首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Source-sink landscape theory and its ecological significance   总被引:2,自引:0,他引:2  
Exploring the relatiouships between landscape pattern and ecological processes is the key topic of landscape ecology,for which,a large number of indices as well as landscape pattern analysis model were developed.However,one problem faced by landscape ecologists is that it is hard to link the landscape indices with a specific ecological process.Linking landscape pattern and ecological processes has become a challenge for landscape ecologists."Source" and "sink" are common concepts used in air pollution research,by which the movement direction and pattern of different pollutants in air can be clearly identified.In fact,for any ecological process,the research can be considered as a balance between the source and the sink in space.Thus,the concepts of "source" and "sink" could be implemented to the research of landscape pattern and ecological processes.In this paper,a theory of sourcesink landscape was proposed,which include:(1) In the research of landscape pattern and ecological process,all landscape types can be divided into two groups,"source"landscape and "sink" landscape."Source" landscape contributes positively to the ecological process,while "sink" landscape is unhelpful to the ecological process.(2) Both landscapes are recognized with regard to the specific ecological process."Source" landscape in a target ecological process may change into a "sink"landscape as in another ecological process.Therefore,the ecological process should be determined before "source"or "sink" landscape were defined.(3) The key point to distinguish "source" landscape from "sink" landscape is to quantify the effect of landscape on ecological process.The positive effect is made by "source" landscape,and the negative effect by "sink" landscape.(4) For the same ecological process,the contribution of "source" landscapes may vary,and it is the same to the "sink"landscapes.It is required to determine the weight of each landscape type on ecological processes.(5) The sourcesink principle can be applied to non-point source pollution control,biologic diversity protection,urban heat island effect mitigation,etc.However,the landscape evaluation models need to be calibrated respectively,because different ecological processes correspond with different source-sink landscapes and evaluation models for the different study areas.This theory is helpful to further study landscape pattern and ecological process,and offers a basis for new landscape index design.  相似文献   

2.
张晓刚  曾辉 《生态学报》2014,34(6):1340-1351
物质流过程是考察系统属性的重要维度。区域物质流分析在研究框架、指标体系、数据集成、管理应用等方面的发展困境,都不同程度地反映了"黑箱假设"以及"系统隐喻"等产业生态学理论的应用局限性。基于整合复杂性科学、广义进化论的生态学组织层次理论,对区域物质流分析开展理论探讨,指出应在原有的"系统"思维之外引入"景观"概念,以拓展区域物质流分析的空间与认知维度。基于"从系统到景观"的理念,将景观生态学原理引入区域物质流分析,建构区域物质流分析的景观取向,并从空间结构与认知图式两个方面对这一取向的核心涵义做以解读。结合区域物质流分析的最新研究案例,从多尺度MFA的综合研究框架、物质流动过程的时空集成研究、物质流动过程的空间行为管理等几个方面,对区域物质流分析的景观取向做了进一步探讨。  相似文献   

3.
Riverine landscapes: taking landscape ecology into the water   总被引:32,自引:1,他引:31  
1. Landscape ecology deals with the influence of spatial pattern on ecological processes. It considers the ecological consequences of where things are located in space, where they are relative to other things, and how these relationships and their consequences are contingent on the characteristics of the surrounding landscape mosaic at multiple scales in time and space. Traditionally, landscape ecologists have focused their attention on terrestrial ecosystems, and rivers and streams have been considered either as elements of landscape mosaics or as units that are linked to the terrestrial landscape by flows across boundaries or ecotones. Less often, the heterogeneity that exists within a river or stream has been viewed as a `riverscape' in its own right.
2. Landscape ecology can be unified about six central themes: (1) patches differ in quality (2) patch boundaries affect flows, (3) patch context matters, (4) connectivity is critical, (5) organisms are important, and (6) the importance of scale. Although riverine systems differ from terrestrial systems by virtue of the strong physical force of hydrology and the inherent connectivity provided by water flow, all of these themes apply equally to aquatic and terrestrial ecosystems, and to the linkages between the two.
3. Landscape ecology therefore has important insights to offer to the study of riverine ecosystems, but these systems may also provide excellent opportunities for developing and testing landscape ecological theory. The principles and approaches of landscape ecology should be extended to include freshwater systems; it is time to take the `land' out of landscape ecology.  相似文献   

4.
生态学系统的空间异质性   总被引:35,自引:8,他引:35  
陈玉福  董鸣 《生态学报》2003,23(2):346-352
空间异质性是生态学系统的一个普遍牧场生,生态学家对它在生态学中的重要性已取得了比以往更深刻的认识。试图从空间异质性的含义,空间异质性与尺度和等级的关系,空间异质性的定量描述,空间异质性对生物和非生物过程的影响,以及空间异质性的动态等5个方面综述了有关空间异质性的生态学研究的新进展。  相似文献   

5.
6.
Traditional approaches to ecotoxicology and ecological risk assessment frequently have ignored the complexities arising due to the spatial heterogeneity of natural systems. In recent years, however, ecologists have become increasingly aware of the influence of spatial organization on ecological processes. Landscape ecology provides a conceptual and theoretical framework for the analysis of spatial patterns, the characterization of spatial aspects of ecosystem function, and the understanding of landscape dynamics. Incorporating the insights of landscape ecology into ecotoxicology will enhance our ability to understand and ultimately predict the effects of toxic substances in ecological systems. Ecological risk assessments need to explicitly consider multiple spatial scales, accounting for heterogeneity within contaminated areas and for the larger landscape context. A simple simulation model is presented to illustrate the effects of spatial heterogeneity by linking an individual-based toxicokinetic model with a spatially distributed metapopulation model. Dispersal of organisms between contaminated and uncontaminated patches creates a situation where risk analysis must consider a spatial extent broader than the toxicant-contaminated area. In general, the addition of a toxicant to a source patch (i.e., a net exporter of individuals) will have a greater impact than the same toxicant addition to a sink patch (i.e., a net importer of individuals).  相似文献   

7.
Ever since the early decades of this century, there have emerged a number of competing schools of ecology that have attempted to weave the concepts underlying natural resource management and natural-historical traditions into a formal theoretical framework. It was widely believed that the discovery of the fundamental mechanisms underlying ecological phenomena would allow ecologists to articulate mathematically rigorous statements whose validity was not predicated on contingent factors. The formulation of such statements would elevate ecology to the standing of a rigorous scientific discipline on a par with physics. However, there was no agreement as to the fundamental units of ecology. Systems ecologists sought to identify the fundamental organization that tied the physical and biological components of ecosystems into an irreducible unit: the ecosystem was their fundamental unit. Population ecologists sought, instead, to identify the biological mechanisms regulating the abundance and distribution of plant and animal species: to these ecologists, the individual organism was the fundamental unit of ecology, and the physical environment was nothing more than a stage upon which the play of individuals in perennial competition took place. As Joel Hagen has pointed out, the two schools were thus dividied by fundamentally different and irreconcilable assumptions about the nature of ecosystems.Notwithstanding these divisive efforts to elevate the image of ecology, the discipline remained in the shadows of American academia until the mid-1960s, when systems ecologists succeeded in projecting ecology onto the national scene. They did so by seeking closer involvement with practical problems: they argued before Congress that their approach to the theoretical problems of ecology was uniquely suited to the solution of the impending environmental crisis. With the establishment of the International Biological Program, they succeeded in attracting unprecedented levels of funding for systems ecology research. Theoretical population ecologists, on the other hand, found themselves consigned to the outer regions of this new institutional landscape. The systems ecologists' successful capture of the limelight and the purse brought the divisions between them and population ecologists into sharper relief — hence the hardening of the division of ecology observed by Hagen.45  相似文献   

8.
空间幅度变化对景观格局分析的影响   总被引:32,自引:7,他引:25  
申卫军  邬建国  任海  林永标  李明辉 《生态学报》2003,23(11):2219-2231
景观格局指数是量化描述景观格局特征的主要方法之一,各种格局指数的尺度依赖性使比较分析景观格局特征和尺度推绎复杂化,分析不同指数随空间幅度变化的一般行为有助于景观格局分析结果的解释和降低空间尺度推绎的复杂性。研究以2种真实景观和27种模拟景观为分析对象,考查了16种常用的景观水平格局指数随空间幅度变化行为。根据这些指数因幅度变化行为可预测性把它们分为两类:第1类随幅度变化可预测性强,指数与幅度之间的关系可用简单的函数关系来表达;这类指数包括缀块数、边界总长、景观形状指数和缀块丰度密度;前两者随幅度增加呈幂函数形式增加,而缀块丰度密度随幅度增加呈幂函数下降,景观形状指数随幅度增加呈直线增加。第2类指数随幅度变化的可预测性较差,指数随幅度的变化存在多种可能(不同形式的增加、减小或保持不变),不可用一种或多种简单的函数关系来描述所有的情况。这类指数包括缀块丰度、缀块密度、边界密度、最大缀块指数、平均缀块面积、缀块面积标准差、缀块面积变异系数、平均缀块形状指数、面积加权平均缀块形状指数、双对数回归分维数、聚集度指数与Shannon多样性指数。第2类指数随幅度的变化行为受景观格局特征和指数本身算法的影响。总体上来说,第2类格局指数随幅度变化呈折线增加或减小;但当景观的缀块类型较多、各类型优势度比较均等、空间分布格局比较随机时,它们随幅度变化形为的可预测性增加,随幅度增加的函数关系主要有3种:幂函数减小、对数函数增加或直线增加,因指数和格局特征不同而异。研究的结果在揭示了常用景观指数随幅度变化的一般关系外,也启示我们在进行景观格局的比较分析,比较景观的幅度应相同或采用尺度效应图(scalograms)更有效。  相似文献   

9.
中国景观生态学发展历程与未来研究重点   总被引:11,自引:0,他引:11  
景观生态学从其诞生到现在,已经历了70余年。中国景观生态学的发展从其引入,到发展、壮大、逐渐成熟,也经历了30余年。在这个发展过程中,中国景观生态学在跟踪国际前沿研究基础上,结合中国实际情况开展了大量研究,在许多研究领域取得了重要进展。简述了国际景观生态学会成立与发展过程,通过系统综述中国景观生态学文献,重点分析了中国景观生态学的发展历程;根据中国景观生态学研究特点,将中国景观生态学发展划分为五个阶段:摸索与酝酿阶段(20世纪80年代以前)、吸收与消化阶段(1980—1988年)、实践与迅速发展阶段(1989—2000)、发展与思索阶段(2001—2010)、思考与创新阶段(2011—?)。在此基础上,重点从土地利用格局与生态过程及尺度效应、城市生态用地与景观安全格局构建、景观生态规划与自然保护区网络优化、森林景观动态模拟与生态系统管理、绿洲景观演变与生态水文过程、景观破碎化与遗传多样性保护、多水塘系统与湿地景观格局设计、稻-鸭/鱼农田景观与生态系统健康、梯田文化景观与多功能维持、源汇景观格局分析与水土流失危险评价等方面系统分析了中国景观生态学研究的特点。最后从学科发展与理论研究、重点研究地区和应用实践三个方面分析了中国景观生态学未来发展的重点方向。  相似文献   

10.
Two fundamental axes – space and time – shape ecological systems. Over the last 30 years spatial ecology has developed as an integrative, multidisciplinary science that has improved our understanding of the ecological consequences of habitat fragmentation and loss. We argue that accelerating climate change – the effective manipulation of time by humans – has generated a current need to build an equivalent framework for temporal ecology. Climate change has at once pressed ecologists to understand and predict ecological dynamics in non‐stationary environments, while also challenged fundamental assumptions of many concepts, models and approaches. However, similarities between space and time, especially related issues of scaling, provide an outline for improving ecological models and forecasting of temporal dynamics, while the unique attributes of time, particularly its emphasis on events and its singular direction, highlight where new approaches are needed. We emphasise how a renewed, interdisciplinary focus on time would coalesce related concepts, help develop new theories and methods and guide further data collection. The next challenge will be to unite predictive frameworks from spatial and temporal ecology to build robust forecasts of when and where environmental change will pose the largest threats to species and ecosystems, as well as identifying the best opportunities for conservation.  相似文献   

11.
Source-sink landscape theory and its ecological significance   总被引:2,自引:0,他引:2  
Exploring the relationships between landscape pattern and ecological processes is the key topic of landscape ecology, for which, a large number of indices as well as landscape pattern analysis model were developed. However, one problem faced by landscape ecologists is that it is hard to link the landscape indices with a specific ecological process. Linking landscape pattern and ecological processes has become a challenge for landscape ecologists. “Source” and “sink” are common concepts used in air pollution research, by which the movement direction and pattern of different pollutants in air can be clearly identified. In fact, for any ecological process, the research can be considered as a balance between the source and the sink in space. Thus, the concepts of “source” and “sink” could be implemented to the research of landscape pattern and ecological processes. In this paper, a theory of sourcesink landscape was proposed, which include: (1) In the research of landscape pattern and ecological process, all landscape types can be divided into two groups, “source” landscape and “sink” landscape. “Source” landscape contributes positively to the ecological process, while “sink” landscape is unhelpful to the ecological process. (2) Both landscapes are recognized with regard to the specific ecological process. “Source” landscape in a target ecological process may change into a “sink” landscape as in another ecological process. Therefore, the ecological process should be determined before “source” or “sink” landscape were defined. (3) The key point to distinguish “source” landscape from “sink” landscape is to quantify the effect of landscape on ecological process. The positive effect is made by “source” landscape, and the negative effect by “sink” landscape. (4) For the same ecological process, the contribution of “source” landscapes may vary, and it is the same to the “sink” landscapes. It is required to determine the weight of each landscape type on ecological processes. (5) The sourcesink principle can be applied to non-point source pollution control, biologic diversity protection, urban heat island effect mitigation, etc. However, the landscape evaluation models need to be calibrated respectively, because different ecological processes correspond with different source-sink landscapes and evaluation models for the different study areas. This theory is helpful to further study landscape pattern and ecological process, and offers a basis for new landscape index design. __________ Translated from Acta Ecologica Sinica, 2006, 26(5): 1444–1449 [译自: 生态学报]  相似文献   

12.
景观生态学的核心:生态学系统的时空异质性   总被引:41,自引:8,他引:41  
1 景观生态学与景观异质性景观生态学是研究在一个相当大的区域内 ,由许多不同生态系统所组成的整体 (即景观 )的空间结构、相互作用、协调功能以及动态变化的生态学新分支[1 ] 。它的出现促进了空间关系模型和理论、空间格局与动态的数据类型的获取以及经典生态学很少涉及的空间尺度检测等方面的发展[2 ] 。Risser等认为景观生态学研究就是异质性的研究[3] 。其实 ,“景观”本身就具有“变化的异质性整体”的含义[4] 。景观生态学集中关注于对生态系统空间关系的研究 ,它把景观视为空间上镶嵌出现和紧密联系的生态系统组合 ,景观可…  相似文献   

13.
Animal movement has been the focus on much theoretical and empirical work in ecology over the last 25 years. By studying the causes and consequences of individual movement, ecologists have gained greater insight into the behavior of individuals and the spatial dynamics of populations at increasingly higher levels of organization. In particular, ecologists have focused on the interaction between individuals and their environment in an effort to understand future impacts from habitat loss and climate change. Tools to examine this interaction have included: fractal analysis, first passage time, Lévy flights, multi‐behavioral analysis, hidden markov models, and state‐space models. Concurrent with the development of movement models has been an increase in the sophistication and availability of hierarchical bayesian models. In this review we bring these two threads together by using hierarchical structures as a framework for reviewing individual models. We synthesize emerging themes in movement ecology, and propose a new hierarchical model for animal movement that builds on these emerging themes. This model moves away from traditional random walks, and instead focuses inference on how moving animals with complex behavior interact with their landscape and make choices about its suitability.  相似文献   

14.
Human‐environmental relationships have long been of interest to a variety of scientists, including ecologists, biologists, anthropologists, and many others. 1 , 2 In anthropology, this interest was especially prevalent among cultural ecologists of the 1970s and earlier, who tended to explain culture as the result of techno‐environmental constraints. 3 More recently researchers have used historical ecology, an approach that focuses on the long‐term dialectical relationship between humans and their environments, as well as long‐term prehuman ecological datasets. 4 - 7 An important contribution of anthropology to historical ecology is that anthropological datasets dealing with ethnohistory, traditional ecological knowledge, and human skeletal analysis, as well as archeological datasets on faunal and floral remains, artifacts, geochemistry, and stratigraphic analysis, provide a deep time perspective (across decades, centuries, and millennia) on the evolution of ecosystems and the place of people in those larger systems. Historical ecological data also have an applied component that can provide important information on the relative abundances of flora and fauna, changes in biogeography, alternations in food webs, landscape evolution, and much more.  相似文献   

15.
景观生态学的学科前沿与发展战略   总被引:61,自引:7,他引:61  
肖笃宁  李秀珍 《生态学报》2003,23(8):1615-1621
根据美国景观生态学2001年年会关于景观生态学的关键议题和研究领域特别专题的讨论,综合16位国际知名专家所发表的关于深化理论、整合协调和方法改进等方面的意见,深入论述了景观生态学的6项关键议题和10个优先研究领域。包括通过景观镶嵌体的生态流,土地利用和土地覆被变化的过程、机制,非线性动态和景观复杂性,尺度转换方法论的发展,景观指标与生态过程,人类活动与景观生态,景观格局的优化,景观保育与可持续性,资料获取与准确性评价。并对构建中国景观生态学的理论框架提出了初步的想法,即发展以格局——过程关系为中心的生态空间理论,以人类活动有序化为中心的景观生态建设理论,以发挥景观多重价值为中心的景观规划理论。  相似文献   

16.
生物保护的景观生态安全格局   总被引:207,自引:22,他引:207  
俞孔坚 《生态学报》1999,19(1):8-15
景观中有某些潜在的空间格局,被称为生态安全格局,他们由景观中的某些关键性的局部,位置和空间联系所构成,SP对维护或控制某种生态过程中有着异常重要的意义。SP的组分对过程来说具有主动,空间联系和高效的优势,因而对生物保护和景观改变具有重要的意义。生物的空间运动和栖息地的维护需要克服景观阻力来完成,所以,阻力面(流动表面)反映了生物扩散和维持的动态,SP可以根据流动表面的空间特性来判别。一个典型的生物  相似文献   

17.
无人机遥感技术在景观生态学中的应用   总被引:2,自引:0,他引:2  
张志明  徐倩  王彬  孙虎  耿宇鹏  田冀 《生态学报》2017,37(12):4029-4036
野外数据的获取是生态学研究的挑战之一,而通过遥感技术能够实现对地球表面的多面立体观测,获取丰富多样的空间信息数据,开展从微观到宏观不同尺度上的景观单元(包括物种、种群、群落、生态系统等)的空间关系研究。传统卫星遥感影像受空间和时间分辨率的限制,难以满足局域尺度或者时间序列上的景观空间生态学研究需求。无人机遥感技术为生态学研究的野外数据获取提供了一种新方法,以其灵活、高效、简便等特点弥补了传统卫星遥感的空间分辨率低、重访周期长、云雾影响等方面的不足,在景观空间生态学研究中受到越来越多的关注。简要介绍无人机类型及其搭载常见的传感器类型,分别从不同尺度的景观单元,即物种、种群、群落以及生态系统水平上探讨其应用进展,并指出当前无人机技术在景观生态学研究中存在的挑战与困难,同时展望了未来可能的研究热点,以期对今后无人机遥感技术在景观生态学领域的应用研究有所启发。  相似文献   

18.
景观生态学与退化生态系统恢复   总被引:29,自引:5,他引:29  
退化生态系统的恢复是一项艰巨任务,它需要考虑到所要恢复的退化生态系统的结构,多样性和其动态的整体性和长期性。现在对于退化生态系统恢复研究已经要使生态学家们关注受损生态系统的理论和实际问题。退化生态系统恢复所面临的挑战是理解和利用生态演替理论来完成并加速恢复进程。恢复的主要目标是建立一个自维持的,由不同的群落或生态系统组成的能够满足不同需要如生物保护和粮食生产需要的景观。景观生态学关注于大的空间尺度的生态学问题。景观生态学研究方法可以为退化生态系统恢复实践提供指导。在解决退化生态系统的恢复问题时,景观生态学的方法在理论和实践上是有效的。景观生态学中的核心概念和其一般原理斑块形状、生态系统间相互作用、镶嵌系列等都同退化生态系统的恢复有着密切的关系。如恢复地点的选择和适当的恢复要素的空间配置。在评价退化生态系统的恢复是否取得成功,利用景观生态学也具有重要的意义。景观生态学理论如景观格局与景观异质性理论,干扰理论和尺度理论都能够指导退化生态系统的恢复实践。同样地,退化生态系统的恢复可以为景观生态学的研究提供非常恰当的实验场。寓景观生态学思想于退化生态系统恢复过程是一种新的有效途径。  相似文献   

19.
中国园林生态学发展综述   总被引:2,自引:0,他引:2  
于艺婧  马锦义  袁韵珏 《生态学报》2013,33(9):2665-2675
运用文献计量等方法对已有科研成果进行统计分析,结果表明:中国近50年园林生态学科领域科研发展经过了起步探索(1962-1981)、缓慢发展(1982-2001)、快速发展(2002-2011)3个时期,园林生态学作为生态学一个新的分支学科,于20世纪90年代末初见端倪,作为一门新兴独立的应用生态学分支学科于21世纪初已基本形成.中国园林生态学领域的研究包括园林生态系统中生物与环境相互作用关系问题、人与环境相互作用关系问题以及园林生态系统与其他生态系统之间相互作用关系问题.当代园林生态研究主要有生态效益研究、生物与环境研究、人的需求与行为研究、生态规划与生态管理研究4个方面,目前园林生态学研究主要侧重生物与环境研究和生态效益研究,两方面的研究成果占总体研究成果的76.3%.不同研究方面也有各自的侧重点,如生物与环境研究侧重对植物的研究,生态效益研究侧重净化环境、水土保持和防灾减灾,生态规划与生态管理研究则侧重生态规划与设计.对四个研究方面的论文主题词检索和高频主题关键词的分布进行统计,结果显示,研究的热点有多样性、群落、水土保持、防灾避险、净化环境、生态规划与设计等.对CNKI中4个研究方面成果中获基金资助项目论文进行统计(不排重),总体成果中基金项目论文所占比重为10.8%,国家和地方基金是园林生态学科研基金资助的主要来源,基金论文比例之和达到85.4%,且国家和地方基金资助论文较多的是“生态与环境研究”和“生态效益研究”,合计占基金论文79.1%.SCI-E中收录的文献基金论文率为47.1%,是CNKI数据库收录的文献基金论文率的4.3倍,且国际基金是基金论文的主要资助来源之一,说明中国园林生态学领域部分科研成果得到国际学界关注.基于CNKI相关主题词统计,“园林生态学”的研究成果只有“景观生态学”的1%,“城市生态学”的8.3%,“园林生态学”学科系统理论研究在相关生态学科研究中所占比重很低,其理论和方法研究还较薄弱.今后在进一步完善学科理论体系、持续开展生态效益和园林植物研究的同时,为更好地研究和解决人-自然复合生态系统问题,提供更多的科学理论支撑,还需拓展交叉生态心理学或环境心理学等其他相关理论,更多地关注人与环境互相作用关系以及生态规划与生态管理等方面的研究,既使环境更好地满足人的行为需求,也使人认识到改变一些行为能更好地保护环境.  相似文献   

20.
Many authors, including paleobiologists, cladists and so on, adopt a nested hierarchical viewpoint to examine the relationships among different levels of biological organization. Furthermore, species are often considered to be unique entities in functioning evolutionary processes and one of the individuals forming a nested hierarchy.I have attempted to show that such a hierarchical view is inadequate in evolutionary biology. We should define units depending on what we are trying to explain. Units that play an important role in evolution and ecology do not necessarily form a nested hierarchy. Also the relationships among genealogies at different levels are not simply nested. I have attempted to distinguish the different characteristics of passages when they are used for different purposes of explanation. In my analysis, species and monophyletic taxa cannot be uniquely defined as single units that function in ecological and evolutionary processes.The view discussed in this paper may provide a more general basis for testing competing theories in evolution, and provide new insights for future empirical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号