首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The kynurenine pathway is the major route of l-tryptophan (l-Trp) catabolism in biology, leading ultimately to the formation of NAD+. The initial and rate-limiting step of the kynurenine pathway involves oxidation of l-Trp to N-formylkynurenine. This is an O2-dependent process and catalyzed by indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. More than 60 years after these dioxygenase enzymes were first isolated (Kotake, Y., and Masayama, I. (1936) Z. Physiol. Chem. 243, 237–244), the mechanism of the reaction is not established. We examined the mechanism of substrate oxidation for a series of substituted tryptophan analogues by indoleamine 2,3-dioxygenase. We observed formation of a transient intermediate, assigned as a Compound II (ferryl) species, during oxidation of l-Trp, 1-methyl-l-Trp, and a number of other substrate analogues. The data are consistent with a common reaction mechanism for indoleamine 2,3-dioxygenase-catalyzed oxidation of tryptophan and other tryptophan analogues.  相似文献   

2.
The heme enzyme indoleamine 2,3-dioxygenase (IDO) is a key regulator of immune responses through catalyzing l-tryptophan (l-Trp) oxidation. Here, we show that hydrogen peroxide (H2O2) activates the peroxidase function of IDO to induce protein oxidation and inhibit dioxygenase activity. Exposure of IDO-expressing cells or recombinant human IDO (rIDO) to H2O2 inhibited dioxygenase activity in a manner abrogated by l-Trp. Dioxygenase inhibition correlated with IDO-catalyzed H2O2 consumption, compound I-mediated formation of protein-centered radicals, altered protein secondary structure, and opening of the distal heme pocket to promote nonproductive substrate binding; these changes were inhibited by l-Trp, the heme ligand cyanide, or free radical scavengers. Protection by l-Trp coincided with its oxidation into oxindolylalanine and kynurenine and the formation of a compound II-type ferryl-oxo heme. Physiological peroxidase substrates, ascorbate or tyrosine, enhanced rIDO-mediated H2O2 consumption and attenuated H2O2-induced protein oxidation and dioxygenase inhibition. In the presence of H2O2, rIDO catalytically consumed nitric oxide (NO) and utilized nitrite to promote 3-nitrotyrosine formation on IDO. The promotion of H2O2 consumption by peroxidase substrates, NO consumption, and IDO nitration was inhibited by l-Trp. This study identifies IDO as a heme peroxidase that, in the absence of substrates, self-inactivates dioxygenase activity via compound I-initiated protein oxidation. l-Trp protects against dioxygenase inactivation by reacting with compound I and retarding compound II reduction to suppress peroxidase turnover. Peroxidase-mediated dioxygenase inactivation, NO consumption, or protein nitration may modulate the biological actions of IDO expressed in inflammatory tissues where the levels of H2O2 and NO are elevated and l-Trp is low.  相似文献   

3.
Chirality plays a major role in recognition and interaction of biologically important molecules. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) is the first enzyme of the shikimate pathway, which is responsible for the synthesis of aromatic amino acids in bacteria and plants, and a potential target for the development of antibiotics and herbicides. DAH7PS from Mycobacterium tuberculosis (MtuDAH7PS) displays an unprecedented complexity of allosteric regulation, with three interdependent allosteric binding sites and a ternary allosteric response to combinations of the aromatic amino acids l-Trp, l-Phe and l-Tyr. In order to further investigate the intricacies of this system and identify key residues in the allosteric network of MtuDAH7PS, we studied the interaction of MtuDAH7PS with aromatic amino acids that bear the non-natural d-configuration, and showed that the d-amino acids do not elicit an allosteric response. We investigated the binding mode of d-amino acids using X-ray crystallography, site directed mutagenesis and isothermal titration calorimetry. Key differences in the binding mode were identified: in the Phe site, a hydrogen bond between the amino group of the allosteric ligands to the side chain of Asn175 is not established due to the inverted configuration of the ligands. In the Trp site, d-Trp forms no interaction with the main chain carbonyl group of Thr240 and less favourable interactions with Asn237 when compared to the l-Trp binding mode. Investigation of the MtuDAH7PSN175A variant further supports the hypothesis that the lack of key interactions in the binding mode of the aromatic d-amino acids are responsible for the absence of an allosteric response, which gives further insight into which residues of MtuDAH7PS play a key role in the transduction of the allosteric signal.  相似文献   

4.
5.
l-Glutamine d-fructose 6-phosphate amidotransferase (EC 2.6.1.16) was extracted and purified 600-fold by acetone fractionation and diethylaminoethyl cellulose column chromatography from mung bean seeds (Phaseolus aureus). The partially purified enzyme was highly specific for l-glutamine as an amide nitrogen donor, and l-asparagine could not replace it. The enzyme showed a pH optimum in the range of 6.2 to 6.7 in phosphate buffer. Km values of 3.8 mm and 0.5 mm were obtained for d-fructose 6-phosphate and l-glutamine, respectively. The enzyme was competitively inhibited with respect to d-fructose 6-phosphate by uridine diphosphate-N-acetyl-d-glucosamine which had a Ki value of 13 μm. Upon removal of l-glutamine and its replacement by d-fructose 6-phosphate and storage over liquid nitrogen, the enzyme was completely desensitized to inhibition by uridine diphosphate-N-acetyl-d-glucosamine. This indicates that the inhibitor site is distinct from the catalytic site and that uridine diphosphate-N-acetyl-d-glucosamine acts as a feedback inhibitor of the enzyme.  相似文献   

6.
N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in l-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by l-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with l-arginine bound and in the active R-state complexed with CoA and l-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of l-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by ∼10 Å and decreases its height by ∼20Å. AAK dimers move 5Å outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by ∼4°. The NAT domains rotate ∼109° relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the l-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity.l-Arginine biosynthesis in most micro-organisms and plants involves the initial acetylation of l-glutamate by N-acetylglutamate synthase (NAGS, EC 2.3.1.1)2 to produce N-acetylglutamate (NAG). NAG is then converted by NAG kinase (NAGK, EC 2.7.2.8) to NAG-phosphate and subsequently to N-acetylornithine (1, 2). Two alternative reactions are used to remove the acetyl group from acetylornithine. The linear pathway uses N-acetylornithine deacetylase (EC 3.5.1.16) to catalyze the metal-dependent hydrolysis of the acetyl group to form l-ornithine and acetate, whereas the acetyl recycling pathway transfers the acetyl group from N-acetylornithine to l-glutamate, producing l-ornithine and NAG. This reaction is catalyzed by ornithine acetyltransferase (EC 2.3.1.35).In the linear pathway, NAGS is the only target of feedback inhibition by l-arginine. In contrast, in the acetyl cycling pathway l-arginine may inhibit NAGS and NAGK or ornithine acetyltransferase (3). Structure determinations of l-arginine-insensitive (4) and l-arginine-sensitive NAGKs (5) provided insights into the structural basis of l-arginine inhibition of NAGK. l-Arginine-insensitive Escherichia coli (ec) NAGK is a homodimer (4), whereas l-arginine-sensitive NAGKs from Thermotoga maritima (tm) and Pseudomonas aeruginosa (pa) are hexamers formed by pair-wise interlacing of the N-terminal helices of three ecNAGK-like dimers, to create a second type of dimer interface. l-Arginine binding to a site close to the C terminus induces global conformational changes that expands the ring by ∼8 Å and decreases the tilt of the ecNAGK-like dimers relative to the plane of the ring by ∼6°. The inhibition mechanism was proposed to involve the enlargement of an active site located close to the l-arginine-binding site.Because of the sequence similarity between NAGK and NAGS, it was speculated that they may have similar l-arginine-binding sites and hexameric ring structures (5). However, our recent structural determination of NAGS from Neisseria gonorrhoeae (ng) revealed the active site to be located in the NAT domain, >25 Å away from the proposed l-arginine-binding site (6). Therefore, the allosteric mechanism of NAGS is likely to be different from that of l-arginine-sensitive NAGKs. Here we compare the structures of ngNAGS in the inactive T-state with l-arginine bound and in the R-state complexed with CoA and l-glutamate and determine the structural basis for the allosteric inhibition of NAGS by l-arginine.  相似文献   

7.
In the prokaryote Synechococcus RF-1, circadian changes in the uptake of l-leucine and 2-amino isobutyric acid were observed. Uptake rates in the light period were higher than in the dark period for cultures entrained by 12/12 hour light/dark cycles. The periodic changes in l-leucine uptake persisted for at least 72 hours into continuous light (L/L). The rhythm had a free-running period of about 24 hours in L/L at 29°C. A single dark treatment of 12 hours could initiate rhythmic leucine uptake in an L/L culture. The phase of rhythm could be shifted by a pulse of low temperature (0°C). The free-running periodicity was “temperature-compensated” from 21 to 37°C. A 24 hour depletion of extracellular Ca2+ before the free-running L/L condition reduced the variation in uptake rate but had little effect on the periodicity of the rhythm. The periodicity was also not affected by the introduction of 25 mm NaNO3. The uptake rates for 20 natural amino acids were studied at 12 hour intervals in cultures exposed to 12/12 hour light/dark cycles. For eight of these amino acids (l-Val, l-Leu, l-Ile, l-Pro, l-Phe, l-Trp, l-Met, and l-Tyr), the light/dark uptake rate ratios had values greater than 3 and the rhythm persisted in L/L.  相似文献   

8.
Helicobacter pylori causes gastrointestinal diseases, including gastric cancer. Its high motility in the viscous gastric mucosa facilitates colonization of the human stomach and depends on the helical cell shape and the flagella. In H. pylori, Csd6 is one of the cell shape-determining proteins that play key roles in alteration of cross-linking or by trimming of peptidoglycan muropeptides. Csd6 is also involved in deglycosylation of the flagellar protein FlaA. To better understand its function, biochemical, biophysical, and structural characterizations were carried out. We show that Csd6 has a three-domain architecture and exists as a dimer in solution. The N-terminal domain plays a key role in dimerization. The middle catalytic domain resembles those of l,d-transpeptidases, but its pocket-shaped active site is uniquely defined by the four loops I to IV, among which loops I and III show the most distinct variations from the known l,d-transpeptidases. Mass analyses confirm that Csd6 functions only as an l,d-carboxypeptidase and not as an l,d-transpeptidase. The d-Ala-complexed structure suggests possible binding modes of both the substrate and product to the catalytic domain. The C-terminal nuclear transport factor 2-like domain possesses a deep pocket for possible binding of pseudaminic acid, and in silico docking supports its role in deglycosylation of flagellin. On the basis of these findings, it is proposed that H. pylori Csd6 and its homologs constitute a new family of l,d-carboxypeptidase. This work provides insights into the function of Csd6 in regulating the helical cell shape and motility of H. pylori.  相似文献   

9.
The first enzyme in the pathway for l-arabinose catabolism in eukaryotic microorganisms is a reductase, reducing l-arabinose to l-arabitol. The enzymes catalyzing this reduction are in general nonspecific and would also reduce d-xylose to xylitol, the first step in eukaryotic d-xylose catabolism. It is not clear whether microorganisms use different enzymes depending on the carbon source. Here we show that Aspergillus niger makes use of two different enzymes. We identified, cloned, and characterized an l-arabinose reductase, larA, that is different from the d-xylose reductase, xyrA. The larA is up-regulated on l-arabinose, while the xyrA is up-regulated on d-xylose. There is however an initial up-regulation of larA also on d-xylose but that fades away after about 4 h. The deletion of the larA gene in A. niger results in a slow growth phenotype on l-arabinose, whereas the growth on d-xylose is unaffected. The l-arabinose reductase can convert l-arabinose and d-xylose to their corresponding sugar alcohols but has a higher affinity for l-arabinose. The Km for l-arabinose is 54 ± 6 mm and for d-xylose 155 ± 15 mm.  相似文献   

10.
Quinto G 《Applied microbiology》1966,14(6):1022-1026
Nutritional studies were performed on nine Bacteroides strains, by use of the methodology and media of anaerobic rumen microbiology. Ristella perfoetens CCI required l-arginine hydrochloride, l-tryptophan, l-leucine, l-histidine hydrochloride, l-cysteine hydrochloride, dl-valine, dl-tyrosine, and the vitamin calcium-d-pantothenate, since scant turbidity developed in media without these nutrients. R. perfoetens was stimulated by glycine, dl-lysine hydrochloride, dl-isoleucine, l-proline, l-glutamic acid, dl-alanine, dl-phenylalanine, dl-methionine, and the vitamins nicotinamide and p-aminobenzoic acid, since maximal turbidity developed more slowly in media without these nutrients than in complete medium. Medium A-23, which was devised for R. perfoetens, contained salts, 0.0002% nicotinamide and calcium d-pantothenate, 0.00001% p-aminobenzoic acid, 0.044% l-tryptophan, 0.09% l-glutamic acid, and 0.1% of the other 13 amino acids listed above. Zuberella clostridiformis and seven strains of R. pseudoinsolita did not require vitamins, and showed no absolute requirement for any one amino acid. Various strains produced maximal turbidity more slowly in media deficient in l-proline, glycine, l-glutamic acid, dl-serine, l-histidine hydrochloride, dl-alanine, or l-cysteine hydrochloride, than in complete medium. These eight strains grew optimally in medium A-23 plus 0.1% dl-serine but without vitamins.  相似文献   

11.
The biological sulphation of l-tyrosyl peptides   总被引:3,自引:3,他引:0       下载免费PDF全文
1. A rat-liver supernatant preparation can achieve the biological O-sulphation of l-tyrosylglycine and l-tyrosyl-l-alanine at pH7·0. 2. The optimum concentrations of l-tyrosylglycine and l-tyrosyl-l-alanine in this system are 50mm and 60mm respectively. 3. l-Tyrosylglycine yields two sulphated products, whereas l-tyrosyl-l-alanine yields three sulphated products, when used as acceptor for sulphate in the rat-liver system. 4. With both substrates, one of the sulphated products has been identified as the O-sulphate ester of the corresponding parent peptide.  相似文献   

12.
Nitric-oxide synthases (NOS) are highly regulated heme-thiolate enzymes that catalyze two oxidation reactions that sequentially convert the substrate l-Arg first to Nω-hydroxyl-l-arginine and then to l-citrulline and nitric oxide. Despite numerous investigations, the detailed molecular mechanism of NOS remains elusive and debatable. Much of the dispute in the various proposed mechanisms resides in the uncertainty concerning the number and sources of proton transfers. Although specific protonation events are key features in determining the specificity and efficiency of the two catalytic steps, little is known about the role and properties of protons from the substrate, cofactors, and H-bond network in the vicinity of the heme active site. In this study, we have investigated the role of the acidic proton from the l-Arg guanidinium moiety on the stability and reactivity of the ferrous heme-oxy complex intermediate by exploiting a series of l-Arg analogues exhibiting a wide range of guanidinium pKa values. Using electrochemical and vibrational spectroscopic techniques, we have analyzed the effects of the analogues on the heme, including characteristics of its proximal ligand, heme conformation, redox potential, and electrostatic properties of its distal environment. Our results indicate that the substrate guanidinium pKa value significantly affects the H-bond network near the heme distal pocket. Our results lead us to propose a new structural model where the properties of the guanidinium moiety finely control the proton transfer events in NOS and tune its oxidative chemistry. This model may account for the discrepancies found in previously proposed mechanisms of NOS oxidation processes.  相似文献   

13.
Early studies revealed that chicken embryos incubated with a rare analog of l-proline, 4-oxo-l-proline, showed increased levels of the metabolite 4-hydroxy-l-proline. In 1962, 4-oxo-l-proline reductase, an enzyme responsible for the reduction of 4-oxo-l-proline, was partially purified from rabbit kidneys and characterized biochemically. However, only recently was the molecular identity of this enzyme solved. Here, we report the purification from rat kidneys, identification, and biochemical characterization of 4-oxo-l-proline reductase. Following mass spectrometry analysis of the purified protein preparation, the previously annotated mammalian cytosolic type 2 (R)-β-hydroxybutyrate dehydrogenase (BDH2) emerged as the only candidate for the reductase. We subsequently expressed rat and human BDH2 in Escherichia coli, then purified it, and showed that it catalyzed the reversible reduction of 4-oxo-l-proline to cis-4-hydroxy-l-proline via chromatographic and tandem mass spectrometry analysis. Specificity studies with an array of compounds carried out on both enzymes showed that 4-oxo-l-proline was the best substrate, and the human enzyme acted with 12,500-fold higher catalytic efficiency on 4-oxo-l-proline than on (R)-β-hydroxybutyrate. In addition, human embryonic kidney 293T (HEK293T) cells efficiently metabolized 4-oxo-l-proline to cis-4-hydroxy-l-proline, whereas HEK293T BDH2 KO cells were incapable of producing cis-4-hydroxy-l-proline. Both WT and KO HEK293T cells also produced trans-4-hydroxy-l-proline in the presence of 4-oxo-l-proline, suggesting that the latter compound might interfere with the trans-4-hydroxy-l-proline breakdown in human cells. We conclude that BDH2 is a mammalian 4-oxo-l-proline reductase that converts 4-oxo-l-proline to cis-4-hydroxy-l-proline and not to trans-4-hydroxy-l-proline, as originally thought. We also hypothesize that this enzyme may be a potential source of cis-4-hydroxy-l-proline in mammalian tissues.  相似文献   

14.
Bacillus licheniformis l-arabinose isomerase (l-AI) is distinguished from other l-AIs by its high degree of substrate specificity for l-arabinose and its high turnover rate. A systematic strategy that included a sequence alignment-based first screening of residues and a homology model-based second screening, followed by site-directed mutagenesis to alter individual screened residues, was used to study the molecular determinants for the catalytic efficiency of B. licheniformis l-AI. One conserved amino acid, Y333, in the substrate binding pocket of the wild-type B. licheniformis l-AI was identified as an important residue affecting the catalytic efficiency of B. licheniformis l-AI. Further insights into the function of residue Y333 were obtained by replacing it with other aromatic, nonpolar hydrophobic amino acids or polar amino acids. Replacing Y333 with the aromatic amino acid Phe did not alter catalytic efficiency toward l-arabinose. In contrast, the activities of mutants containing a hydrophobic amino acid (Ala, Val, or Leu) at position 333 decreased as the size of the hydrophobic side chain of the amino acid decreased. However, mutants containing hydrophilic and charged amino acids, such as Asp, Glu, and Lys, showed almost no activity with l-arabinose. These data and a molecular dynamics simulation suggest that Y333 is involved in the catalytic efficiency of B. licheniformis l-AI.l-Arabinose isomerase (l-AI) is an enzyme that mediates in vivo isomerization between l-arabinose and l-ribulose as well as in vitro isomerization of d-galactose and d-tagatose (20). l-Ribulose (l-erythro-pentulose) is a rare and expensive ketopentose sugar (1) that can be used as a precursor for the production of other rare sugars of high market value, such as l-ribose. Despite being a common metabolic intermediate in different organisms, l-ribulose is scarce in nature. The market for rare and unnatural sugars has been growing, especially in the sweetener and pharmaceutical industries. For example, several modified nucleosides derived from l-sugars have been shown to act as potent antiviral agents and are also useful in antigen therapy. Derivatives of rare sugars have also been used as agents against hepatitis B virus and human immunodeficiency virus (2, 22).For these reasons, interest in the enzymology of rare sugars has also been increasing. Various forms of l-AI from a variety of organisms have been characterized, and some have shown potential for industrial use. Several highly thermotolerant enzyme forms from Thermotoga maritima (12), Thermotoga neapolitana (10), Bacillus stearothermophilus (18), Thermoanaerobacter mathranii (9), and Lactobacillus plantarum (5) have been characterized previously. All of these reported l-AIs tend to have broad specificity, although a few l-AIs with high degrees of substrate specificity for l-arabinose have also been documented.The enzyme properties of l-AIs have been examined by engineering several forms by error-prone PCR and site-directed mutagenesis. Galactose conversion was reportedly enhanced 20% following site-directed introduction of a double mutation (C450S-N475K) into l-AI (16). Error-prone PCR manipulation of l-AI from Geobacillus stearothermophilus resulted in a shift in temperature specificity from 60 to 65°C and increased isomerization activity (11). All of these previously reported mutational studies have been aimed at improving enzymatic properties for industrial application. However, even though the three-dimensional (3D) structure of Escherichia coli l-AI has been determined previously (15), few new structural studies have been performed to decipher the reaction mechanism of this enzyme. Rhimi et al. (19) have reported an important role for D308, F329, E351, and H446 in catalysis, as indicated by findings from site-directed mutagenesis. Nonetheless, detailed analysis of the important molecular determinants controlling the catalytic activities of the l-AIs is still lacking.Previously, we have reported the cloning and characterization of a novel l-AI from Bacillus licheniformis (17). This enzyme can be distinguished from other l-AIs by its wide pH range, high degree of substrate specificity for l-arabinose, and extremely high turnover rate. In the present paper, we report the identification of an important amino acid residue responsible for the catalytic efficiency of l-AIs, as determined by a systematic screening process composed of sequence alignment and molecular dynamics (MD) simulation, followed by site-directed mutagenesis. Using the crystal structure of E. coli l-AI as a template, we have built a 3D model of B. licheniformis l-AI. Analysis of the 3D model of B. licheniformis l-AI docked with l-arabinose, followed by a systematic screening process, showed that Y333 interacted with the substrate, suggesting that this residue in B. licheniformis l-AI may be essential for catalysis. We further characterized the role of Y333 in B. licheniformis l-AI binding of and catalytic efficiency for l-arabinose.  相似文献   

15.
Organisms that overproduced l-cysteine and l-cystine from glucose were constructed by using Escherichia coli K-12 strains. cysE genes coding for altered serine acetyltransferase, which was genetically desensitized to feedback inhibition by l-cysteine, were constructed by replacing the methionine residue at position 256 of the serine acetyltransferase protein with 19 other amino acid residues or the termination codon to truncate the carboxy terminus from amino acid residues 256 to 273 through site-directed mutagenesis by using PCR. A cysteine auxotroph, strain JM39, was transformed with plasmids having these altered cysE genes. The serine acetyltransferase activities of most of the transformants, which were selected based on restored cysteine requirements and ampicillin resistance, were less sensitive than the serine acetyltransferase activity of the wild type to feedback inhibition by l-cysteine. At the same time, these transformants produced approximately 200 mg of l-cysteine plus l-cystine per liter, whereas these amino acids were not detected in the recombinant strain carrying the wild-type serine acetyltransferase gene. However, the production of l-cysteine and l-cystine by the transformants was very unstable, presumably due to a cysteine-degrading enzyme of the host, such as cysteine desulfhydrase. Therefore, mutants that did not utilize cysteine were derived from host strain JM39 by mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine. When a newly derived host was transformed with plasmids having the altered cysE genes, we found that the production of l-cysteine plus l-cystine was markedly increased compared to production in JM39.l-Cysteine, one of the important amino acids used in the pharmaceutical, food, and cosmetics industries, has been obtained by extracting it from acid hydrolysates of the keratinous proteins in human hair and feathers. The first successful microbial process used for industrial production of l-cysteine involved the asymmetric conversion of dl-2-aminothiazoline-4-carboxylic acid, an intermediate compound in the chemical synthesis of dl-cysteine, to l-cysteine by enzymes from a newly isolated bacterium, Pseudomonas thiazoliniphilum (11). Yamada and Kumagai (13) also described enzymatic synthesis of l-cysteine from beta-chloroalanine and sodium sulfide in which Enterobacter cloacae cysteine desulfhydrase (CD) was used. However, high level production of l-cysteine from glucose with microorganisms has not been studied.Biosynthesis of l-cysteine in wild-type strains of Escherichia coli and Salmonella typhimurium is regulated through feedback inhibition by l-cysteine of serine acetyltransferase (SAT), a key enzyme in l-cysteine biosynthesis, and repression of expression of a series of enzymes used for sulfide reduction from sulfate by l-cysteine (4), as shown in Fig. Fig.1.1. Denk and Böck reported that a small amount of l-cysteine was excreted by a revertant of a cysteine auxotroph of E. coli. In this revertant, SAT encoded by the cysE gene was desensitized to feedback inhibition by l-cysteine, and the methionine residue at position 256 in SAT was replaced by isoleucine (2). These results indicate that it may be possible to construct organisms that produce high levels of l-cysteine by amplifying an altered cysE gene. Although the residue at position 256 is supposedly part of the allosteric site for cysteine binding, no attention has been given to the effect of an amino acid substitution at position 256 in SAT on feedback inhibition by l-cysteine and production of l-cysteine. It is also not known whether isoleucine is the best residue for desensitization to feedback inhibition. Open in a separate windowFIG. 1Biosynthesis and regulation of l-cysteine in E. coli. Abbreviations: APS, adenosine 5′-phosphosulfate; PAPS, phosphoadenosine 5′-phosphosulfate; Acetyl CoA, acetyl coenzyme A. The open arrow indicates feedback inhibition, and the dotted arrows indicate repression.On the other hand, l-cysteine appears to be degraded by E. coli cells. Therefore, in order to obtain l-cysteine producers, a host strain with a lower level of l-cysteine degradation activity must be isolated. In this paper we describe high-level production of l-cysteine plus l-cystine from glucose by E. coli resulting from construction of altered cysE genes. The methionine residue at position 256 in SAT was replaced by other amino acids or the termination codon in order to truncate the carboxy terminus from amino acid residues 256 to 273 by site-directed mutagenesis. A newly derived cysteine-nondegrading E. coli strain with plasmids having the altered cysE genes was used to investigate production of l-cysteine plus l-cystine.  相似文献   

16.
Xylan-debranching enzymes facilitate the complete hydrolysis of xylan and can be used to alter xylan chemistry. Here, the family GH62 α-l-arabinofuranosidase from Streptomyces thermoviolaceus (SthAbf62A) was shown to have a half-life of 60 min at 60°C and the ability to cleave α-1,3 l-arabinofuranose (l-Araf) from singly substituted xylopyranosyl (Xylp) backbone residues in wheat arabinoxylan; low levels of activity on arabinan as well as 4-nitrophenyl α-l-arabinofuranoside were also detected. After selective removal of α-1,3 l-Araf substituents from disubstituted Xylp residues present in wheat arabinoxylan, SthAbf62A could also cleave the remaining α-1,2 l-Araf substituents, confirming the ability of SthAbf62A to remove α-l-Araf residues that are (1→2) and (1→3) linked to monosubstituted β-d-Xylp sugars. Three-dimensional structures of SthAbf62A and its complex with xylotetraose and l-arabinose confirmed a five-bladed β-propeller fold and revealed a molecular Velcro in blade V between the β1 and β21 strands, a disulfide bond between Cys27 and Cys297, and a calcium ion coordinated in the central channel of the fold. The enzyme-arabinose complex structure further revealed a narrow and seemingly rigid l-arabinose binding pocket situated at the center of one side of the β propeller, which stabilized the arabinofuranosyl substituent through several hydrogen-bonding and hydrophobic interactions. The predicted catalytic amino acids were oriented toward this binding pocket, and the catalytic essentiality of Asp53 and Glu213 was confirmed by site-specific mutagenesis. Complex structures with xylotetraose revealed a shallow cleft for xylan backbone binding that is open at both ends and comprises multiple binding subsites above and flanking the l-arabinose binding pocket.  相似文献   

17.
The regulatory gene aldR was identified 95 bp upstream of the ald gene encoding l-alanine dehydrogenase in Mycobacterium smegmatis. The AldR protein shows sequence similarity to the regulatory proteins of the Lrp/AsnC family. Using an aldR deletion mutant, we demonstrated that AldR serves as both activator and repressor for the regulation of ald gene expression, depending on the presence or absence of l-alanine. The purified AldR protein exists as a homodimer in the absence of l-alanine, while it adopts the quaternary structure of a homohexamer in the presence of l-alanine. The binding affinity of AldR for the ald control region was shown to be increased significantly by l-alanine. Two AldR binding sites (O1 and O2) with the consensus sequence GA-N2-ATC-N2-TC and one putative AldR binding site with the sequence GA-N2-GTT-N2-TC were identified upstream of the ald gene. Alanine and cysteine were demonstrated to be the effector molecules directly involved in the induction of ald expression. The cellular level of l-alanine was shown to be increased in M. smegmatis cells grown under hypoxic conditions, and the hypoxic induction of ald expression appears to be mediated by AldR, which senses the intracellular level of alanine.  相似文献   

18.
Endogenous l-tri-iodothyronine content in an hepatic nuclear extract was measured by a new unextracted-sample radioimmunoassay method using 8-anilinonaphthalene-1-sulphonic acid to inhibit the l-[125I]tri-iodothyronine binding to the nuclear l-tri-iodothyronine receptor within the extract. For this method, the lower sensitivity limit was 3.125 pg/tube, the recovery of added l-tri-iodothyronine was 90–120%, and the between-assay coefficient of variation was 10%. The amount of endogenous l-tri-iodothyronine was 10–40 pg/0.2 ml of hepatic nuclear extract from euthyroid rats, compared with less than 3.125 pg/0.2 ml from thyroidectomized rats. The results obtained by this new method were compared with a Sephadex G-25 column extracted-sample radioimmunoassay method and showed a good agreement. The values for the endogenous l-tri-iodothyronine content were utilized to correct for the l-tri-iodothyronine concentration within the binding assay mixture in order to accurately determine by Scatchard analysis the binding characteristics of the nuclear l-tri-iodothyronine receptor. The validity of the correction for endogeneous l-tri-iodothyronine was demonstrated by using a nuclear extract from a thyroidectomized rat which was preincubated with a small known amount of l-tri-iodothyronine before determining the nuclear l-tri-iodothyronine receptor binding characteristics. When the Scatchard plots were corrected for the preincubated dose, the results obtained were similar to true values, but they were falsely lower when not corrected. It is concluded that the necessity and validity of using endogenous l-tri-iodothyronine corrections in the Scatchard analytical computations of the nuclear l-tri-iodothyronine receptor binding characteristics has been demonstrated, being particularly more important for affinity constant than maximum binding capacity.  相似文献   

19.
1. Rat-liver supernatant preparations are capable of achieving the biological sulphation of l-tyrosine methyl ester, the reaction proceeding maximally at a substrate concentration of 30 mm and at pH 7·0. 2. Two sulphated products are formed, one of which has been identified as l-tyrosine O-sulphate. On the basis of indirect evidence the other product can be assumed to be l-tyrosine O-sulphate methyl ester. 3. An enzyme present in rat-liver supernatant preparations is capable of converting l-tyrosine O-sulphate methyl ester into l-tyrosine O-sulphate. This enzyme is inhibited by l-tyrosine methyl ester. 4. l-Tyrosine ethyl ester also yields two sulphated products when used as an acceptor in the liver sulphating system. One of these has been identified chromatographically as l-tyrosine O-sulphate and the other may be presumed to be l-tyrosine O-sulphate ethyl ester.  相似文献   

20.
l-Serine is required to synthesize membrane lipids such as phosphatidylserine and sphingolipids. Nevertheless, it remains largely unknown how a diminished capacity to synthesize l-serine affects lipid homeostasis in cells and tissues. Here, we show that deprivation of external l-serine leads to the generation of 1-deoxysphingolipids (doxSLs), including 1-deoxysphinganine, in mouse embryonic fibroblasts (KO-MEFs) lacking d-3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step in the de novo synthesis of l-serine. A novel mass spectrometry-based lipidomic approach demonstrated that 1-deoxydihydroceramide was the most abundant species of doxSLs accumulated in l-serine-deprived KO-MEFs. Among normal sphingolipid species in KO-MEFs, levels of sphinganine, dihydroceramide, ceramide, and hexosylceramide were significantly reduced after deprivation of external l-serine, whereas those of sphingomyelin, sphingosine, and sphingosine 1-phosphate were retained. The synthesis of doxSLs was suppressed by supplementing the culture medium with l-serine but was potentiated by increasing the ratio of l-alanine to l-serine in the medium. Unlike with l-serine, depriving cells of external l-leucine did not promote the occurrence of doxSLs. Consistent with results obtained from KO-MEFs, brain-specific deletion of Phgdh in mice also resulted in accumulation of doxSLs in the brain. Furthermore, l-serine-deprived KO-MEFs exhibited increased formation of cytosolic lipid bodies containing doxSLs and other sphingolipids. These in vitro and in vivo studies indicate that doxSLs are generated in the presence of a high ratio of l-alanine to l-serine in cells and tissues lacking Phgdh, and de novo synthesis of l-serine is necessary to maintain normal sphingolipid homeostasis when the external supply of this amino acid is limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号