首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silymarin is a standardized extract from Silybum marianum seeds, known for its many skin benefits such as antioxidant, anti-inflammatory, and immunomodulatory properties. In this study, the potential of several microemulsion formulations for dermal delivery of silymarin was evaluated. The pseudo-ternary phase diagrams were constructed for the various microemulsion formulations which were prepared using glyceryl monooleate, oleic acid, ethyl oleate, or isopropyl myristate as the oily phase; a mixture of Tween 20®, Labrasol®, or Span 20® with HCO-40® (1:1 ratio) as surfactants; and Transcutol® as a cosurfactant. Oil-in-water microemulsions were selected to incorporate 2% w/w silymarin. After six heating–cooling cycles, physical appearances of all microemulsions were unchanged and no drug precipitation occurred. Chemical stability studies showed that microemulsion containing Labrasol® and isopropyl myristate stored at 40°C for 6 months showed the highest silybin remaining among others. The silybin remainings depended on the type of surfactant and were sequenced in the order of: Labrasol® > Tween 20® > Span 20®. In vitro release studies showed prolonged release for microemulsions when compared to silymarin solution. All release profiles showed the best fits with Higuchi kinetics. Non-occlusive in vitro skin permeation studies showed absence of transdermal delivery of silybin. The percentages of silybin in skin extracts were not significantly different among the different formulations (p > 0.05). Nevertheless, some silybin was detected in the receiver fluid when performing occlusive experiments. Microemulsions containing Labrasol® also were found to enhance silymarin solubility. Other drug delivery systems with occlusive effect could be further developed for dermal delivery of silymarin.Key words: dermal delivery, microemulsion, silybin, silymarin  相似文献   

2.
The objective of this study was to develop a water-in-oil (w/o) microemulsion which can be utilized as a transdermal delivery for iodide ions. Several w/o microemulsion formulations were prepared utilizing Span 20, ethanol, Capryol 90®, and water. The selected formulations had 5%, 10%, 15%, 20%, and a maximum of 23% w/w water content. Potassium iodide (KI) was incorporated in all formulations at 5% w/v. Physicochemical characterizations were conducted to evaluate the structure and stability. These studies included: mean droplet size, pH, viscosity, conductivity, and chemical stability tests. In vitro human skin permeation studies were conducted to evaluate the diffusion of the iodide ion through human skin. The w/o microemulsion formulations were stable and compatible with iodide ions with water content ranging from 5% to 23% w/w. The addition of KI influenced the physicochemical properties of microemulsion as compared to blank microemulsion formulations. In vitro human skin permeation studies indicated that selected formulations improved iodide ion diffusion significantly as compared to control (KI solution; P value < 0.05). Iodide ions were entrapped within the aqueous core of w/o microemulsion. Span 20, ethanol and Capryol 90 protected the iodide ions against oxidation and formed a stable microemulsion. It is worth to note that according to Hofmeister series, iodide ions tend to lower the interfacial tension between water and oil and consequently enhance overall stability. This work illustrates that microemulsion system can be utilized as a vehicle for the transdermal administration of iodide.KEY WORDS: iodide, microemulsion, skin permeation, transdermal  相似文献   

3.
The physicochemical properties of the optimized microemulsion and the permeating ability of oxyresveratrol in microemulsion were evaluated, and the efficacy of oxyresveratrol microemulsion in cutaneous herpes simplex virus type 1 (HSV-1) infection in mice was examined. The optimized microemulsion was composed of 10% w/w of isopropyl myristate, 35% w/w of Tween 80, 35% w/w of isopropyl alcohol, and 20% w/w of water. The mean particle diameter was 9.67 ± 0.58 nm, and the solubility of oxyresveratrol in the microemulsion was 196.34 ± 0.80 mg/ml. After accelerated and long-term stability testing, the microemulsion base and oxyresveratrol-loaded microemulsion were stable. The cumulative amount of oxyresveratrol permeating through shed snake skin from microemulsion at 6 h was 93.04 times compared to that of oxyresveratrol from Vaseline, determined at 20% w/w concentration. In cutaneous HSV-1 infection in mice, oxyresveratrol microemulsion at 20%, 25%, and 30% w/w, topically applied five times daily for 7 days after infection, was significantly effective in delaying the development of skin lesions and protecting from death (p < 0.05) compared with the untreated control. Oxyresveratrol microemulsion at 25% and 30% w/w was significantly more effective than that of 30% w/w of oxyresveratrol in Vaseline (p < 0.05) and was as effective as 5% w/w of acyclovir cream, topically applied five times daily (p > 0.05). These results demonstrated that topical oxyresveratrol microemulsion at 20–30% w/w was suitable for cutaneous HSV-1 mouse infection.KEY WORDS: cutaneous infection in mice, herpes simplex virus, microemulsion, oxyresveratrol, therapeutic efficacy  相似文献   

4.
Song W  Cun D  Xi H  Fang L 《AAPS PharmSciTech》2012,13(3):811-815
A moderate drug permeating rate (flux) is desirable for long-acting transdermal patches. In this work, a novel simple method of controlling bisoprolol (BSP) flux by ion-pair strategy was initiated. Different ion-pair complexes including bisoprolol maleate (BSP-M), bisoprolol tartarate, bisoprolol besilate, and bisoprolol fumarate were prepared and their fluxes through rabbit abdominal skin were determined separately in vitro. Furthermore, permeation behavior from isopropyl myristate, solubility index in pressure-sensitive adhesives, determined by DSC, and n-octanol/water partition coefficient (log P) were investigated to illustrate the mechanism of drug permeation rate controlling. The results showed that compared to free BSP (J = 25.98 ± 2.34 μg/cm2/h), all BSP ion-pair complexes displayed lower and controllable flux in the range of 0.11 to 4.19 μg/cm2/h. After forming ion-pair complexes, the capability of BSP to penetrate through skin was weakened due to the lowered log P and increased molecule weight. Accordingly, this study has demonstrated that the flux of BSP could be controlled by ion-pair strategy, and among all complexes investigated, BSP-M was the most promising candidate for long-acting transdermal patches.Key words: bisoprolol, flux, ion-pair, transdermal  相似文献   

5.
Kaempferia parviflora (K. parviflora) rhizomes have long been used in traditional folk medicines and as general health-promoting agents. Several biological activities of K. parviflora, especially its anti-inflammatory effect, are due to its major constituents, methoxyflavones. However, the oral bioavailability of these methoxyflavones has been shown to be low. The aim of this study was to investigate the permeation behaviors of K. parviflora methoxyflavones from isopropyl myristate (IPM)-based vehicles. We studied the effects of ethanol and propylene glycol (PG) as the hydrophilic, solvent-type vehicles as well as fatty acids as the permeation enhancers. A permeation experiment was performed in vitro, using side-by-side diffusion cells through the full thickness of pig ear skin. The solubility and permeation of methoxyflavones were able to be modified by choice and ratio of vehicles. The ethanol/IPM vehicle was shown to be more effective in enhancing the solubility and permeation of methoxyflavones when compared to the PG/IPM vehicle. Regarding an optimal balance between solubility or affinity to vehicle and skin to vehicle partition coefficient, the ethanol/IPM vehicle in the ratio of 1:9 maximized the flux. Among the investigated fatty acids, oleic acid showed the greatest enhancing effect on the permeation of methoxyflavones, indicating that saturated fatty acids are less effective than unsaturated fatty acids. Long chain fatty acids increased diffusion coefficient parameter and shortened the lag time. The number of carbon atoms and double bonds of fatty acids did not show direct relation to the profile of permeation of methoxyflavones.  相似文献   

6.
Two different types of derivatives of theophylline (Th-H) incorporating ethyleneoxy groups into the promoiety have been synthesized. One is a soft alkyl type where N-methyl-N-methoxyethyleneoxycarbonylaminomethyl chlorides have been used to alkylate Th-H in the 7 position. The other is in an acyl type where methoxyethyleneoxycarbonyl chlorides have been used to acylate Th-H in the 7 position. All of the prodrugs were more soluble in the lipid isopropyl myristate (IPM) than Th-H, and three were more soluble in water (AQ) than Th-H. The most water-soluble prodrug gave the highest maximum delivery of total species containing Th-H through hairless mouse skin from IPM (maximum flux, JMMIPM)—more than seven times that of Th-H, while the other two gave more than three times that of Th-H. The acyl-type prodrugs delivered only Th-H, while the soft alkyl types delivered 60–70% Th-H plus intact prodrug. The Roberts–Sloan equation was able to predict the best performer for each type with an average of the absolute difference between the experimental log JMMIPM and calculated log JMMIPM (Δlog JMMIPM) of 0.253 log units. The values for the present prodrugs and previously reported prodrugs that had not been previously included in the Roberts–Sloan data base (n = 23) were included in the previous n = 71 data base to give n = 94. New coefficients for the Roberts–Sloan equation have been obtained.KEY WORDS: ethyleneoxy groups, lipid solubility, maximum flux, Roberts–Sloan equation, theophylline, water solubility  相似文献   

7.
Lornoxicam is a potent oxicam class of non steroidal anti-inflammatory agent, prescribed for mild to moderate pain and inflammation. Niosomal gel of lornoxicam was developed for topical application. Lornoxicam niosomes (Lor-Nio) were fabricated by thin film hydration technique. Bilayer composition of niosomal vesicles was optimized. Lor-Nio dispersion was characterized by DSC, XRD, and FT-IR. Morphological evaluation was performed by scanning electron microscopy (SEM). Lor-Nio dispersion was incorporated into a gel using 2% w/w Carbopol 980 NF. Rheological and texture properties of Lor-Nio gel formulation showed suitability of the gel for topical application. The developed formulation was evaluated for in vitro skin permeation and skin deposition studies, occlusivity test and skin irritation studies. Pharmacodynamic activity of the Lor-Nio gel was performed by carragenan-induced rat paw model. Optimized Lor-Nio comprised of Span 60 and cholesterol in a molar ratio of 3:1 with 30 μM dicetyl palmitate as a stabilizer. It had particle size of 1.125 ± 0.212 μm (d90), with entrapment efficiency of 52.38 ± 2.1%. DSC, XRD, and IR studies showed inclusion of Lor into niosomal vesicles. SEM studies showed spherical closed vesicular structure with particles in nanometer range. The in vitro skin permeation studies showed significant improvement in skin permeation and skin deposition for Lor-Nio gel (31.41 ± 2.24 μg/cm2, 30.079 ± 1.2 μg/cm2) over plain lornoxicam gel (7.37 ± 1.27 μg/cm2, 6.6 ± 2.52 μg/cm2). The Lor-Nio gel formulation showed enhanced anti-inflammatory activity by exhibiting mean edema inhibition (87.69 ± 1.43%) which was significantly more than the plain lornoxicam gel (53.84 ± 2.21%).KEY WORDS: anti-inflammatory activity, lornoxicam, niosomes, rheology, texture analysis  相似文献   

8.
Using tamsulosin (TAL) as a model drug, the aim of this study was to investigate and compare the percutaneous permeation behavior of two menthol derivatives, 2-isopropyl-5-methylcyclohexyl heptanoate (M-HEP) and 2-isopropyl-5-methylcyclohexyl decanoate (M-DEC). In vitro transdermal permeation study was carried out using porcine skin. The residual amount of enhancers in the skin after permeation experiment was determined by gas chromatographic (GC) method. The penetration depths of fluorescein were visualized by two-photon confocal laser scanning microscopy (2P-LSM) after the skin being treated with different enhancers. Furthermore, changes in the stretching frequency of functional group of ceramide were investigated by using attenuated total reflectance Fourier transform infrared (ATR-FTIR) technique. After M-HEP addition, the cumulative amount of TAL permeated in 8 h (Q8) reached 20.57 ± 0.54 μg/cm2 and the depth of fluorescein was 40 μm; the CH2 of ceramide symmetric stretching frequency was 4 cm−1 blue shifted. However, M-DEC has an opposite effect on TAL permeation compared with that of M-HEP. TAL is a crucial factor affecting permeation procedure, and microenvironment of lipid region determines promotion capability of the enhancers.Key words: enhancer, mechanism, menthol derivative, retardant, transdermal  相似文献   

9.
The objective was to investigate the suitable polymeric films for the development of diltiazem hydrochloride (diltiazem HCl) transdermal drug delivery systems. Hydroxypropyl methylcellulose (HPMC) and ethylcellulose (EC) were used as hydrophilic and hydrophobic film formers, respectively. Effects of HPMC/EC ratios and plasticizers on mechanical properties of free films were studied. Effects of HPMC/EC ratios on moisture uptake, in vitro release and permeation through pig ear skin of diltiazem HCl films were evaluated. Influence of enhancers including isopropyl myristate (IPM), isopropyl palmitate (IPP), N-methyl-2-pyrrolidone, oleic acid, polyethylene glycol 400, propylene glycol, and Tween80 on permeation was evaluated. It was found that addition of EC into HPMC film produced lower ultimate tensile strength, percent elongation at break and Young’s modulus, however, addition of EC up to 60% resulted in too hard film. Plasticization with dibutyl phthalate (DBP) produced higher strength but lower elongation as compared to triethyl citrate. The moisture uptake and initial release rates (0–1 h) of diltiazem HCl films decreased with increasing the EC ratio. Diltiazem HCl films (10:0, 8:2 and 6:4 HPMC/EC) were studied for permeation because of the higher release rate. The 10:0 and 8:2 HPMC/EC films showed the comparable permeation-time profiles, and had higher flux values and shorter lag time as compared to 6:4 HPMC/EC film. Addition of IPM, IPP or Tween80 could enhance the fluxes for approx. three times while Tween80 also shorten the lag time. In conclusion, the film composed of 8:2 HPMC/EC, 30% DBP and 10% IPM, IPP or Tween80 loaded with 25% diltiazem HCl should be selected for manufacturing transdermal patch by using a suitable adhesive layer and backing membrane. Further in vitro permeation and in vivo performance studies are required.  相似文献   

10.
The objective of the present study was to develop transdermal patch for zolmitriptan, determine its in vivo absorption using the rabbit skin. Solvent evaporation technique prepared zolmitriptan patch was settled in two-chamber diffusion cell combined with excised rabbit abdomen skin for permeation study. A sufficient cumulative penetration amount of zolmitriptan (258.5 ± 26.9 μg/cm2 in 24 h) was achieved by the formulation of 4% zolmitriptan, 10% Azone, and adhesive of DURO-TAK® 87–4098. Pharmacokinetic parameters were determined via i.v. and transdermal administrations using animal model of rabbit. The results revealed that the absolute bioavailability was about 63%. Zolmitriptan could be detected with drug level of 88 ± 51 ng/mL after transdermal administration of 15 min. The in vivo absorption curve obtained by deconvolution approach using WinNonlin® program was correlated well with the in vitro permeation curve, the correlation coefficient R is 0.84, and the result indicated that in vitro skin permeation experiments were useful to predict the in vivo performance. In addition, little skin irritation was found in the irritation study. As a conclusion, the optimized zolmitriptan transdermal patches could effectively deliver adequate drug into systemic circulation in short time without producing any irritation phenomenon and worth to be developed.KEY WORDS: chemical enhancer, drug-in-adhesive patch, in vitro/in vivo correlation, pharmacokinetic, zolmitriptan  相似文献   

11.
The purpose of the present study was to develop an optimal microemulsion (ME) formulation as topical nanocarrier of caffeine (CAF) to enhance CAF skin retention and subsequently improve its therapeutic effect on UVB-induced skin carcinogenesis. The pseudo-ternary phase diagram was developed composing of Labrafil M 1944 CS as oil phase, Cremophor EL as surfactant, tetraglycol as cosurfactant, and water. Four ME formulations at water content of 50, 60, 70, and 80% were prepared along the water dilution line of oil to surfactant ratio of 1:3 and characterized in terms of morphology, droplet size, and electric conductivity. A gel at the same drug loads (1%, w/w) was used as control. Ex vivo skin permeation studies were conducted for ME optimization. The optimized formulation (ME4) was composed of 5% (w/w) Labrafil M 1944 CS, 15% (w/w) Smix (2/1, Cremophor EL and tetraglycol), and 80% (w/w) aqueous phase. The skin location amount of CAF from ME4 was nearly 3-fold higher than control (P < 0.05) with improved permeated amount through the skin. The skin targeting localization of hydrophilic substance from ME4 was further visualized through fluorescent-labeled ME by a confocal laser scanning microscope. In pharmacodynamics studies, CAF-loaded ME4 was superior in terms of increasing apoptotic sunburn cells (P < 0.05) as compared with control. Overall results suggested that the ME4 might be a promising vehicle for the topical delivery of CAF.KEY WORDS: apoptosis, caffeine, CLSM study, hydrophilic drug, microemulsion, percutaneous delivery  相似文献   

12.
The present study was aimed at synthesizing an imidazole-based ionic liquid 1-butyl-3-methylimidazolium bromide (BMIMBr) and subsequent development of a novel ionic liquid-in-oil (IL/o) microemulsion (ME) system for dermal delivery of a poorly permeating drug 5-fluorouracil (5-FU). A significant enhancement in the solubility of 5-FU was observed in BMIMBr. IL/o MEs of 5-FU were prepared using isopropyl myristate, Tween 80/Span 20, and BMIMBr. Results of ex vivo skin permeation studies through mice skin indicated that the selected IL/o ME exhibited 4-fold enhancement in percent drug permeation as compared to aqueous solution, 2.3-fold as compared to hydrophilic ointment, and 1.6-fold greater permeation than water in oil (w/o) ME. The results of in vivo studies against dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mice skin carcinogenesis demonstrated that the IL/o ME could effectively treat skin cancer in 4 weeks. In addition, the side effects such as erythema and irritation associated with the conventional formulations were not observed. Histopathological studies showed that the use of IL/o ME caused no anatomic and pathological changes in the skin structure of mice. These studies suggest that the use of IL-based ME system can efficiently enhance the solubility and permeability of 5-FU and hence its therapeutic efficacy.  相似文献   

13.
In this study, liquid crystalline nanoparticles (LCN) have been proposed as new carrier for topical delivery of finasteride (FNS) in the treatment of androgenetic alopecia. To evaluate the potential of this nanocarrier, FNS-loaded LCN was prepared by ultrasonication method and characterized for size, shape, in vitro release, and skin permeation–retention properties. The particle size ranged from 153.8 to 170.2 nm with a cubical shape and exhibited controlled release profile with less than 20% of the drug released in the first 24 h. The release profile was significantly altered with addition of different additives. Formulation with lower monoolein exhibited higher skin permeation with a flux rate of 0.061 ± 0.005 μg cm−2 h−1 in 24 h. The permeation however, significantly increased with glycerol, propylene glycol, and polyethylene glycol 400, while it declined for the addition of oleic acid. A similar trend was observed with skin retention study. In conclusion, FNS-loaded LCN could be advocated as a viable alternative for oral administration of the drug.Key words: androgenetic alopecia, finasteride, liquid crystalline nanoparticles, release, skin permeation–retention  相似文献   

14.
The present research work focused on the comparative assessment of porous versus nonporous films in order to develop a suitable buccoadhesive device for the delivery of glibenclamide. Both films were prepared by solvent casting technique using the 32 full factorial design, developing nine formulations (F1–F9). The films were evaluated for ex vivo mucoadhesive force, ex vivo mucoadhesion time, in vitro drug release (using a modified flow-through drug release apparatus), and ex vivo drug permeation. The mucoadhesive force, mucoadhesion time, swelling index, and tensile strength were observed to be directly proportional to the content of HPMC K4M. The optimized porous film (F4) showed an in vitro drug release of 84.47 ± 0.98%, ex vivo mucoadhesive force of 0.24 ± 0.04 N, and ex vivo mucoadhesion time of 539.11 ± 3.05 min, while the nonporous film (NF4) with the same polymer composition showed a release of 62.66 ± 0.87%, mucoadhesive force of 0.20 ± 0.05 N, and mucoadhesive time of 510 ± 2.00 min. The porous film showed significant differences for drug release and mucoadhesion time (p < 0.05) versus the nonporous film. The mechanism of drug release was observed to follow non-Fickian diffusion (0.1 < n < 0.5) for both porous and nonporous films. Ex vivo permeation studies through chicken buccal mucosa indicated improved drug permeation in porous films versus nonporous films. The present investigation established porous films to be a cost-effective buccoadhesive delivery system of glibenclamide.KEY WORDS: buccoadhesive drug delivery, glibenclamide, in vitro release and ex vivo permeation, porous film  相似文献   

15.
The purpose of this research was to prepare a pseudolatex transdermal delivery system for terbutaline sulfate and to evaluate the effect of pH and organic ester penetration enhancers on permeation kinetics of terbutaline sulfate through mice abdominal skin and human cadaver skin. An increase in the permeation flux by increasing pH was observed. The distribution coefficient of terbutaline sulfate between 1-octanol and buffers of different pH values was also pH-dependent. Furthermore, the change of the permeability coefficient with pH correlated well with the distribution coefficient by a 2-degree polynomial equation. The permeation profile and related kinetic parameters of terbutaline sulfate was determined in presence of 3 estertype permeation enhancers incorporated in the films, viz methyl laureate, isopropyl lanolate, and isopropyl myristate. Among the 3, the more pronounced enhancing effect was obtained with isopropyl myristate, regarding the permeatin flux, permeability coefficient, and diffusion coefficient. This was attributed to solubility parameter of isopropyl myristate being closer to the solubility parameter of human skin, and such a pronounced enhancing effect was probably caused by its passage across the skin barrier through the lipid pathway. Published: September 30, 2005  相似文献   

16.
The aim of the present study was to increase the solubility of an anti-allergic drug loratadine by making its inclusion complex with β-cyclodextrin and to develop it’s thermally triggered mucoadhesive in situ nasal gel so as to overcome first-pass effect and consequently enhance its bioavailability. A total of eight formulations were prepared by cold method and optimized by 23 full factorial design. Independent variables (concentration of poloxamer 407, concentration of carbopol 934 P, and pure drug or its inclusion complex) were optimized in order to achieve desired gelling temperature with sufficient mucoadhesive strength and maximum permeation across experimental nasal membrane. The design was validated by extra design checkpoint formulation (F9) and Pareto charts were used to help eliminate terms that did not have a statistically significant effect. The response surface plots and possible interactions between independent variables were analyzed using Design Expert Software 8.0.2 (Stat Ease, Inc., USA). Faster drug permeation with zero-order kinetics and target flux was achieved with formulation containing drug: β-cyclodextrin complex rather than those made with free drug. The optimized formulation (F8) with a gelling temperature of 28.6 ± 0.47°C and highest mucoadhesive strength of 7,676.0 ± 0.97 dyn/cm2 displayed 97.74 ± 0.87% cumulative drug permeation at 6 h. It was stable for over 3 months and histological examination revealed no remarkable damage to the nasal tissue.  相似文献   

17.
Curcumin (CUR) has various pharmacological effects, but its extensive first-pass metabolism and short elimination half-life limit its bioavailability. Therefore, transdermal application has become a potential alternative to delivery CUR. To increase CUR solubility for the development of a transparent homogenous gel and also enhance the permeation rate of CUR into the skin, β-cyclodextrin–curcumin nanoparticle complex (BCD–CUR-N) was developed. CUR encapsulation efficiency was increased by raising the percentage of CUR to BCD up to 20%. The mean particle size of the best CUR loading formula was 156 nm. All evaluation data using infrared spectroscopy, Raman spectroscopy, powder X-ray diffractometry, differential thermal analysis and scanning electron microscopy confirmed the successful formation of the inclusion complex. BCD–CUR-N increased the CUR dissolution rate of 10-fold (p < 0.01). In addition, the improvement of CUR permeability acrossed skin model tissue was observed in gel containing the BCD–CUR-N and was about 1.8-fold when compared with the free CUR gel (p < 0.01). Overall, CUR in the form of the BCD–CUR-N improved the solubility further on the penetration of CUR.KEY WORDS: β-cyclodextrin, curcumin, diffusion kinetic, hydrophilic gel, nanoparticle, skin permeation  相似文献   

18.
Drug delivery vehicles can influence the topical delivery and the efficacy of an active pharmaceutical ingredient (API). In this study, the influence of Pheroid™ technology, which is a unique colloidal drug delivery system, on the skin permeation and antimelanoma efficacy of 5-fluorouracil were investigated. Lotions containing Pheroid™ with different concentrations of 5-fluorouracil were formulated then used in Franz cell skin diffusion studies and tape stripping. The in vitro efficacy of 5-fluorouracil against human melanoma cells (A375) was investigated using a flow cytometric apoptosis assay. Statistically significant concentrations of 5-fluorouracil diffused into and through the skin with Pheroid™ formulations resulting in an enhanced in vitro skin permeation from the 4.0% 5-fluorouracil lotion (p < 0.05). The stratum corneum-epidermis and epidermis-dermis retained 5-fluorouracil concentrations of 2.31 and 6.69 μg/ml, respectively, after a diffusion study with the 4.0% Pheroid™ lotion. Subsequent to the apoptosis assay, significant differences were observed between the effect of 13.33 μg/ml 5-fluorouracil in Pheroid™ lotion and the effects of the controls. The results obtained suggest that the Pheroid™ drug delivery system possibly enhances the flux and delivery of 5-fluorouracil into the skin. Therefore, using Pheroid™ could possibly be advantageous with respect to topical delivery of 5-fluorouracil.KEY WORDS: A375 cells, cell culture, flow cytometry, melanoma, permeation enhancer  相似文献   

19.
The aim was to develop niosomal gel as a transdermal nanocarrier for improved systemic availability of lopinavir. Niosomes were prepared using thin-film hydration method and optimized for molar quantities of Span 40 and cholesterol to impart desirable characteristics. Comparative evaluation with ethosomes was performed using ex vivo skin permeation, fluorescence microscopy, and histopathology studies. Clinical utility via transdermal route was acknowledged using in vivo bioavailability study in male Wistar rats. The niosomal formulation containing lopinavir, Span 40, and cholesterol in a molar ratio of 1:0.9:0.6 possessed optimally high percentage of drug entrapment with minimum mean vesicular diameter. Ex vivo skin permeation studies of lopinavir as well as fluorescent probe coumarin revealed a better deposition of ethosomal carriers but a better release with niosomal carriers. Histopathological studies indicated the better safety profile of niosomes over ethosomes. In vivo bioavailability study in male Wistar rats showed a significantly higher extent of absorption (AUC0→∞, 72.87 h × μg/ml) of lopinavir via transdermally applied niosomal gel as compared with its oral suspension. Taken together, these findings suggested that niosomal gel holds a great potential of being utilized as novel, nanosized drug delivery vehicle for transdermal lopinavir delivery.KEY WORDS: ethosomes, lopinavir, niosomes, transdermal  相似文献   

20.
The purpose of this study was to investigate the effects of vehicles, enhancers, and polymer membranes on 3-azido-3-deoxythymidine (AZT) permeation across cadaver pig skin. Four binary vehicles (ethanol/water, isopropyl alcohol/water, polyethylene glycol 400/water, and ethanol/isopropyl myristate [IPM] were tested for AZT solubility and permeability across pig skin; ethanol/IPM (50/50, vol/vol) demonstrated the highest AZT flux (185.23 μ/cm2/h). Next, the addition of various concentrations of different enhancers (N-methyl-2-pyrrolidone [NMP], oleic acid, and lauric acid) to different volume ratios of ethanol/IPM was investigated for their effect on AZT solubility and permeability across pig skin. The use of 2 conbinations (ethanol/IPM [20/80] plus 10% NMP and ethanol/IPM [30/70] plus 10% NMP) resulted in increased AZT solubility (42.6 and 56.27 mg/mL, respectively) and also high AZT flux values (284.92 and 460.34 μg/cm2/h, respectively) without appreciable changes in lag times (6.25 and 7.49 hours, respectively) when compared with formulations using only ethanol/IPM at 20/80 and 30/70 volume ratios without addition of the enhancer NMP. Finally, AZT permeation across pig skin covered with a microporous polyethylene (PE) membrane was investigated. The addition of the PE membrane to the pig skin reduced AZT flux values to ∼50% of that seen with pig skin alone. However, the AZT flux value attained with ethanol/IPM (30/70) plus 10% NMP was 215.30 μg/cm2/h, which was greater than the target flux (208 μg/cm2/h) needed to maintain the steady-state plasma concentration in humans. The results obtained from this study will be helpful in the development of an AZT transdermal drug delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号