells were shown to have gained IgA and IgE binding capacity, respectively. In addition, a positive effect in terms of IgA and IgE reactivity was observed when dimeric versions of the affibodies were present. Potential applications for recombinant bacteria with redirected binding specificity in their surface proteins are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号