首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Common bean is an important vegetable legume in many regions of the world. Size and color of fresh pods are the key factors for deciding the commercial acceptance of bean as a fresh vegetable. The genetic basis of important horticultural traits of common bean is still poorly understood, which hinders DNA marker-assisted breeding in this crop. Here we report the identification of single-locus and epistatic quantitative trait loci (QTLs), as well as their environment interaction effects for six pod traits, namely width, thickness, length, size index, beak length and color, using an Andean intra-gene pool recombinant inbred line population from a cross between a cultivated common bean and an exotic nuña bean. The QTL analyses performed detected a total of 23 QTLs (single-locus QTLs and epistatic QTLs): five with only individual additive effects and six with only epistatic effects, while the remaining twelve showed both effects. These QTLs were distributed across linkage groups (LGs) 1, 2, 4, 6, 7, 8, 9, 10 and 11; particularly noteworthy are the QTLs for pod size co-located on LGs 1 and 4, indicative of tight linkage or genes with pleiotropic effects governing these traits. Overall, the results obtained showed that additive and epistatic effects are the major genetic basis of pod size and color traits. The mapping of QTLs including epistatic loci for the six pod traits evaluated provides support for implementing marker-assisted selection toward genetic improvement of common bean.  相似文献   

2.
Appropriate heading date and plant height are prerequisites for attaining the desired yield level in rice breeding programs. In this study, we analyzed the genetic bases of heading date and plant height at both single- locus and two-locus levels, using a population of 240 F2:3 families derived from a cross between two elite rice lines. Measurements for the traits were obtained over 2 years in replicated field trials. A linkage map was constructed with 151 polymorphic marker loci, based on which interval mapping was performed using Mapmaker/QTL. The analyses detected six QTLs for plant height and six QTLs for heading date; collectively the QTLs for heading date accounted for a much greater amount of phenotypic variation than did the QTLs for plant height. Two-way analyses of variance, with all possible two-locus combinations, detected large numbers (from 101 to 257) of significant digenic interactions in the 2 years for both traits involving markers distributed in the entire genome; 22 and 39 were simultaneously detected in both years for plant height and heading date, respectively. Each of the interactions individually accounted for only a very small portion of the phenotypic variation. The majority of the significant interactions involved marker loci that did not detect significant effects by single-locus analyses, and many of the QTLs detected by single-locus analyses were involved in epistatic interactions. The results clearly demonstrated the importance of epistatic interactions in the genetic bases of heading date and plant height. Received: 5 May 2001 / Accepted: 3 August 2001  相似文献   

3.
A backcrossed population(BC1)was derived from a cross between C1AFLP technique was employed for mapping the QTLs.The QTLs for the whole cocoon weight,cocoon shell weight,ratio of cocoon shell,weight of pupae etc.Were analyzed and 11 QTLs were detected based on the constructed linkage map.Two QTLs for whole cocoon weight were localized on linkage group 6 and 19; three QTLs for cocoon shell weight were localized on linkage group 3,14 and 19; three QTLs for ratio of cocoon shell were localized on the linkage group 2,11and 15,and three QTLs for the weight of pupae were localized on linkage 2,14 and 19.All these have laid an important base for the marker assisted breeding of the silkworm.  相似文献   

4.
Resistance to Ascochyta blight of pea was genetically characterized by mapping quantitative trait loci (QTLs) using two crosses, 3147-A26 (A26, partially resistant) × cultivar Rovar (susceptible) and 3148-A88 (A88, partially resistant) × Rovar, with the aim of developing an increased understanding of the genetics of resistance and of identifying linked molecular markers that may be used to develop resistant germplasm. Molecular linkage maps for both crosses were aligned so that the results of QTL mapping could be compared. Ascochyta blight disease severity in response to natural epidemics was measured in field trials conducted in Western Australia and New Zealand. Eleven putative QTLs for Ascochyta blight resistance were identified from the A26 × Rovar population and 14 putative QTLs from the A88 × Rovar population. Six QTLs were associated with the same genomic regions in both populations. These QTLs reside on linkage groups II, III, IV, V, and VII (two QTLs). The severity of Ascochyta blight disease symptoms on pea increases during field epidemics as plants mature; therefore, QTLs for plant reproductive maturity were mapped. Six QTLs were detected for plant maturity in the A26 × Rovar population, while five plant maturity QTLs were mapped in the A88 × Rovar population. QTLs for plant maturity coincide with Ascochyta blight resistance QTLs in four genomic regions, on linkage groups II (two regions), III, and V. The plant maturity and Ascochyta blight resistance QTLs on III were linked in repulsion phase. Therefore, the coincidence of these QTLs may be explained by linkage of distinct loci for the two traits. The QTLs on linkage groups II and V were linked in coupling phase; therefore, linked QTLs for resistance and maturity may be present in these regions, or the Ascochyta blight resistance QTLs detected in these regions are the result of pleiotropic effects of plant-maturity genetic loci.  相似文献   

5.
The construction of linkage map is both a funda-mental research area and an important aspect of gene analyses in genetics. It provides the guidelines for breeding. A sound linkage map is also necessary for further genetic analysis. In recent years, great and rapid progress has been made in molecular biology, which enables fingerprinting of organisms at the ge-nomic level. Many molecular marker techniques have been well established. Heartening progress has been made in many organisms in the co…  相似文献   

6.
ABSTRACT: BACKGROUND: Nuna bean is a type of ancient common bean (Phaseolus vulgaris L.) native to the Andean region of South America, whose seeds possess the unusual property of popping. The nutritional features of popped seeds make them a healthy low fat and high protein snack. However, flowering of nuna bean only takes place under short-day photoperiod conditions, which means a difficulty to extend production to areas where such conditions do not prevail. Therefore, breeding programs of adaptation traits will facilitate the diversification of the bean crops and the development of new varieties with enhanced healthy properties. Although the popping trait has been profusely studied in maize (popcorn), little is known about the biology and genetic basis of the popping ability in common bean. To obtain insights into the genetics of popping ability related traits of nuna bean, a comprehensive quantitative trait loci (QTL) analysis was performed to detect single-locus and epistatic QTLs responsible for the phenotypic variance observed in these traits. RESULTS: A mapping population of 185 recombinant inbred lines (RILs) derived from a cross between two Andean common bean genotypes was evaluated for three popping related traits, popping dimension index (PDI), expansion coefficient (EC), and percentage of unpopped seeds (PUS), in five different environmental conditions. The genetic map constructed included 193 loci across 12 linkage groups (LGs), covering a genetic distance of 822.1 cM, with an average of 4.3 cM per marker. Individual and multi-environment QTL analyses detected a total of nineteen single-locus QTLs, highlighting among them the co-localized QTLs for the three popping ability traits placed on LGs 3, 5, 6, and 7, which together explained 24.9, 14.5, and 25.3 % of the phenotypic variance for PDI, EC, and PUS, respectively. Interestingly, epistatic interactions among QTLs have been detected, which could have a key role in the genetic control of popping. CONCLUSIONS: The QTLs here reported constitute useful tools for marker assisted selection breeding programs aimed at improving nuna bean cultivars, as well as for extending our knowledge of the genetic determinants and genotype x environment interaction involved in the popping ability traits of this bean crop.  相似文献   

7.
In bread wheat, single-locus and two-locus QTL analyses were conducted for seven yield and yield contributing traits using two different mapping populations (P I and P II). Single-locus QTL analyses involved composite interval mapping (CIM) for individual traits and multiple-trait composite interval mapping (MCIM) for correlated yield traits to detect the pleiotropic QTLs. Two-locus analyses were conducted to detect main effect QTLs (M-QTLs), epistatic QTLs (E-QTLs) and QTL × environment interactions (QE and QQE). Only a solitary QTL for spikelets per spike was common between the above two populations. HomoeoQTLs were also detected, suggesting the presence of triplicate QTLs in bread wheat. Relatively fewer QTLs were detected in P I than in P II. This may be partly due to low density of marker loci on P I framework map (173) than in P II (521) and partly due to more divergent parents used for developing P II. Six QTLs were important which were pleiotropic/coincident involving more than one trait and were also consistent over environments. These QTLs could be utilized efficiently for marker assisted selection (MAS).  相似文献   

8.
A mixture model approach is presented for the mapping of one or more quantitative trait loci (QTLs) in complex populations. In order to exploit the full power of complete linkage maps the simultaneous likelihood of phenotype and a multilocus (all markers and putative QTLs) genotype is computed. Maximum likelihood estimation in our mixture models is implemented via an Expectation-Maximization algorithm: exact, stochastic or Monte Carlo EM by using a simple and flexible Gibbs sampler. Parameters include allele frequencies of markers and QTLs, discrete or normal effects of biallelic or multiallelic QTLs, and homogeneous or heterogeneous residual variances. As an illustration a dairy cattle data set consisting of twenty half-sib families has been reanalyzed. We discuss the potential which our and other approaches have for realistic multiple-QTL analyses in complex populations.  相似文献   

9.
Wu CC  Shete S 《BMC genetics》2005,6(Z1):S149
Using model-based two-locus methods for mapping genes, we analyzed the family data from the Collaborative Study on the Genetics of Alcoholism. Microsatellite data from 143 families ascertained through having three or more individuals affected with alcohol dependence were used for this investigation. Four regions showing evidence for linkage were identified using single-locus models from previous investigations. We investigated the genetic linkage, pattern of disease inheritance, and pair-wise genetic epistasis of these loci using the TLINKAGE program for two-disease-locus analysis.  相似文献   

10.
The number of days from seedling emergence to flowering (DTF) is a major consideration in sunflower breeding programs. This is a complex trait determined by the genotype, environmental conditions and interactions. Photoperiod and temperature have major effects on DTF and could be important sources of genotype× environment interaction. The objectives of this study were to locate quantitative trait loci (QTLs) associated with growing degree days (GDD) to flowering and photoperiod (PP) response in an elite sunflower population. Two hundred and thirty five F2-generation plants and their F2:3 and F2:4 progenies of a single-cross population of two divergent inbred lines were evaluated in six environments (locations, years and sowing dates) with photoperiods known to elicit a PP response between the inbred lines. Detection of QTLs was facilitated with a genetic linkage map of 205 RFLP loci and composite interval mapping. The 205 restriction fragment length polymorphism (RFLP) loci covered 1380 cM and were arranged in 17 linkage groups, which is the haploid number of chromosomes in this species. The average interval size was 5.9 cM. Six QTLs in linkage groups A, B, F, I, J and L were associated with GDD to flowering and accounted for 76% of the genotypic variation in the mean environment. QTLs in linkage groups A and B accounted for 72% of the genetic variation. QTL×environment (QTL×E) interactions were highly significant for linkage groups A, B, F and J (P<0.01). QTLs in linkage groups A and B were highly dependent on PP. Also, QTL mapping of the ratio of the GDD required by a progeny to flower at a PP of 12.1 and 15.0 h, defined as the photoperiod response (PPR), suggested that alleles at QTLs in linkage groups A and B were responsive to PP. QTLs in linkage groups F and J showed QTL×E interaction but the LOD values were not associated with PP. QTL×E interactions for additive effects were highly significant (P<0.01) for linkage groups A, B and F. QTL×E interactions for QTLs with dominant effects were significant (P<0.01) for linkage groups A, B and J. The dominant effect of QTLs in linkage group B increased in environments with a longer PP. The knowledge of how these QTLs influence the GDD for flowering and how they interact with the environment will facilitate marker- assisted selection and backcross conversion of photoperiod-sensitive germplasm. Received: 7 February 2000 / Accepted: 13 June 2000  相似文献   

11.
 A common problem in mapping quantitative trait loci (QTLs) is that marker data are often incomplete. This includes missing data, dominant markers, and partially informative markers, arising in outbred populations. Here we briefly present an iteratively re-weighted least square method (IRWLS) to incorporate dominant and missing markers for mapping QTLs in four-way crosses under a heterogeneous variance model. The algorithm uses information from all markers in a linkage group to infer the QTL genotype. Monte Carlo simulations indicate that with half dominant markers, QTL detection is almost as efficient as with all co-dominant markers. However, the precision of the estimated QTL parameters generally decreases as more markers become missing or dominant. Notable differences are observed on the standard deviation of the estimated QTL position for varying levels of marker information content. The method is relatively simple so that more complex models including multiple QTLs or fixed effects can be fitted. Finally, the method can be readily extended to QTL mapping in full-sib families. Received: 16 June 1998 / Accepted: 29 September 1998  相似文献   

12.
Sorghum (Sorghum bicolor (L.) Moench) is one of the most important crops in the semiarid regions of the world. One of the important biotic constraints to sorghum production in India is the shoot fly which attacks sorghum at the seedling stage. Identification of the genomic regions containing quantitative trait loci (QTLs) for resistance to shoot fly and the linked markers can facilitate sorghum improvement programmes through marker-assisted selection. A simple sequence repeat (SSR) marker- based skeleton linkage map of two linkage groups of sorghum was constructed in a population of 135 recombinant inbred lines (RIL) derived from a cross between IS18551 (resistant to shoot fly) and 296B (susceptible to shoot fly). A total of 14 SSR markers, seven each on linkage groups A and C were mapped. Using data of different shoot fly resistance component traits, one QTL which is common for glossiness, oviposition and dead hearts was detected following composite interval mapping (CIM) on linkage group A. The phenotypic variation explained by this QTL ranged from 3.8%–6.3%. Besides the QTL detected by CIM, two more QTLs were detected following multi-trait composite interval mapping (MCIM), one each on linkage groups A and C for the combinations of traits which were correlated with each other. Results of the present study are novel as we could find out the QTLs governing more than one trait (pleiotropic QTLs). The identification of pleiotropic QTLs will help in improvement of more than one trait at a time with the help of the same linked markers. For all the QTLs, the resistant parent IS18551 contributed resistant alleles.  相似文献   

13.
Two methods, following different statistical paradigms for mapping multiple quantitative trait loci (QTLs), were compared: the first is a frequentist, the second a Bayesian approach. Both methods were applied to previously published experimental data from an outbred progeny of a single cross between two apple cultivars (Malus pumila Mill.). These approaches were compared with respect to (1) the models used, (2) the number of putative QTLs, (3) their estimated map positions and accuracies thereof and (4) the choice of cofactor markers. In general, the strongest evidence for QTLs, provided by both methods, was for the same linkage groups and for similar map positions. However, some differences were found with respect to evidence for QTLs on other linkage groups. The effect of using cofactor markers which were selected differently was also somewhat different. Received: 17 July 2000 / Accepted: 13 January 2001  相似文献   

14.
Using the deterministic sampling, patterns of the log-likelihood surfaces expected in some interval mapping procedures for estimating the position of, and the effect for, QTL(s) were investigated for the situations where a single QTL or closely linked QTLs are contained in a chromosome segment bracketed with two markers. The mapping procedures compared were the conventional, likelihood-based interval mapping (IM), the regression interval mapping (RIM), and the QTL-cluster mapping (CM) in which the conditional probabilities of transmission of the whole segment marked by the flanking markers were taken into consideration. The half-sib design was used here, and several cases of the true genetic model were considered, differing in the number of QTLs contained in the marker interval, the linkage phase for the sire, and the magnitude of the QTL(s) effect. For the true genetic models where a single QTL or closely linked QTLs being in coupling phase are contained in the interval, with (R)IM, clear global maxima of the log-likelihood were observed within the range of the marker interval. It was shown that the estimates of the QTL(s) effect at the marked segment level are expected to be unbiased. On the other hand, in a setting where the linkage phase for the linked QTLs located in the interval was different from coupling and repulsion, there was found a ridge along the interval for the log-likelihood surface with (R)IM, indicating the dependency between the estimates of the position of, and the effect for, the putative QTL. For this case, it was found that the position of the putative QTL could be estimated as that of one of the flanking markers, and the estimate of the QTL effect be biased. In contrast, it was revealed that CM is expected to provide the unbiased estimate of the QTL(s)-effect at the segment level for any case of the true genetic models considered here. If the aim is for marker-assisted selection rather than mapping closely linked QTLs individually, then the CM approach is considered to be useful.  相似文献   

15.
Auricularia auricula-judae is a traditional edible fungus that is cultivated widely in China. In this study, a genetic linkage map for A. auricula-judae was constructed using a mapping population consisting of 138 monokaryons derived from a hybrid strain (A119-5). The monokaryotic parent strains A14-5 and A18-119 were derived from two cultivated varieties, A14 (Qihei No. 1) and A18 (Qihei No. 2), respectively. In total, 130 simple sequence repeat markers were mapped. These markers were developed using the whole genome sequence of A. auricula-judae and amplified in A14-5, A18- 119, and the mapping population. The map consisted of 11 linkage groups (LGs) spanning 854 cM, with an average interval length of 6.57 cM. A testcross population was derived from crossing between the monokaryon A184-57 (from the wild strain A184 as a tester strain) and the mapping population. Important agronomic trait-related QTLs, including mycelium growth rate on potato dextrose agar for the mapping population, mycelium growth rate on potato dextrose agar and sawdust for the testcross population, growth period (days from inoculation to fruiting body harvesting), and yield for the testcross population, were identified using the composite interval mapping method. Six mycelium growth raterelated QTLs were identified on LG1 and LG4, two growth period-related QTLs were identified on LG2, and three yieldrelated QTLs were identified on LG2 and LG6. The results showed no linkage relationship between mycelium growth rate and growth period. The present study provides a foundation for locating genes for important agronomic characteristics in A. auricula-judae in the future.  相似文献   

16.
Epistasis plays an important role as genetic basis of heterosis in rice   总被引:6,自引:0,他引:6  
Thegeneticbasisofheterosisisstilladebatingissue.Twohypotheses,thedominancehypothesisandtheoverdominancehypothesis,bothproposedin1908[1—3],havecompetedformostpartofthiscentury.Althoughmanyresearcherspreferonehypothesistotheother,experimentaldataallowingforcr…  相似文献   

17.
In hexaploid wheat, single-locus and two-locus quantitative trait loci (QTL) analyses for grain protein content (GPC) were conducted using two different mapping populations (PI and PII). Main effect QTLs (M-QTLs), epistatic QTLs (E-QTLs) and QTL x environment interactions (QE, QQE) were detected using two-locus analyses in both the populations. Only a few QTLs were common in both the analyses, and the QTLs and the interactions detected in the two populations differed, suggesting the superiority of two-locus analysis and the need for using several mapping populations for QTL analysis. A sizable proportion of genetic variation for GPC was due to interactions (28.59% and 54.03%), rather than to M-QTL effects (7.24% and 7.22%), which are the only genetic effects often detected in the majority of QTL studies. Even E-QTLs made a marginal contribution to genetic variation (2.68% and 6.04%), thus suggesting that the major part of genetic variation is due to changes in gene networks rather than the presence or absence of specific genes. This is in sharp contrast to the genetic dissection of pre-harvest sprouting tolerance conducted by us earlier, where interaction effects were not substantial, suggesting that the nature of genetic variation also depends on the nature of the trait.  相似文献   

18.
A General Monte Carlo Method for Mapping Multiple Quantitative Trait Loci   总被引:2,自引:0,他引:2  
R. C. Jansen 《Genetics》1996,142(1):305-311
In this paper we address the mapping of multiple quantitative trait loci (QTLs) in line crosses for which the genetic data are highly incomplete. Such complicated situations occur, for instance, when dominant markers are used or when unequally informative markers are used in experiments with outbred populations. We describe a general and flexible Monte Carlo expectation-maximization (Monte Carlo EM) algorithm for fitting multiple-QTL models to such data. Implementation of this algorithm is straightforward in standard statistical software, but computation may take much time. The method may be generalized to cope with more complex models for animal and human pedigrees. A practical example is presented, where a three-QTL model is adopted in an outbreeding situation with dominant markers. The example is concerned with the linkage between randomly amplified polymorphic DNA (RAPD) markers and QTLs for partial resistance to Fusarium oxysporum in lily.  相似文献   

19.
Sclerotinia stem rot is the most devastating disease of rapeseed (Brassica napus L.) in China. Quantitative trait loci (QTLs) involved in resistance to Sclerotinia sclerotiorum were detected in a rapeseed population of 128-F(2:3) families derived from a cross between the male sterility restorer line H5200 and a partial resistant line Ning RS-1. A total of 107 molecular markers including 72 RFLPs, 30 AFLPs, 3 SSRs and 2 RAPDs were employed to construct a genetic linkage map with 23 linkage groups covering 1,625.7 cM with an average space of 15.2 cM. Resistance was assessed empirically at two developmental stages: with a detached leaf inoculation at the seedling stage and in vivo stem inoculation at the mature plant stage. The observed resistance was scored for each plant as leaf resistance at the seedling stage (LRS) and stem resistance at the mature plant stage (SRM). A total of 13 loci were identified by one-way ANOVA and six QTLs were detected with MapMaker-QTL. We found that three of the six QTLs were associated with leaf resistance at the seedling stage and collectively accounted for 40.7% of the total phenotypic variation, each accounting for 23.2%, 16.6% and 13.6% respectively. Three QTLs were found corresponding to the disease resistance at the mature plant stage, explaining 49.0% of the phenotypic variation. Epistasis was observed for the resistance and the additive by additive interactions were the predominant type of epistasis. It was concluded that both single-locus QTLs and epistatic interactions played important roles in Sclerotinia resistance in rapeseed.  相似文献   

20.
Multi-environment mapping and meta-analysis of 100-seed weight in soybean   总被引:2,自引:0,他引:2  
Sun YN  Pan JB  Shi XL  Du XY  Wu Q  Qi ZM  Jiang HW  Xin DW  Liu CY  Hu GH  Chen QS 《Molecular biology reports》2012,39(10):9435-9443
100-Seed weight (100-SW) of soybean is an important but complicated quantitative trait to yield. This study was focus on the quantitative trait loci (QTLs) of soybean 100-SW from 2006 to 2010, using recombination inbred lines population that was derived from a cross between Charleston and Dongnong 594. A total of 23 QTLs for 100-SW were detected in the linkage group C2, D1a, F, G and O. Nine QTLs were identified by composite interval mapping including one QTL with the minimum confidence interval (CI) of 1.3?cM, while 14 QTLs by multiple interval mapping. Furthermore, 94 reported QTLs of 100-SW were integrated with our QTL mapping results using BioMercator. As a result, 15 consensus QTLs and their corresponding markers were identified. The minimum CI was reduced to 1.52?cM by the combination of meta-analysis. These findings may merit fine-mapping of these QTL in soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号