首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive oxygen species (ROS), natural by-products of aerobic respiration, are important cell signaling molecules, which left unchecked can severely impair cellular functions and induce cell death. Hence, cells have developed a series of systems to keep ROS in the nontoxic range. Uncoupling proteins (UCPs) 1-3 are mitochondrial anion carrier proteins that are purported to play important roles in minimizing ROS emission from the electron transport chain. The function of UCP1 in this regard is highly contentious. However, UCPs 2 and 3 are generally thought to be activated by ROS or ROS by-products to induce proton leak, thus providing a negative feedback loop for mitochondrial ROS production. In our laboratory, we have not only confirmed that ROS activate UCP2 and UCP3, but also demonstrated that UCP2 and UCP3 are controlled by covalent modification by glutathione. Furthermore, the reversible glutathionylation is required to activate/inhibit UCP2 and UCP3, but not UCP1. Hence, our findings are consistent with the notion that UCPs 2 and 3 are acutely activated by ROS, which then directly modulate the glutathionylation status of the UCP to decrease ROS emission and participate in cell signaling mechanisms.  相似文献   

2.
Modulation of oxidative stress in cancer cells plays an important role in the study of the resistance to anticancer therapies. Uncoupling protein 2 (UCP2) may play a dual role in cancer, acting as a protective mechanism in normal cells, while its overexpression in cancer cells could confer resistance to chemotherapy and a higher survival through downregulation of ROS production. Thus, our aim was to check whether the inhibition of UCP2 expression and function increases oxidative stress and could render breast cancer cells more sensitive to cisplatin (CDDP) or tamoxifen (TAM). For this purpose, we studied clonogenicity, mitochondrial membrane potential (ΔΨm), cell viability, ROS production, apoptosis, and autophagy in MCF-7 and T47D (only the last four determinations) breast cancer cells treated with CDDP or TAM, in combination or without a UCP2 knockdown (siRNA or genipin). Furthermore, survival curves were performed in order to check the impact of UCP2 expression in breast cancer patients. UCP2 inhibition and cytotoxic treatments produced a decrease in cell viability and clonogenicity, in addition to an increase in ΔΨm, ROS production, apoptosis, and autophagy. It is important to note that CDDP decreased UCP2 protein levels, so that the greatest effects produced by the UCP2 inhibition in combination with a cytotoxic treatment, with regard to treatment alone, were observed in TAM+UCP2siRNA-treated cells. Moreover, this UCP2 inhibition caused autophagic cell death, since apoptosis parameters barely increased after UCP2 knockdown. Finally, survival curves revealed that higher UCP2 expression corresponded with a poorer prognosis. In conclusion, UCP2 could be a therapeutic target in breast cancer, especially in those patients treated with tamoxifen.  相似文献   

3.
Frédéric Bouillaud 《BBA》2009,1787(5):377-4873
In mammals the two proteins UCP2 and UCP3 are highly similar to the mitochondrial uncoupling protein found in the brown adipose tissue (UCP1). Accordingly, it was proposed that UCP2 and UCP3 are also uncoupling proteins i.e. protonophores with impact on mitochondrial ROS production and glucose signaling. However, it appears now impossible to explain the physiological relevance of the new UCPs uniquely by their uncoupling activity as observed in vitro. Therefore, we propose a metabolic hypothesis in which UCP2 acts through a transport distinct of the proton transport. A consequence of this transport activity would be a decrease of the mitochondrial oxidation of the pyruvate originating from glucose. This would put UCP2 and UCP3 in a crucial position to influence cellular metabolism. The tight control exerted on UCP2 expression appears consistent with it. In this hypothesis, UCP2/3 would allow a cell to remain glycolytic within an aerobic organism. This tallies with the high expression level of UCP2 or UCP3 in glycolytic cells. The metabolic hypothesis would explain the spectacular modifications associated with UCP2 manipulation as well as the uncoupling activity usually called for and which in fact remains elusive in vivo.  相似文献   

4.
5.
Mitochondrial Uncoupling as a Therapeutic Target Following Neuronal Injury   总被引:4,自引:0,他引:4  
Mitochondrial dysfunction is a prominent feature of excitotoxic insult and mitochondria are known to play a pivotal role in neuronal cell survival and death following injury. Following neuronal injury there is a well-documented increase in cytosolic Ca(2+), reactive oxygen species (ROS) production and oxidative damage. In vitro studies have demonstrated these events are dependent on mitochondrial Ca(2+) cycling and that a reduction in membrane potential is sufficient to reduce excitotoxic cell death. This concept has gained additional support from experiments demonstrating that the overexpression of endogenous mitochondrial uncoupling proteins (UCP), which decrease the mitochondrial membrane potential, decreases cell death following oxidative stress. Our group has demonstrated that upregulation of UCP activity can reduce excitotoxic-mediated ROS production and cell death whereas a reduction in UCP levels increases susceptibility to neuronal injury. These findings raise the possibility that mitochondrial uncoupling could be a potential novel treatment for acute CNS injuries.  相似文献   

6.
The expression status of mitochondrial uncoupling protein 2 (UCP2) was investigated in undifferentiated mouse myeloid leukemia (M1) and its differentiated macrophage-like cells (Mm1). Mm1 cells have a high ability of phagocytosis along with significantly high levels of reactive oxygen species (ROS) production, UCP2 protein and manganese superoxide dismutase (Mn-SOD), in contrast to undifferentiated leukemia cells (M1). Mm1 cells expressed 10-fold more UCP2 protein compared with undifferentiated M1 cells, although the UCP2 mRNA levels in both cell types were similar. The higher expression of UCP2 in the Mm1 cells suggests a regulatory role of UCP2 in the ROS production. Furthermore, the transfection of UCP2-GFP-expression vector in Mm1 cells dissipated the mitochondrial membrane potential and reduced ROS production, which was shown by their direct visualization using MitoTracker Red CM-H2Xros. The macrophage gp91phox protein, a membrane catalytic component of the NADPH oxidase complex, was at a similar level in both of UCP2-GFP expressed and non-expressed Mm1 cells. These results suggest that the UCP2 protein of the undifferentiated cell is regulated at a quite low level and the higher UCP2 protein of the differentiated macrophages involves with the regulation of ROS production.  相似文献   

7.
Mitochondria represent a major source of reactive oxygen species (ROS), particularly during resting or state 4 respiration wherein ATP is not generated. One proposed role for respiratory mitochondrial uncoupling proteins (UCPs) is to decrease mitochondrial membrane potential and thereby protect cells from damage due to ROS. This work was designed to examine superoxide production during state 4 (no ATP production) and state 3 (active ATP synthesis) respiration and to determine whether uncoupling reduced the specific production of this radical species, whether this occurred in endothelial mitochondria per se, and whether this could be modulated by UCPs. Superoxide formation by isolated bovine aortic endothelial cell (BAE) mitochondria, determined using electron paramagnetic resonance spectroscopy, was approximately fourfold greater during state 4 compared with state 3 respiration. UCP1 and UCP2 overexpression both increased the proton conductance of endothelial cell mitochondria, as rigorously determined by the kinetic relationship of respiration to inner membrane potential. However, despite uncoupling, neither UCP1 nor UCP2 altered superoxide formation. Antimycin, known to increase mitochondrial superoxide, was studied as a positive control and markedly enhanced the superoxide spin adduct in our mitochondrial preparations, whereas the signal was markedly impaired by the powerful chemical uncoupler p-(trifluoromethoxyl)-phenyl-hydrazone. In summary, we show that UCPs do have uncoupling properties when expressed in BAE mitochondria but that uncoupling by UCP1 or UCP2 does not prevent acute substrate-driven endothelial cell superoxide as effluxed from mitochondria respiring in vitro.  相似文献   

8.
UCP2, an inner membrane mitochondrial protein, has been implicated in bioenergetics and reactive oxygen species (ROS) modulation. High levels of UCP2 mRNA were recently found in erythroid cells where UCP2 is hypothesized to function as a facilitator of heme synthesis and iron metabolism by reducing ROS production. We examined UCP2 protein expression and role in mice erythropoiesis in vivo. UCP2 was mainly expressed at early stages of erythroid maturation when cells are not fully committed in heme synthesis. Iron incorporation into heme was unaltered in reticulocytes from UCP2-deficient mice. Although heme synthesis was not influenced by UCP2 deficiency, mice lacking UCP2 had a delayed recovery from chemically induced hemolytic anemia. Analysis of progenitor cells from bone marrow and fetal liver both in vitro and in vivo revealed that UCP2 deficiency results in a significant decrease in cell proliferation at the erythropoietin-dependent phase of erythropoiesis. This was accompanied by reduction in the phosphorylated form of ERK, a ROS-dependent cytosolic regulator of cell proliferation. Analysis of ROS in UCP2 null erythroid cells revealed altered distribution of ROS, resulting in decreased cytosolic and increased mitochondrial ROS. Restoration of the cytosol oxidative state of erythroid progenitor cells by the pro-oxidant Paraquat reversed the effect of UCP2 deficiency on cell proliferation in in vitro differentiation assays. Together, these results indicate that UCP2 is a regulator of erythropoiesis and suggests that inhibition of UCP2 function may contribute to the development of anemia.  相似文献   

9.
Mitochondrial uncoupling,ROS generation and cardioprotection   总被引:1,自引:0,他引:1  
Susana Cadenas 《BBA》2018,1859(9):940-950
Mitochondrial oxidative phosphorylation is incompletely coupled, since protons translocated to the intermembrane space by specific respiratory complexes of the electron transport chain can return to the mitochondrial matrix independently of the ATP synthase —a process known as proton leak— generating heat instead of ATP. Proton leak across the inner mitochondrial membrane increases the respiration rate and decreases the electrochemical proton gradient (Δp), and is an important mechanism for energy dissipation that accounts for up to 25% of the basal metabolic rate. It is well established that mitochondrial superoxide production is steeply dependent on Δp in isolated mitochondria and, correspondingly, mitochondrial uncoupling has been identified as a cytoprotective strategy under conditions of oxidative stress, including diabetes, drug-resistance in tumor cells, ischemia-reperfusion (IR) injury or aging. Mitochondrial uncoupling proteins (UCPs) are able to lower the efficiency of oxidative phosphorylation and are involved in the control of mitochondrial reactive oxygen species (ROS) production. There is strong evidence that UCP2 and UCP3, the UCP1 homologues expressed in the heart, protect against mitochondrial oxidative damage by reducing the production of ROS. This review first analyzes the relationship between mitochondrial proton leak and ROS generation, and then focuses on the cardioprotective role of chemical uncoupling and uncoupling mediated by UCPs. This includes their protective effects against cardiac IR, a condition known to increase ROS production, and their roles in modulating cardiovascular risk factors such as obesity, diabetes and atherosclerosis.  相似文献   

10.
The recent knowledge on mitochondria as the substantial source of reactive oxygen species, namely superoxide and hydrogen peroxide efflux from mitochondria, is reviewed, as well as nitric oxide and subsequent peroxynitrite generation in mitochondria and their effects. The reactive oxygen species formation in extramitochondrial locations, in peroxisomes, by cytochrome P450, and NADPH oxidase reaction, is also briefly discussed. Conditions are pointed out under which mitochondria represent the major ROS source for the cell: higher percentage of non-phosphorylating and coupled mitochondria, in vivo oxygen levels leading to increased intensity of the reverse electron transport in the respiratory chain, and nitric oxide effects on the redox state of cytochromes. We formulate hypotheses on the crucial role of ROS generated in mitochondria for the whole cell and organism, in concert with extramitochondrial ROS and antioxidant defense. We hypothesize that a sudden decline of mitochondrial ROS production converts cells or their microenvironment into a “ROS sink” represented by the instantly released excessive capacity of ROS-detoxification mechanisms. A partial but immediate decline of mitochondrial ROS production may be triggered by activation of mitochondrial uncoupling, specifically by activation of recruited or constitutively present uncoupling proteins such as UCP2, which may counterbalance the mild oxidative stress.  相似文献   

11.
Tindaro M. Giardina 《BBA》2008,1777(2):118-129
Uncoupling protein-2 (UCP2) is a member of the inner mitochondrial membrane anion-carrier superfamily. Although mRNA for UCP2 is widely expressed, protein expression is detected in only a few cell types, including macrophages. UCP2 functions by an incompletely defined mechanism, to reduce reactive oxygen species production during mitochondrial electron transport. We observed that the abundance of UCP2 in macrophages increased rapidly in response to treatments (rotenone, antimycin A and diethyldithiocarbamate) that increased mitochondrial superoxide production, but not in response to superoxide produced outside the mitochondria or in response to H2O2. Increased UCP2 protein was not accompanied by increases in ucp2 gene expression or mRNA abundance, but was due to enhanced translational efficiency and possibly stabilization of UCP2 protein in the inner mitochondrial membrane. This was not dependent on mitochondrial membrane potential. These findings extend our understanding of the homeostatic function of UCP2 in regulating mitochondrial reactive oxygen production by identifying a feedback loop that senses mitochondrial reactive oxygen production and increases inner mitochondrial membrane UCP2 abundance and activity. Reactive oxygen species-induction of UCP2 may facilitate survival of macrophages and retention of function in widely variable tissue environments.  相似文献   

12.
To reside and multiply successfully within the host macrophages, Leishmania parasites impair the generation of reactive oxygen species (ROS), which are a major host defense mechanism against any invading pathogen. Mitochondrial uncoupling proteins are associated with mitochondrial ROS generation, which is the major contributor of total cellular ROS generation. In the present study we have demonstrated that Leishmania donovani infection is associated with strong upregulation of uncoupling protein 2 (UCP2), a negative regulator of mitochondrial ROS generation located at the inner membrane of mitochondria. Functional knockdown of macrophage UCP2 by small interfering RNA-mediated silencing was associated with increased mitochondrial ROS generation, lower parasite survival, and induction of marked proinflammatory cytokine response. Induction of proinflammatory cytokine response in UCP2 knocked-down cells was a direct consequence of p38 and ERK1/2 MAPK activation, which resulted from ROS-mediated inhibition of protein tyrosine phosphatases (PTPs). Administration of ROS quencher, N-acetyl-l-cysteine, abrogated PTP inhibition in UCP2 knocked-down infected cells, implying a role of ROS in inactivating PTP. Short hairpin RNA-mediated in vivo silencing of UCP2 resulted in decreased Src homology 2 domain-containing tyrosine phosphatase 1 and PTP-1B activity and host-protective proinflammatory cytokine response resulting in effective parasite clearance. To our knowledge, this study, for the first time, reveals the induction of host UCP2 expression during Leishmania infection to downregulate mitochondrial ROS generation, thereby possibly preventing ROS-mediated PTP inactivation to suppress macrophage defense mechanisms.  相似文献   

13.
Reactive oxygen species (ROS)-induced chondrocytes apoptosis plays a key role in osteoarthritis (OA) pathogenesis. Uncoupling protein 4 (UCP4) can protect cells against oxidative stress via reducing ROS production and cell apoptosis. Here, silencing of UCP4 in primary chondrocytes significantly inhibited cell survival, but induced ROS production and cell apoptosis. UCP4 mRNA of cartilage tissues was decreased in osteoarthritis patients, which was negatively correlated with synovial fluid (SF) leptin concentration. Moreover, leptin treatment (5, 10 and 20 ng/ml) of primary cultured chondrocytes significantly decreased mRNA and protein levels of UCP4, but increased ROS production and cell apoptosis in a dose-dependent manner. The effects of leptin treatment (20 ng/ml) on chondrocytes was partially reversed by ectopic expression of UCP4. More importantly, intraarticularly injection of UCP4 adenovirus remarkably alleviate OA progression and cell apoptosis in a rat OA model induced by anterior cruciate ligament transection (ACLT). In conclusion, UCP4, whose expression was suppressed by leptin, may be involved in the ROS production and apoptosis of chondrocytes, thus contributing to the OA pathogenesis.  相似文献   

14.
Uncoupling proteins, a subgroup of the mitochondrial anion transporter superfamily, have beenidentified in prokaryotes, plants, and mammalian cells. Evolutionary conservation of thesemolecules reflects their importance as regulators of two critical mitochondrial functions, i.e.,ATP synthesis and the production of reactive oxygen species (ROS). Although the amino acidsequences of the three mammalian uncoupling proteins, UCP1, UCP2 and UCP3, are verysimilar, each homolog is the product of a unique gene and important differences have beendemonstrated in their tissue-specific expression and regulation. UCP1 and UCP3 appear to bekey regulators of energy expenditure, and hence, nonshivering thermogenesis, either in brownadipose tissue (UCP1) or skeletal muscle (UCP3). UCP2 is expressed more ubiquitously,although generally at low levels, in many tissues. There is conflicting evidence about itsimportance as a regulator of resting metabolic rate. However, evidence suggests that thishomolog might modulate the mitochondrial generation of ROS in some cell types, includingmacrophages and hepatocytes. While the induction of various uncoupling protein homologsprovides adaptive advantages, both to the organism (e.g., thermogenesis) and to individual cells(e.g., reduced ROS), increased uncoupling protein activity also increases cellular vulnerability tonecrosis by compromising the mitochondrial membrane potential. This narrow risk—benefitmargin necessitates tight control of uncoupling protein activity in order to preserve cellularviability and much remains to be learned about the regulatory mechanisms involved.  相似文献   

15.
心脑血管疾病是全球最主要的致死性疾病。活性氧(Reactive oxygen species,ROS)产生增多诱发血管内皮细胞损伤、平滑肌细胞迁移、增殖,是导致血管功能障碍、血管重构发生的重要机制。因此,氧化应激被认为是心脑血管疾病发生、发展的关键环节。但通过补充外源性抗氧化剂防治心脑血管疾病一直存在较大争议。机体可通过自身防御体系拮抗氧化应激,维持氧化-还原状态,如通过调控线粒体解偶联蛋白2(Uncoupling protein 2,UCP2)调节ROS生成,改善血管功能障碍及血管重构。本文就UCP2在内皮损伤及血管重构中的作用及机制展开综述,为深入探索这一潜在的防治心脑血管疾病的靶点提供信息。  相似文献   

16.
17.
The physiological significance of cardiac mitochondrial uncoupling protein 2 (UCP2)-mediated uncoupling respiration in exercise is unknown. In the current study, mitochondrial respiratory function, UCP2 mRNA level, UCP2-mediated respiration (UCR), and reactive oxygen species (ROS) generation, as well as manganese superoxide dismutase (MnSOD) activity were determined in rat heart with or without endurance training after an acute bout of exercise of different duration. In the untrained rats, state 4 respiration and UCR-independent respiration rates were progressively increased with exercise time and were 64 and 70% higher, respectively, than resting rate at 150 min, whereas UCR was elevated by 86% with no significant change in state 3 respiration. UCP2 mRNA level showed a 5- and 4-fold increase, respectively, after 45 and 90 min of exercise, but returned to resting level at 120 and 150 min. Mitochondrial ROS production and membrane potential (Deltapsi) increased progressively until 120 min, followed by a decrease to the resting level at 150 min. MnSOD mRNA abundance showed a 2-fold increase at 120 min but MnSOD activity did not change with exercise. Training significantly increased mitochondrial ATP synthetase activity, ADP to oxygen consumption (P/O) ratio, respiratory control ratio, and MnSOD activity, whereas exercise-induced state 4 respiration, UCR, ROS production, and Deltapsi were attenuated in the trained rats. We conclude that (1) UCP2 mRNA expression and activity in rat heart can be upregulated during prolonged exercise, which may reduce cross-membrane Deltapsi and thus ROS production; and (2) endurance training can blunt exercise-induced UCP2 and UCR, and improve mitochondrial efficiency of oxidative phosphorylation due to increased removal of ROS.  相似文献   

18.
Uncoupling protein-2 (UCP2) is known to suppress mitochondrial reactive oxygen species (ROS) production and is employed by drug-resistant cancer cells to mitigate oxidative stress. Using the drug-sensitive HL-60 cells and the drug-resistant MX2 subline as model systems, we show that genipin, a UCP2 inhibitor, sensitizes drug-resistant cells to cytotoxic agents. Increased MX2 cell death was observed upon co-treatment with genipin and different doses of menadione, doxorubicin, and epirubicin. DCFH-DA fluorimetry revealed that the increase in MX2 cell death was accompanied by enhanced cellular ROS levels. The drug-induced increase in ROS was linked to genipin-mediated inhibition of mitochondrial proton leak. State 4 and resting cellular respiratory rates were higher in the MX2 cells in comparison to the HL-60 cells, and the increased respiration was readily suppressed by genipin in the MX2 cells. UCP2 accounted for a remarkable 37% of the resting cellular oxygen consumption indicating that the MX2 cells are functionally reliant on this protein. Higher amounts of UCP2 protein were detected in the MX2 versus the HL-60 mitochondria. The observed effects of genipin were absent in the HL-60 cells pointing to the selectivity of this natural product for drug-resistant cells. The specificity of genipin for UCP2 was confirmed using CHO cells stably expressing UCP2 in which genipin induced an ~22% decrease in state 4 respiration. These effects were absent in empty vector CHO cells expressing no UCP2. Thus, the chemical inhibition of UCP2 with genipin sensitizes multidrug-resistant cancer cells to cytotoxic agents.  相似文献   

19.
Instead of a comprehensive review, we describe the basic undisputed facts and a modest contribution of our group to the fascinating area of the research on mitochondrial uncoupling proteins. After defining the terms uncoupling, leak, protein-mediated uncoupling, we discuss the assumption that due to their low abundance the novel mitochondrial uncoupling proteins (UCP2 to UCP5) can provide only a mild uncoupling, i.e. can decrease the proton motive force by several mV only. Contrary to this, the highly thermogenic role of UCP1 in brown adipose tissue is not given only by its high content (approximately 5 % of mitochondrial proteins) but also by the low ATP synthase content and high capacity respiratory chain. Fatty acid cycling mechanism as a plausible explanation for the protonophoretic function of all UCPs and some other mitochondrial carriers is described together with the experiments supporting it. The phylogenesis of all UCPs, estimated UCP2 content in several tissues, and details of UCP2 activation are described on the basis of our experiments. Functional activation of UCP2 is proposed to decrease reactive oxygen species (ROS) production. Moreover, reaction products of lipoperoxidation such as cleaved hydroperoxy-fatty acids and hydroxy-fatty acid can activate UCP2 and promote feedback down-regulation of mitochondrial ROS production.  相似文献   

20.
Oxidative stress induction is a common effector pathway for commonly used chemotherapeutic agents like gemcitabine (GEM) in hepatocellular carcinoma (HCC) patients. However, GEM alone or in combination with oxiplatin hardly renders any survival benefits to HCC patients. Mitochondrial uncoupling protein 2 (UCP2) is known to suppress mitochondrial reactive oxygen species (ROS) generation, thus mitigating oxidative stress-induced apoptosis. We demonstrate in the present study, using a panel of HCC cell lines that sensitivity to GEM in HCC well correlate with the endogenous level of UCP2 protein expression. Moreover, ectopic overexpression of UCP2 in a HCC cell line with low endogenous UCP2 expression, HLE, significantly decreased mitochondrial superoxide induction by the anti-cancer drug GEM. Conversely, UCP2 mRNA silencing by RNA interference in HCC cell lines with high endogenous UCP2 expression significantly enhanced GEM-induced mitochondrial superoxide generation and apoptosis. Cumulatively, our results suggest a critical role for mitochondrial uncoupling in GEM resistance in HCC cell lines. Hence, synergistic targeting of UCP2 in combination with other chemotherapeutic agents might be more potent in HCC patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号