首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmacytoid dendritic cells (pDC) are an important component of the innate immune response, producing large amounts of alpha interferon in response to viral stimulation in vitro. Under noninflammatory conditions, pDC are not found in the skin and are restricted in location to the blood and lymph nodes. Therefore, their role in mucosal and cutaneous herpes simplex virus (HSV) infection has not been well-defined. In this study we show a role for human pDC in the immune response to HSV infection. First, by confocal microscopy we showed that pDC infiltrate the dermis of recurrent genital herpes simplex lesions at early and late phases, often at the dermo-epidermal junction. We then showed that pDC in vitro are resistant to HSV infection despite expressing the entry receptors CD111, CD112, and HVE-A. Within the lesions, pDC were found closely associated with CD3+ lymphocytes and NK cells, especially those which were activated (CD69+). Furthermore, these HSV-exposed pDC were able to stimulate virus-specific autologous T-lymphocyte proliferation. We conclude from this work that pDC may contribute to the immune control of recurrent herpes virus infection in vivo.  相似文献   

2.
3.
Heparin inhibited the hemagglutinin activity of herpes simplex virus (HSV) type 1. The minimal inhibitory concentration of heparin required to inhibit 8 hemagglutination (HA) U of HSV ranged from 0.005 to 0.01 U/ml. Mouse erythrocytes failed to combine with the HA inhibitory factor of heparin. On the other hand, mouse erythrocytes treated with heparinase had greatly reduced agglutinability by HSV. Virus-heparin complex formation was observed by sedimenting heparin with the virus particles.  相似文献   

4.
5.
Many viruses interfere with apoptosis of infected cells, presumably preventing cellular apoptosis as a direct response to viral infection. Since cytotoxic T lymphocytes (CTL) induce apoptosis of infected cells as part of the “lethal hit,” inhibition of apoptosis could represent an effective immune evasion strategy. We report here herpes simplex virus type 1 (HSV-1) interference with CTL-induced apoptosis of infected cells and show that HSV-1 inhibits the nuclear manifestations of apoptosis but not the membrane changes. The HL-60 cell line (human promyelocytic leukemia) undergoes apoptosis in response to many stimuli, including incubation with ethanol. After HSV-1 infection (strains E115 and 17+), ethanol-treated cells did not produce oligonucleosomal DNA fragments characteristic of apoptosis, as assayed by gel electrophoresis and enzyme-linked immunosorbent assay. Inhibition was detected 2 h after infection and increased over time. Importantly, HSV-1-infected cells were resistant to apoptosis induced by antigen-specific CD4+ CTL, despite the fact that CTL recognition and degranulation in response to infected targets remained intact. Unlike HSV-1, HSV-2 (strains 333 and HG52) did not inhibit DNA fragmentation. In contrast to the inhibition of DNA fragmentation by HSV-1, none of the HSV-1 or -2 strains interfered with the ethanol-induced exposure of surface phosphatidylserine characteristic of apoptosis, as determined by annexin V binding. These results demonstrate that genes of HSV-1 inhibit the nuclear manifestations of apoptosis but not the membrane manifestations, suggesting that these may be mediated via separate pathways. They also suggest that HSV-1 inhibition of CTL-induced apoptosis may be an important mechanism of immune evasion.  相似文献   

6.
To enter its human host, herpes simplex virus type 1 (HSV-1) must overcome the barrier of mucosal surfaces, skin, or cornea. HSV-1 targets keratinocytes during initial entry and establishes a primary infection in the epithelium, which is followed by latent infection of neurons. After reactivation, viruses can become evident at mucocutaneous sites that appear as skin vesicles or mucosal ulcers. How HSV-1 invades skin or mucosa and reaches its receptors is poorly understood. To investigate the invasion route of HSV-1 into epidermal tissue at the cellular level, we established an ex vivo infection model of murine epidermis, which represents the site of primary and recurrent infection in skin. The assay includes the preparation of murine skin. The epidermis is separated from the dermis by dispase II treatment. After floating the epidermal sheets on virus-containing medium, the tissue is fixed and infection can be visualized at various times postinfection by staining infected cells with an antibody against the HSV-1 immediate early protein ICP0. ICP0-expressing cells can be observed in the basal keratinocyte layer already at 1.5 hr postinfection. With longer infection times, infected cells are detected in suprabasal layers, indicating that infection is not restricted to the basal keratinocytes, but the virus spreads to other layers in the tissue. Using epidermal sheets of various mouse models, the infection protocol allows determining the involvement of cellular components that contribute to HSV-1 invasion into tissue. In addition, the assay is suitable to test inhibitors in tissue that interfere with the initial entry steps, cell-to-cell spread and virus production. Here, we describe the ex vivo infection protocol in detail and present our results using nectin-1- or HVEM-deficient mice.  相似文献   

7.
We examined the effects of interleukin-18 (IL-18) in a mouse model of acute intraperitoneal infection with herpes simplex virus type 1 (HSV-1). Four days of treatment with IL-18 (from 2 days before infection to 1 day after infection) improved the survival rate of BALB/c, BALB/c nude, and BALB/c SCID mice, suggesting innate immunity. One day after infection, HSV-1 titers were higher in the peritoneal washing fluid of control BALB/c mice than in that of IL-18-treated mice. A genetic deficiency of gamma interferon (IFN-γ), however, diminished the survival rate and the inhibition of HSV-1 growth at the injection site in the mice. Anti-asialo GM1 treatment had no influence on the protective effect of IL-18 in infected mice. IL-18 augmented IFN-γ release in vitro by peritoneal cells from uninfected mice, while no appreciable IFN-γ production was found in uninfected mice administered IL-18. Although IFN-γ has the ability to induce nitric oxide (NO) production by various types of cells, administration of the NO synthase inhibitor NG-monomethyl-l-arginine resulted in superficial loss of the improved survival, but there was no influence on the inhibition of HSV-1 replication at the injection site in IL-18-treated mice. Based on these results, we propose that IFN-γ produced before HSV-1 infection plays a key role as one of the IL-18-promoted protection mechanisms and that neither NK cells nor NO plays this role.Interleukin-18 (IL-18) is a newly cloned murine and human cytokine (28, 36) previously called gamma interferon (IFN-γ)-inducing factor. It is synthesized by activated macrophages and has a structural relationship to the IL-1 family (5). Precursor IL-18 is processed by IL-1β-converting enzyme and is cleaved into mature IL-18 (11). IL-18 induces IFN-γ production by murine helper T cells and NK cells and stimulates T-cell proliferation and NK activation (18, 28). Moreover, IL-18 augments the Fas ligand-mediated cytotoxic activity of the Th1 clone and the NK cell clone (8, 35). Thus, IL-18 shares some biological activities with IL-12, although no significant homology between the two cytokines has been detected at the protein level (34). Furthermore, treatment with IL-12 and IL-18 has a synergistic effect on IFN-γ production (2, 14, 38, 40).According to a review by Nash (27), not only nonspecific or innate immunity, such as that from IFN, NK cells, or macrophages, but also specific or adaptive immunity is important in protection against herpesvirus infection. Herpes simplex virus is known to be an IFN inducer (13). IFN is produced at an early stage of virus infection. In addition to the direct inhibition of viral replication, it enhances the efficiency of the adaptive (specific) immune response by stimulating increased expression of major histocompatibility complex class I and II or by activating macrophages and NK cells. In protection from infection by herpesviruses, especially cytomegalovirus, NK cells have been major effector cells because of the correlation of increased susceptibility to cytomegalovirus infection with the absence or reduction of NK cell activity, as seen in Chediak-Higashi syndrome patients and beige mice (27). Upon target cell disruption, NK and cytotoxic T cells share not only the perforin but also the Fas ligand as an effector molecule (4, 20, 37). Recently, nitric oxide (NO) was reported to be involved in host defense against bacteria, fungi, parasites, and viruses (10, 16, 19, 39). NO produced by herpes simplex virus type 1 (HSV-1)-infected macrophages is reported to inhibit viral replication (7). CD4+ T cells, macrophages, IFN-γ, and tumor necrosis factor (TNF) are important in adaptive immunity against HSV-1 infection. The Th2 response exacerbates HSV-1-induced disease (25).Recently a protective role of IL-18 was reported in microbial infections (6, 17). Here, we demonstrate that IL-18 treatment protects mice from acute viral infection via both IFN-γ-dependent and -independent pathways. Although IFN-γ has the ability to induce NO production by a variety of cells, including macrophages (9), it is not likely to be important, at least in the inhibition of HSV-1 proliferation at the injection site of IL-18-treated mice. Furthermore, the protective effect of IL-18 on HSV-1 infection also does not seem to require complete NK cell activity in our experimental system, whereas our colleagues have already reported that deletion of NK cells by administration of anti-asialo GM1 antibody resulted in lowering of the improved survival rate of tumor-bearing mice treated with IL-18 (23).  相似文献   

8.
9.
10.
Mounting evidence suggests that Herpes simplex virus type 1 (HSV-1) is involved in the pathogenesis of Alzheimer’s disease (AD). Previous work from our laboratory has shown HSV-1 infection to induce the most important pathological hallmarks of AD brains. Oxidative damage is one of the earliest events of AD and is thought to play a crucial role in the onset and development of the disease. Indeed, many studies show the biomarkers of oxidative stress to be elevated in AD brains. In the present work the combined effects of HSV-1 infection and oxidative stress on Aβ levels and autophagy (neurodegeneration markers characteristic of AD) were investigated. Oxidative stress significantly potentiated the accumulation of intracellular Aβ mediated by HSV-1 infection, and further inhibited its secretion to the extracellular medium. It also triggered the accumulation of autophagic compartments without increasing the degradation of long-lived proteins, and enhanced the inhibition of the autophagic flux induced by HSV-1. These effects of oxidative stress were not due to enhanced virus replication. Together, these results suggest that HSV-1 infection and oxidative damage interact to promote the neurodegeneration events seen in AD.  相似文献   

11.
The mechanism by which immunity to Herpes Simplex Virus (HSV) is initiated is not completely defined. HSV initially infects mucosal epidermis prior to entering nerve endings. In mice, epidermal Langerhans cells (LCs) are the first dendritic cells (DCs) to encounter HSV, but it is CD103+ dermal DCs that carry viral antigen to lymph nodes for antigen presentation, suggesting DC cross-talk in skin. In this study, we compared topically HSV-1 infected human foreskin explants with biopsies of initial human genital herpes lesions to show LCs are initially infected then emigrate into the dermis. Here, LCs bearing markers of maturation and apoptosis formed large cell clusters with BDCA3+ dermal DCs (thought to be equivalent to murine CD103+ dermal DCs) and DC-SIGN+ DCs/macrophages. HSV-expressing LC fragments were observed inside the dermal DCs/macrophages and the BDCA3+ dermal DCs had up-regulated a damaged cell uptake receptor CLEC9A. No other infected epidermal cells interacted with dermal DCs. Correspondingly, LCs isolated from human skin and infected with HSV-1 in vitro also underwent apoptosis and were taken up by similarly isolated BDCA3+ dermal DCs and DC-SIGN+ cells. Thus, we conclude a viral antigen relay takes place where HSV infected LCs undergo apoptosis and are taken up by dermal DCs for subsequent antigen presentation. This provides a rationale for targeting these cells with mucosal or perhaps intradermal HSV immunization.  相似文献   

12.
The utility of recombinant herpes simplex virus type 1 (HSV-1) vectors may be expanded by manipulation of the virus envelope to achieve cell-specific gene delivery. To this end, an HSV-1 mutant virus deleted for glycoprotein C (gC) and the heparan sulfate binding domain of gB (KgBpKgC) was engineered to encode different chimeric proteins composed of N-terminally truncated forms of gC and the full-length erythropoietin hormone (EPO). Biochemical analyses demonstrated that one gC-EPO chimeric molecule (gCEPO2) was posttranslationally processed, incorporated into recombinant HSV-1 virus (KgBpKgCEPO2), and neutralized with antibodies directed against gC or EPO in a complement-dependent manner. Moreover, KgBpKgCEPO2 recombinant virus was specifically retained on a soluble EPO receptor column, was neutralized by soluble EPO receptor, and stimulated proliferation of FD-EPO cells, an EPO growth-dependent cell line. FD-EPO cells were nevertheless refractory to productive infection by both wild-type HSV-1 and recombinant KgBpKgCEPO2 virus. Transmission electron microscopy of FD-EPO cells infected with KgBpKgCEPO2 showed virus endocytosis leading to aborted infection. Despite the lack of productive infection, these data provide the first evidence of targeted HSV-1 binding to a non-HSV-1 cell surface receptor.  相似文献   

13.
The ability of alpha interferon (IFN-alpha) and IFN-gamma to inhibit transmission of herpes simplex virus type 1 (HSV-1) from neuronal axon to epidermal cells (ECs), and subsequent spread in these cells was investigated in an in vitro dual-chamber model consisting of human fetal dorsal root ganglia (DRG) innervating autologous skin explants and compared with direct HSV-1 infection of epidermal explants. After axonal transmission from HSV-1-infected DRG neurons, both the number and size of viral cytopathic plaques in ECs was significantly reduced by addition of recombinant IFN-gamma and IFN-alpha to ECs in the outer chamber in a concentration-dependent fashion. Inhibition was maximal when IFNs were added at the same time as the DRG were infected with HSV-1. The mean numbers of plaques were reduced by 52% by IFN-alpha, 36% by IFN-gamma, and by 62% when IFN-alpha and IFN-gamma were combined, and the mean plaque size was reduced by 64, 43, and 72%, respectively. Similar but less-inhibitory effects of both IFNs were observed after direct infection of EC explants, being maximal when IFNs were added simultaneously or 6 h before HSV-1 infection. These results show that both IFN-alpha and IFN-gamma can interfere with HSV-1 infection after axonal transmission and subsequent spread of HSV-1 in ECs by a direct antiviral effect. Therefore, both IFN-alpha and -gamma could contribute to the control of HSV-1 spread and shedding in a similar fashion in recurrent herpetic lesions.  相似文献   

14.
The in vitro transformation of hamster embryo fibroblasts by herpes simplex virus type 1 (HSV-1) after exposure of the virus to UV irradiation is described. Cell transformation was induced by 2 out of 12 strains of HSV-1 that were tested for transforming potential. Cells transformed by the KOS strain of HSV-1 were not oncogenic when injected into newborn Syrian hamsters. However, cells transformed by HSV-1 strain 14-012 induced tumors in 47% of the newborn hamsters injected. HSV-specific antigens were found in the cytoplasm of cells transformed by both virus strains. Sera from tumor-bearing hamsters contained HSV-1- and HSV-2-neutralizing antibodies as well as antibodies which reacted specifically with HSV antigens by the indirect immunofluorescence technique. Hamster oncornavirus antigens were not detected by immunofluorescence methods. These observations represent the first evidence of the oncogenic potential of HSV-1.  相似文献   

15.
As one of the immediate-early(IE)proteins of herpes simplex virus type 1(HSV-1),ICP22 is a multifunctional viral regulator that localizes in the nucleus of infected cells.It is required in experimental animal systems and some nonhuman cell lines,but not in Vero or HEp-2 cells.ICP22 is extensively phosphorylated by viral and cellular kinases and nucleotidylylated by casein kinase Ⅱ.It has been shown to be required for efficient expression of early(E)genes and a subset of late(L)genes.ICP22,in conjunction wit...  相似文献   

16.
17.
HSV-1 infection-mediated regulation of mRNA translation in host cells is a systematic and complicated process. Investigation of the details of this mechanism will facilitate understanding of biological variations in the viral replication process and host cells. In this study, a comparative proteomics technology platform was applied by two-dimension electrophoresis of HSV-1 infected normal human L-02 cell and control cell lysates. The observed protein spots were analyzed qualitatively and quantitatively by the PDQuest software package. A number of the different observed protein spots closely associated with cellular protein synthesis were identified by matrix-assisted laser-desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS). The expression levels of the RPLP1 protein, which is required for mRNA translation, and KHSRP protein, which is involved in rapid decay of mRNA, were up-regulated, whereas the expression level of RNP H2, which is involved in positive regulation on the mRNA splicing process, was down-regulated. All of these results suggest that HSV-1 infection can influence cellular protein synthesis via modulation of cellular regulatory proteins involved in RNA splicing, translation and decay, resulting in optimisation of viral protein synthesis when cellular protein synthesis is shut off Although there is need for further investigations regarding the detailed mechanisms of cellular protein control, our studies provide new insight into the targeting of varied virus signaling pathways involved in host cellular protein synthesis.  相似文献   

18.
19.
In animal models of infection, glycoprotein E (gE) is required for efficient herpes simplex virus type 1 (HSV-1) spread from the inoculation site to the cell bodies of innervating neurons (retrograde direction). Retrograde spread in vivo is a multistep process, in that HSV-1 first spreads between epithelial cells at the inoculation site, then infects neurites, and finally travels by retrograde axonal transport to the neuron cell body. To better understand the role of gE in retrograde spread, we used a compartmentalized neuron culture system, in which neurons were infected in the presence or absence of epithelial cells. We found that gE-deleted HSV-1 (NS-gEnull) retained retrograde axonal transport activity when added directly to neurites, in contrast to the retrograde spread defect of this virus in animals. To better mimic the in vivo milieu, we overlaid neurites with epithelial cells prior to infection. In this modified system, virus infects epithelial cells and then spreads to neurites, revealing a 100-fold retrograde spread defect for NS-gEnull. We measured the retrograde spread defect of NS-gEnull from a variety of epithelial cell lines and found that the magnitude of the spread defect from epithelial cells to neurons correlated with epithelial cell plaque size defect, indicating that gE plays a similar role in both types of spread. Therefore, gE-mediated spread between epithelial cells and neurites likely explains the retrograde spread defect of gE-deleted HSV-1 in vivo.Herpes simplex virus type 1 (HSV-1) is an alphaherpesvirus that characteristically infects skin and mucosal surfaces before spreading to sensory neurons, where it establishes a lifelong persistent infection. The virus periodically returns to the periphery via sensory axons and causes recurrent lesions as well as asymptomatic shedding. This life cycle requires viral transport along axons in two directions: toward the neuron cell body (retrograde direction) and away from the neuron cell body (anterograde direction).Many studies of alphaherpesvirus neuronal spread have focused on pseudorabies virus (PRV), a virus whose natural host is the pig. Three PRV proteins, glycoprotein E (gE), gI, and Us9, have been shown to mediate anterograde neuronal spread both in animal models of infection and in cultured neurons. However, these three proteins are dispensable for retrograde spread (3, 8, 11, 12, 31, 46). In contrast, numerous animal models of infection have shown that HSV-1 gE is required for retrograde spread from the inoculation site to the cell bodies of innervating neurons (4, 9, 44, 56). In the murine flank model, wild-type (WT) virus replicates in the skin and then infects sensory neurons and spreads in a retrograde direction to the dorsal root ganglia (DRG). In this model, gE-deleted HSV-1 replicates in the skin but is not detected in the DRG (9, 44). This phenotype differs from gE-deleted PRV, which is able to reach the DRG at WT levels (8). Thus, unlike PRV, gE-deleted HSV-1 viruses have a retrograde spread defect in vivo.HSV-1 gE is a 552-amino-acid type I membrane protein found in the virion membrane as well as in the trans-Golgi and plasma membranes of infected cells (1). gE forms a heterodimer with another viral glycoprotein, gI. The gE/gI complex is important for HSV-1 immune evasion through its Fc receptor activity. gE/gI binds to the Fc domain of antibodies directed against other viral proteins, sequestering these antibodies and blocking antibody effector functions (27, 32, 40). Additionally, gE/gI promotes spread between epithelial cells. Viruses lacking either gE or gI form characteristically small plaques in cell culture and small inoculation site lesions in mice (4, 9, 18, 40, 58). In animal models, gE and gI also mediate viral spread in both anterograde and retrograde directions (4, 19, 44, 56).In order to better understand the role of gE in HSV-1 retrograde neuronal spread, we employed a compartmentalized neuron culture system that has been used to study directional neuronal spread of PRV and West Nile virus (12, 14, 45). In the Campenot chamber system, neurites are contained in a compartment that is separate from their corresponding cell bodies. Therefore, spread in an exclusively retrograde direction can be measured by infecting neurites and detecting spread to neuron cell bodies.HSV-1 replication requires retrograde transport of incoming viral genomes to the nucleus. In neurites, fusion between viral and cellular membranes occurs at the plasma membrane (43, 48). Upon membrane fusion, the capsid and a subset of tegument proteins (the inner tegument) dissociate from glycoproteins and outer tegument proteins, which remain at the plasma membrane (28, 38). Unenveloped capsids and the associated inner tegument proteins are then transported in the retrograde direction to the nucleus (7, 48, 49).For both neurons and epithelial cells, retrograde transport is dependent upon microtubules, ATP, the retrograde microtubule motor dynein, and the dynein cofactor dynactin (22, 34, 49, 52). Several viral proteins interact with components of the dynein motor complex (23, 39, 60). However, none of these proteins suggest a completely satisfactory mechanism by which viral retrograde transport occurs, either because they are not components of the complex that is transported to the nucleus (UL34, UL9, VP11/12) or because capsids lacking that protein retain retrograde transport activity (VP26) (2, 17, 21, 28, 37). This implies that additional viral proteins are involved in retrograde trafficking.We sought to better characterize the role of gE in retrograde spread and found that gE is dispensable for retrograde axonal transport; however, it promotes HSV-1 spread from epithelial cells to neurites. This epithelial cell-to-neuron spread defect provides a plausible explanation for the retrograde spread defect of gE-deleted HSV-1 in animal models of infection.  相似文献   

20.
The Epstein-Barr virus (EBV) genome-negative Burkitt's lymphoma-derived cell lines BJAB and Ramos and their in vitro EBV-converted sublines BJAB-B1, BJAB-A5, BJAB-B95-8, and AW-Ramos were infected with high multiplicities of herpes simplex virus type 1 (HSV-1; 10 to 70 PFU/cell). Cultures were monitored for cell growth and HSV-1 DNA synthesis. EBV-converted BJAB cultures were more permissive for HSV-1 infection than BJAB cultures. Significant cell killing and HSV-1 DNA synthesis were observed during the first 48 h of infection in the EBV-converted BJAB cultures but not in the BJAB cultures. The EBV-converted BJAB-B1 cell line contains an appreciable fraction of EBV-negative cells. Therefore, it was cloned. EBV-positive and -negative cells were identified by using EBV-determined nuclear antigen anti-complement immunofluorescence. Two types of subclones were identified: (i) those which contained both EBV-determined nuclear antigen-positive and -negative cells and (ii) those which contained only EBV-determined nuclear antigen-negative cells. When levels of HSV-1 DNA synthesis were measured in these subclones, it was found that the former were more permissive for HSV-1 infection than the latter. Thus, the presence of the EBV genome in BJAB cells correlates with increased permissiveness of these cells for HSV-1 during the first 48 h of infection. Nonetheless, persistent HSV-1 infections were established in both BJAB and EBV-converted BJAB-B1 cultures. No differences in extent of permissiveness for HSV-1 infection were found for Ramos and EBV-converted AW-Ramos cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号