首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Sheng  V Mancino    B Birren 《Nucleic acids research》1995,23(11):1990-1996
We have examined bacterial electroporation with a specific interest in the transformation of large DNA, i.e. molecules > 100 kb. We have used DNA from bacterial artificial chromosomes (BACs) ranging from 7 to 240 kb, as well as BAC ligation mixes containing a range o different sized molecules. The efficiency of electroporation with large DNA is strongly dependent on the strain of Escherichia coli used; strains which offer comparable efficiencies for 7 kb molecules differ in their uptake of 240 kb DNA by as much as 30-fold. Even with a host strain that transforms relatively well with large DNA, transformation efficiency drops dramatically with increasing size of the DNA. Molecules of 240 kb transform approximately 30-fold less well, on a molar basis, than molecules of 80 kb. Maximum transformation of large DNA occurs with different voltage gradients and with different time constants than are optimal for smaller DNA. This provides the opportunity to increase the yield of transformants which have taken up large DNA relative to the number incorporating smaller molecules. We have demonstrated that conditions may be selected which increase the average size of BAC clones generated by electroporation and compare the overall efficiency of each of the conditions tested.  相似文献   

2.
DH10B菌株高效电转化条件探究   总被引:6,自引:0,他引:6  
以pUC19、pECBAC1、pCLD04541DNA以及3个不同大小的BACDNA为材料,研究了E.coli DH10B菌株在5个不同脉冲电场下的转化效率。研究发现,随着DNA片段大小的增加,最高转化效率和最适场强迅速减小。利用DH10B细胞转化pUC19 DNA的最适场强是21kV/cm,而190kb BAC DNA仅为13kV/cm;在最适场强下,40kb BAC DNA的转化效率约是190kb BAC DNA的50倍。通过大量数据绘制了不同因素影响下转化效率的变化曲线,优化了E.coli DH10B菌株电转化条件,为质粒的重组转化以及大片段基因组文库的构建奠定了基础。  相似文献   

3.
Molecular evolution is a powerful means of engineering proteins. It usually requires the generation of a large recombinant DNA library of variants for cloning into a phage or plasmid vector, and the transformation of a host organism for expression and screening of the variant proteins. However, library size is often limited by the low yields of circular DNA and the poor transformation efficiencies of linear DNA. Here we have overcome this limitation by amplification of recombinant circular DNA molecules directly from ligation reactions. The amplification by bacteriophage Phi29 polymerase increased the number of transformants; thus from a nanogram-scale ligation of DNA fragments comprising two sub-libraries of variant antibody domains, we succeeded in amplifying a highly diverse and large combinatorial phage antibody library (>10(9) transformants in Escherichia coli and 10(5)-fold more transformants than without amplification). From the amplified library, but not from the smaller un-amplified library, we could isolate several antibody fragments against a target antigen. It appears that amplification of ligations with Phi29 polymerase can help recover clones and molecular diversity otherwise lost in the transformation step. A further feature of the method is the option of using PCR-amplified vectors for ligations.  相似文献   

4.
Molecular evolution is a powerful means of engineering proteins. It usually requires the generation of a large recombinant DNA library of variants for cloning into a phage or plasmid vector, and the transformation of a host organism for expression and screening of the variant proteins. However, library size is often limited by the low yields of circular DNA and the poor transformation efficiencies of linear DNA. Here we have overcome this limitation by amplification of recombinant circular DNA molecules directly from ligation reactions. The amplification by bacteriophage Phi29 polymerase increased the number of transformants; thus from a nanogram-scale ligation of DNA fragments comprising two sub-libraries of variant antibody domains, we succeeded in amplifying a highly diverse and large combinatorial phage antibody library (>109 transformants in Escherichia coli and 105-fold more transformants than without amplification). From the amplified library, but not from the smaller un-amplified library, we could isolate several antibody fragments against a target antigen. It appears that amplification of ligations with Phi29 polymerase can help recover clones and molecular diversity otherwise lost in the transformation step. A further feature of the method is the option of using PCR-amplified vectors for ligations.  相似文献   

5.
High transformation competency of Escherichia coli is one of the critical factors in the bacterial artificial chromosome (BAC)-based DNA library construction. Many electroporation protocols have been published until now, but the majority of them was optimized for transformation of small plasmids. Large plasmids with a size above 50 kbp display reduced transformation efficiency and thereby require specific conditions in the preparation and electroporation of electrocompetent cells. In the present work, we have optimized the parameters critical to the application of BAC DNA electrotransformation into E. coli. Systematic evaluation of electroporation variables has revealed several key factors like temperature of growth, media supplements, washing buffer, and cell concentration. Improvements made in the transformation protocol have led to electrocompetent cells with transformation efficiency up to 7?×?108 transformants per microgram of 120 kbp BAC plasmid DNA. We have successfully used in-house prepared competent cells, the quality of which is comparable with those produced by different companies, in the construction of metagenomic libraries from the soil. Our protocol can also be beneficial for other application with limited DNA source.  相似文献   

6.
The construction of bacterial artificial chromosome (BAC) libraries remains relatively complex and laborious, such that any technological improvement is considered to be highly advantageous. In this study, we addressed several aspects that improved the quality and efficiency of cloning of plant genomes into BACs. We set the 'single tube vector' preparation method with no precipitation or gel electrophoresis steps, which resulted in less vector DNA damage and a remarkable two- to threefold higher transformation efficiency compared with other known vector preparation methods. We used a reduced amount of DNA for partial digestion (up to 5 microg), which resulted in less BAC clones with small inserts. We performed electrophoresis in 0.25 x TBE (Tris, boric acid, ethylenediaminetetraacetic acid) buffer instead of 0.5 x TBE, which resulted in larger and more uniformly sized BAC inserts and, surprisingly, a two- to threefold higher transformation efficiency, probably due to less contamination with borate ions. We adopted a triple size selection that resulted in an increased mean insert size of up to 70 kb and a transformation efficiency comparable with that of double size selection. Overall, the improved protocol presented in this study resulted in a five- to sixfold higher cloning efficiency and larger and more uniformly sized BAC inserts. BAC libraries with the desired mean insert size (up to 200 kb) were constructed from several plant species, including hexaploid wheat. The improved protocol will render the construction of BAC libraries more available in plants and will greatly enhance genome analysis, gene mapping and cloning.  相似文献   

7.
Cost GJ  Cozzarelli NR 《BioTechniques》2007,42(1):84, 86-84, 89
DNA ligation is a routine laboratory practice, yet the yield of the desired product is often very low due to competing off-pathway reactions. The sensitivity of subsequent manipulations (e.g., selection via bacterial transformation) often obviates the need for a high yield of correctly ligated products. However the ability to perform high-yield, preparative-scale DNA ligations would benefit a number of downstream applications ranging from standard molecular cloning to biophysics and DNA computing. We describe here a ligation technique that specifically converts off-pathway ligation products back into substrate. We term this second-chance strategy enzymatic ligation assisted by nucleases (ELAN) and demonstrate the ordered assembly of four DNA fragments via simultaneous ligation and digestion in the presence of eight restriction enzymes. Use of ELAN increased the yield of the desired product by more than 30-fold.  相似文献   

8.
大片段克隆载体研究进展   总被引:1,自引:0,他引:1  
DNA克隆技术是分子生物学研究中一项重要的技术手段。自第一个质粒载体pSC1 0 1作为克隆载体以来 ,随着分子生物学技术的发展 ,克隆载体的整体结构、容载能力和转化效率都有了很大的改善。尤其是人类基因组计划的实施 ,产生了YAC和BAC克隆体系。随着植物基因组计划的进行 ,又产生了既能够克隆大片段DNA又能够将候选克隆直接通过农杆菌介导进行功能互补实验的载体。综述了几种常用大片段克隆载体YAC、BAC、BIBAC、PAC和TAC的特点及其应用 ,并对克隆载体的发展作了展望。  相似文献   

9.
A bacterial artificial chromosome (BAC) library of Phytophthora infestans was constructed in a derivative of pBELOBACII that had been modified by adding a npt selectable marker gene for transforming P. infestans. A total library of 8 genome equivalents was generated and 16,128 clones with inserts averaging 75 kb (4.9 genome equivalents) were individually picked and stored as an arrayed library in microtiter plates. This coverage was confirmed by screening the library for 11 DNA loci by colony hybridization and by polymerase chain reaction of DNA pools. Transformation of P. infestans with BAC clones containing inserts of 93 to 135 kb was demonstrated. The efficiency of transformation with most BACs was noticeably higher than that with smaller plasmids. Detailed analyses of transformants obtained with a 102-kb BAC indicated that entire inserts were present in about one-quarter of the transformants.  相似文献   

10.
We report here the construction and characterisation of a BAC library from the maize flint inbred line F2, widely used in European maize breeding programs. The library contains 86,858 clones with an average insert size of approximately 90 kb, giving approximately 3.2-times genome coverage. High-efficiency BAC cloning was achieved through the use of a single size selection for the high-molecular-weight genomic DNA, and co-transformation of the ligation with yeast tRNA to optimise transformation efficiency. Characterisation of the library showed that less than 0.5% of the clones contained no inserts, while 5.52% of clones consisted of chloroplast DNA. The library was gridded onto 29 nylon filters in a double-spotted 8 × 8 array, and screened by hybridisation with a number of single-copy and gene-family probes. A 3-dimensional DNA pooling scheme was used to allow rapid PCR screening of the library based on primer pairs from simple sequence repeat (SSR) and expressed sequence tag (EST) markers. Positive clones were obtained in all hybridisation and PCR screens carried out so far. Six BAC clones, which hybridised to a portion of the cloned Rp1-D rust resistance gene, were further characterised and found to form contigs covering most of this complex resistance locus. Received: 30 August 2000 / Accepted: 6 December 2000  相似文献   

11.
Meng X  Huang B  Zhou L  He Y  Chen Q  Yuan Y  Xu Z  Song R 《Génome》2010,53(9):667-674
Coix lacryma-jobi L. (Coix) is a close relative of maize and is considered a valuable genetic resource for crop improvement. Here we report the construction of the first Coix bacterial artificial chromosome (BAC) library using accession PI 324059. This BAC library contains about 230?400 clones with an average insert size of 113?kb, has low organellar DNA contamination, and provides 16.3-fold coverage of the genome. The library was stored in 12?× 96 pools that could be screened with a PCR protocol. Library screening was performed for the 22?kDa α-coixin gene family. A total of 57 positive pools were identified, and single clones were isolated from 19 of these pools. Based on DNA fingerprinting and Southern blot analysis, these 19 BAC clones form a single contig of about 340?kb in length, indicating that the 22 kDa α-coixin genes occur in a cluster. These results demonstrated the suitability of this BAC library for gene isolation and comparative genomics studies of the Coix genome.  相似文献   

12.
 Existing bacterial artificial chromosome (BAC) vectors were modified to have unique EcoRI cloning sites. This provided an additional site for generating representative libraries from genomic DNA digested with a variety of enzymes. A BAC library of lettuce was constructed following the partial digestion of genomic DNA with HindIII or EcoRI. Several experimental parameters were investigated and optimized. The BAC library of over 50,000 clones, representing one to two genome equivalents, was constructed from six ligations; average insert sizes for each ligation varied between 92.5 and 142 kb with a combined average insert size of 111 kb. The library was screened with markers linked to disease resistance genes; this identified 134 BAC clones from four regions containing resistance genes. Hybridization with low-copy genomic sequences linked to resistance genes detected fewer clones than expected from previous estimates of genome size. The lack of hybridization to chloroplast and mitochondrial sequences demonstrated that the library was predominantly composed of nuclear DNA. The unique EcoRI site in the BAC vector should allow the integration of BAC cloning with other technologies that utilize EcoRI digestion, such as AFLPTM markers and RecA-assisted restriction endonuclease (RARE) cleavage, to clone specific large EcoRI fragments from genomic DNA. Received: 5 August 1996 / Accepted: 23 August 1996  相似文献   

13.
A bacterial artificial chromosome (BAC) library of Phytophthora infestans was constructed in a derivative of pBELOBACII that had been modified by adding a npt selectable marker gene for transforming P. infestans. A total library of 8 genome equivalents was generated and 16,128 clones with inserts averaging 75 kb (4.9 genome equivalents) were individually picked and stored as an arrayed library in microtiter plates. This coverage was confirmed by screening the library for 11 DNA loci by colony hybridization and by polymerase chain reaction of DNA pools. Transformation of P. infestans with BAC clones containing inserts of 93 to 135 kb was demonstrated. The efficiency of transformation with most BACs was noticeably higher than that with smaller plasmids. Detailed analyses of transformants obtained with a 102-kb BAC indicated that entire inserts were present in about one-quarter of the transformants.  相似文献   

14.
The recent development of vectors and methods for cloning large linear DNA as yeast artificial chromosomes (YACs) has enormous potential in facilitating genome analysis, particularly because of the large cloning capacity of the YAC cloning system. However, the construction of comprehensive libraries with very large DNA segments (400-500 kb average insert size) has been technically very difficult to achieve. We have examined the possibility that this difficulty is due, at least in part, to preferential transformation of the smaller DNA molecules in the yeast transformation mixture. Our data indicate that the transformation efficiency of a 330-kb linear YAC DNA molecule is 40-fold lower, on a molar basis, than that of a 110-kb molecule. This extreme size bias in transformation efficiency is dramatically reduced (to less than 3-fold) by treating the DNA with millimolar concentrations of polyamines prior to and during transformation into yeast spheroplasts. This effect is accounted for by a stimulation in transformation efficiency of the 330-kb YAC molecule; the transformation efficiency of the 110-kb YAC molecule is not affected by the inclusion of polyamines. Application of this finding to the cloning of large exogenous DNA as artificial chromosomes in yeast will facilitate the construction of genomic libraries with significantly increased average insert sizes. In addition, the methods described allow efficient transfer of YACs to yeast strain backgrounds suitable for subsequent manipulations of the large insert DNA.  相似文献   

15.
A large insert Sorghum propinquum BAC library has been constructed to analyze the physical organization of the sorghum genome and to facilitate positional cloning of sorghum genes and QTLs associated with the early stages of grain crop domestication. This library was established from 12 different ligations using high-molecular-weight DNA generated from either one cycle or two cycles of size selection. This library consists of 38 016 BAC clones with an estimated average insert size of 126 kb and coverage of 6.6 genome equivalents. The 6.6 genome-equivalent BAC library of S. propinquum provides a 99.7% probability of finding one or more BACs that contain genes of interest. Twenty mapped DNA probes, ten homologous and ten heterologous, were used to screen the library, and 121 positive clones were identified, 6.05 per locus or 6.37 per probe.  相似文献   

16.
Transgenic mice are widely used in biomedical research to study gene expression, developmental biology, and gene therapy models. Bacterial artificial chromosome (BAC) transgenes direct gene expression at physiological levels with the same developmental timing and expression patterns as endogenous genes in transgenic animal models. We generated 707 transgenic founders from 86 BAC transgenes purified by three different methods. Transgenesis efficiency was the same for all BAC DNA purification methods. Polyamine microinjection buffer was essential for successful integration of intact BAC transgenes. There was no correlation between BAC size and transgenic rate, birth rate, or transgenic efficiency. A narrow DNA concentration range generated the best transgenic efficiency. High DNA concentrations reduced birth rates while very low concentrations resulted in higher birth rates and lower transgenic efficiency. Founders with complete BAC integrations were observed in all 47 BACs for which multiple markers were tested. Additional founders with BAC fragment integrations were observed for 65% of these BACs. Expression data was available for 79 BAC transgenes and expression was observed in transgenic founders from 63 BACs (80%). Consistent and reproducible success in BAC transgenesis required the combination of careful DNA purification, the use of polyamine buffer, and sensitive genotyping assays.  相似文献   

17.
Gangalum RK  Jing Z  Nagaoka Y  Jiang M  Bhat SP  Bhat SP 《BioTechniques》2011,51(5):335-6, 338
An unresolved bottleneck in bacterial artificial chromosome (BAC) transgenesis is low efficiency generation of founder mice because of suboptimal quality of the manipulated BAC DNA. Using mini-gel electrophoresis and electro-elution that circumvents CsCl(2) centrifugation, column chromatography, and resin purifications, we have used RECOCHIP, a commercially available dialysis cassette for the purification of BAC DNA that generates transgenic founders with up to 80% efficiency.  相似文献   

18.
We have constructed a full BAC library for the superior early indica variety of Oryza sativa,Guang Lu Ai 4.The MAX Efficiency DH10B with increased stability of inserts was used as BAC host cells.The potent pBelo BACII with double selection markers was used as cloning vector.The cloning efficiency we have reached was as high as 98%,and the transformation efficiency was raised up to 10^6 transformants/μg of large fragment DNA.The BAC recombinant transformants were picked at random and analyzed for the size of inserts,which turned out to be of 120 kb in length on average.We have obtained more than 20,000 such BAC clones.According to conventional probability equation,they covered the entire rice genome of 420,000 kb in length.The entire length of inserts of the library obtained has the 5-to 6-fold coverage of the genome.To our knowledge,this is the first reported full BAC library for a complex genome.  相似文献   

19.
The cyanobacterium Synechocystis sp. PCC 6803 is transformable at high efficiency and integrates DNA by homologous double recombination. However, several genetic mapping procedures depend on the ability to generate transformants even with very small amounts of added DNA. This study is aimed at optimizing the transformation efficiency at limiting concentrations of exogenous DNA. The transformation efficiency showed little sensitivity to experimental conditions. Transformation with circular plasmid DNA was found to be no more than 30% more efficient than with linearized plasmid DNA. The efficiency of transformation remained essentially the same in the presence of competing DNA, indicating that the capacity of DNA uptake by the cells is not limiting. The incubation time of cells with DNA before plating (0-8 h) affected the transformation efficiency by up to 3-fold. Only minor changes in the efficiency were observed as a function of the presence of a membrane filter on the plate or the presence of TAE or TBE gel buffer residues in the transformation mixture. However, transformability of the host strain of Synechocystis sp. PCC 6803 was increased by two orders of magnitude if the sll1354 gene encoding the exonuclease RecJ was deleted. Therefore, the transformation efficiency of Synechocystis sp. PCC 6803 with exogenous DNA appears to be determined primarily by intracellular processes such as the efficiency of DNA processing and homologous recombination.  相似文献   

20.
Improved method for electroporation of Staphylococcus aureus   总被引:19,自引:0,他引:19  
We have developed a significantly improved method for the electroporation of plasmid DNA into Staphylococcus aureus. The highest transformation efficiency achieved with this procedure was 4.0 x 10(8) transformants per microgram of plasmid pSK265 DNA. This represents a 530-fold improvement over the previously reported optimum efficiency of 7.5 x 10(5) transformants per microgram of plasmid DNA after electroporation of S. aureus cells [9]. Identical results were obtained when electrocompetent cells, which had been stored frozen at -80 degrees C, were used. The improved efficiency is due primarily to the use of a modified medium (designated as B2 medium) and secondarily to the use of 0.1-cm cuvettes. Several other plasmids (pI258, pMH109, and pSK270) were also electrotransformed into competent cells using our procedure, and for each plasmid, the transformation efficiency was significantly reduced compared to that observed when pSK265 DNA was used. With respect to plasmid pI258, the transformation efficiency was 3500-fold higher than that reported previously for transformation of this plasmid into S. aureus RN4220 [9]. The optimized electroporation procedure was less successful in transforming other staphylococci. Electrocompetent cells of S. aureus ATCC 29213 and S. epidermidis ATCC 12228 produced 5.5 x 10(5) and 5 x 10(3) transformants per microgram of pSK265 DNA, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号