首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Dictyostelium discoideum strain HPS 401 contains a spontaneous mutation that lowers the amount of thymidine required for cell growth relative to that of the auxotrophic parental strain HPS 400. Growth studies in defined medium show that as little as 8 micrograms thymidine/ml supports maximal growth of HPS 401, whereas 50 micrograms/ml is required by HPS 400. In contrast, both strains require over 40 micrograms thymidylate/ml to achieve maximal growth. HPS 401 exhibits thymidineless death when grown without thymidine; relative viability decreases to less than 0.01% after 190 h incubation. Assays for enzymes related to thymidine metabolism reveal that none of the strains tested (HPS 401, HPS 400, and prototrophic HPS 83 cells) contain detectable thymidine phosphorylase activity and that the specific activity of thymidine kinase is the same in these three strains. Thin-layer chromatography of extracts from cells grown on radiolabeled thymidine shows that there is no detectable conversion of thymidine to thymine in any of these strains. These analyses show that HPS 401 has rapid intracellular accumulation of thymidine, while only slight uptake is observed with HPS 400 or wild-type strains. HPS 401 also shows greater uptake of uridine in comparison to HPS 400 and wild-type cells. Thymidylate uptake was the same for all three strains. Thus, the mutation giving rise to the HPS 401 phenotype selectively increases the uptake of thymidine into the cell, where it can be efficiently utilized for DNA synthesis by the "salvage" pathways of nucleotide metabolism.  相似文献   

2.
A cDNA encoding mouse thymidylate synthase has been inserted 3' to the Dictyostelium discoideum actin 15 promoter in an E. coli-D.discoideum shuttle vector. When this construct was introduced into a D.discoideum thymidylate synthase mutant strain HPS400, stable transformants were obtained at high frequency. These transformants grew in standard axenic medium without requiring exogenous thymidine. This construct provides a second selectable marker for use in transformation of D.discoideum.  相似文献   

3.
Thymidylate synthetase activity was measured in crude extracts of the yeast Saccharomyces cerevisiae by a sensitive radiochemical assay. Spontaneous non-conditional mutants auxotrophic for thymidine 5'-monophosphate (tmp1) lacked detectable thymidylate synthetase activity in cell-free extracts. In contrast, the parent strains (tup1, -2, or -4), which were permeable to thymidine 5'-monophosphate, contained levels of activity similar to those found in wild-type cells. Specific activity of thymidylate synthetase in crude extracts of normal cells or of cells carrying tup mutations was essentially unaffected by the ploidy or mating type of the cells, by the medium used for growth, by the respiratory capacity of the cells, by concentrations of exogenous thymidine 5'-monophosphate as high as 50 mug/ml, or by subsequent removal of thymidine 5'-monophosphate from the medium. Extracts of a strain bearing the temperature-sensitive cell division cycle mutation cdc21 lacked detectable thymidylate synthetase activity under all conditions tested. Its parent and another mutant (cdc8), which arrests with the same terminal phenotype under restrictive conditions, had normal levels of the enzyme. Cells of a temperature-sensitive thymidine 5'-monophosphate auxotroph arrested with a morphology identical to the cdc21 strain at the nonpermissive temperature and contained demonstrably thermolabile thymidylate synthetase activity. Tetrad analysis and the properties of revertants showed that the thymidylate synthetase defects were a consequence of the same mutation causing, in the auxotrophs, a requirement for thymidine 5'-monophosphate and, in the conditional mutants, temperature sensitivity. Complementation tests indicated that tmp1 and cdc21 are the same locus. These results identify tmp1 as the structural gene for yeast thymidylate synthetase.  相似文献   

4.
We describe the isolation and characterization of a Pediococcus cerevisiae thymidine-requiring mutant and its thymidine-independent revertant. The mutant strain lacked thymidylate synthetase activity and had an absolute requirement for low concentrations (2 micrograms/ml) of thymidine in addition to a requirement for N-5-formyl tetrahydrofolic acid (folinate). Even at high concentrations (up to 500 micrograms/ml), thymine could not replace thymidine. In contrast to its wild-type parent, which grows only on folinate, the thymidine-requiring mutant (Thy- Fol+) was able to take up and grow on picogram quantities of unreduced folic acid. When both strains were grown on folinate, the Thy- Fol+ strain was at least 10(3)-fold more resistant to the folic acid analogs aminopterin and methotrexate than the wild-type strain. On the other hand, when grown on folic acid, the Thy- Fol+ strain was as sensitive to the folic acid analogs as the Thy+ Fol+ strain and was 10(2)-fold more sensitive than the wild-type strain grown on folinate. The thymidine-independent revertant (Thy+ Fol+) regained the wild-type level of thymidylate synthetase activity, but maintained the ability to take up and grow on unreduced folic acid like its Thy- Fol+ parent.  相似文献   

5.
Fibroblasts were isolated from the mammary glands of guinea pigs and grown in 96-well culture plates. They were treated with a factorial arrangement of porcine relaxin (0.0, 0.5, 1.0 or 1.5 micrograms/ml) and estradiol-17 beta (0, 200, 400 or 600 pg/ml). Tritiated thymidine or uridine was added to a final activity of 25 nCi per well and the cells incubated at 37 degrees C for 48 h. Cells were then harvested onto filter paper and counted for tritium. Controls (0.0 micrograms/ml relaxin and 0 pg/ml estradiol) incorporated 3.7 nCi of tritiated thymidine and 4.8 nCi tritiated uridine. Both relaxin and estradiol altered the incorporation of thymidine and uridine. There was also an interaction between the two hormones. Thymidine incorporation with no estradiol and 1.5 micrograms/ml relaxin was 129% of controls. The optimum incorporation of thymidine occurred with 0.5 micrograms/ml relaxin and 400 pg/ml estradiol. This combination of hormones gave a response of 145% of controls. Uridine incorporation followed a different pattern. Relaxin alone at a concentration of 1.5 micrograms/ml gave a near-optimum response of 141% of control. The optimum combination of relaxin and estradiol for uridine incorporation was 1.5 micrograms/ml relaxin and 400 pg/ml estradiol, which gave a response of 156% of controls. These data indicated that relaxin and estradiol alter DNA and RNA synthesis in mammary fibroblasts and thus may be important in controlling the growth of the mammary gland stroma.  相似文献   

6.
Recent approaches to the study of DNA repair in Dictyostelium discoideum are reviewed. Thymidine auxotrophs facilitate the uptake of labeled thymidine into DNA during its replication and repair. The tmpA600 mutation leads to a loss of thymidylate synthase activity, and tdrA600 results in increased transport of thymidine into the cell. In the HPS401 double mutant (tmpA600tdrA600), thymidine is taken up uniformly into the nuclear and mitochondrial DNAs at levels up to 50-fold that in the wild type. tmpA maps on linkage group III. tdrA is on IV or VI, which cosegregate in strains containing this mutation. Alkaline sucrose gradients of nuclei from HPS401 pulsed for 15 min with [3H]thymidine in axenic medium show that the initially labeled single-strand DNA is about 7 x 10(6) daltons, which may be the size of the replicon. This nascent DNA matures in about 45 minutes to 2 x 10(8) daltons. Ultraviolet light (254 nm) decreases the size of the nascent DNA and delays its maturation. In addition to studies of DNA repair utilizing repair-proficient and -deficient mutants of thymidine auxotrophs, we are currently using two approaches for cloning genes involved in repair: 1) genes are sought that can functionally complement repair defects in Saccharomyces cerevisiae following transformation with a D. discoideum DNA library in YEp 24(URA); 4-NQO is used for the selection of RAD transformants; and 2) we have characterized and purified to near-homogeneity two repair enzymes from D. discoideum--uracil-DNA glycosylase and AP-endonuclease. An N-terminal sequence has been determined for the glycosylase, and a synthetic oligonucleotide probe derived from this sequence will be used to screen for this gene. A similar approach is in progress for the AP-endonuclease.  相似文献   

7.
The effect of trimethoprim [2,4-diamino-5(2',4',5'trimethoxybenzyl)-pyrimidine] in the presence of thymine on Escherichia coli B temperature-sensitive and non-temperature-sensitive Thy(') strains and a phosphodeoxyribomutase-negative mutant was studied. The inhibitory effect of 5 mug of trimethoprim per ml on the growth of E. coli B was not overcome by thymine, thymidine, or thymidylate even in the presence of one-carbon metabolites and related metabolites. Deoxyribonucleic acid (DNA) and protein synthesis were more severely inhibited than ribonucleic acid (RNA) synthesis. The inhibition of DNA synthesis was partially reversed by addition of deoxyadenosine to increase the incorporation of exogenous thymine. By contrast, the inhibition of protein was not reversed even with one-carbon metabolites present, in keeping with the requirement for formylmethionyl-transfer RNA(F) for initiation. However, the inhibition of both DNA and protein synthesis in a phosphodeoxyribomutase-negative strain by 1 mug of trimethoprim per ml with thymine present was partially reversed by deoxyadenosine and one-carbon metabolites, and nearly normal growth occurred. 5-Fluorodeoxyuridine added at the time of addition of trimethoprim prevented the inhibition. Sulfadiazine in the presence of thymine inhibited both Thy(+) and Thy(-) strains whereas trimethoprim (with thymine) did not inhibit Thy(-) organisms. The effect of trimethoprim on the incorporation of labeled thymine into DNA was also studied. These experiments support the concept that trimethoprim in conjunction with the action of thymidylate synthetase inhibits the growth of Thy(+) cells because of a depletion of tetrahydrofolate. DNA synthesis is inhibited initially by a limitation of thymine nucleotide precursor, resulting from the indirect inhibition of thymidylate synthetase and the poor incorporation of exogenous thymine.  相似文献   

8.
Iododeoxyuridylic acid, a structural analog of thymidylic acid, is extensively de-iodinated in vivo by the enzyme thymidylate synthetase. Substantial amounts of the deoxyuridylic acid formed by this process are subsequently methylated and incorporated into DNA as thymidine. As a result, when mice are given tritiated iododeoxyuridine, most of the tritium incorporated into their DNA is present in thymidine rather than in iododeoxyuridine. Some, but not nearly as much, tritium from tritiated bromodeoxyuridine is also incorporated into DNA thymidine.  相似文献   

9.
Abstract— Using the method of least squares, a logistic curve was fitted to the data points for DNA content in neonatal rat cerebellum versus postnatal age (day 0 is the day of birth). The resultant equation was differentiated to give an expression for the rate of cerebellar DNA accumulation in units of ng/h per mg wet cerebellum. The DNA accumulation rate in control rats increased from 77.0 at 2 days of age to a maximum of 108 at 7 days of age and declined thereafter to a minimum of 16.3 on day 15. Thyroxine treatment significantly (P < 0.05) increased the rate to 89.8 (117% of control) at 2 days of age, and a significant elevation was maintained to 6 days of age at which time a maximum rate of 115 (114% of control) was attained. The rate was significantly decreased below control at 9 and 12 days of age, and reached a minimum of 9.22 on day 15. The developmental pattern for the activity of cerebellar thymidylate synthetase (EC 2.1.1.6), in units of pmol/h per mg wet cerebellum, closely paralleled the pattern for DNA accumulation rate in both control and thyroxine-treated animals. In controls, thymidylate synthetase activity increased from 98.6 at 2 days of age to a maximum of 125 at 7 days of age and declined thereafter to a minimum of 30.0 at 15 days of age. In thyroxine-treated animals, the activity was significantly increased to 118 (122% of control) at 4 days of age and remained significantly elevated through 6 days of age at which time a maximum activity of 154 (115% of control) was attained; thereafter, the activity was significantly decreased below control and reached a minimum of 16.9 (56.3% of control) on day 15. The developmental pattern for the activity of cerebellar thymidine kinase (EC 2.7.1.21) did not parallel the DNA accumulation rate quite so closely, in neither treated nor control animals, as did the pattern for thymidylate synthetase activity. These data suggest that thymidylate synthetase activity in the developing rat cerebellum may be more important for maintenance of replicative DNA synthesis than is thymidine kinase activity. In addition, the thyroxine-induced acceleration of the increase and subsequent decline in rate of DNA accumulation and in the activities of thymidylate synthetase and thymidine kinase in developing rat cerebella is probably the result of alterations in the number of external granular cells undergoing replicative DNA synthesis.  相似文献   

10.
Thymidylate synthetase and thymidine kinase activities in wild type strain M3b and in thymidine kinase-deficient mutant TU63 of Physarum polycephalum are studied. Whenever nuclear division occurs in macroplasmodia of wild type, thymidine kinase and thymidylate synthetase activities sharply increase, although the increase of thymidylate synthetase activity is less pronounced than thymidine kinase activity. This is also true for other investigated nuclear divisions during the life cycle of P. polycephalum. It is shown for the first time that thymidylate synthetase is a periodically fluctuating enzyme during the naturally synchronous nuclear division cycle of P. polycephalum with a peak of specific activity in the S phase. In macroplasmodia, as well as after germination of microsclerotia of M3b, thymidine kinase is the dominant enzyme, whereas at the time of the precleavage mitosis in sporulating macroplasmodia thymidylate synthetase is the predominant enzyme. This study describes and compares both dTMP-synthesizing enzymes during proliferation and differentiation of the same organism.  相似文献   

11.
Increasing the extracellular calcium concentration in thymic lymphocyte suspension from 0.6 to 1.8 mM stimulated the proliferation of the lymphoblast subpopulation as measured by increases in the proportion of cells autoradiographically labeled with 3H-TdR and in mitotic activity. However it was not possible to show this increased DNA synthesis by scintillometric measurement of the amount of 3H-TdR incorporated into extracted DNA. On the other hand, calcium did raise the incorporation of 14C-formate into the thymine residues of DNA, and increased the activity of isolated thymocyte thymidylate synthetase. In contrast to the mitogenic calcium ion, a thymidylate synthetase inhibitor, methotrexate, actually increased the incorporation of 3H-TdR into DNA. It is concluded that calcium increases the endogenous synthesis of thymidylate which in turn prevents the amount of incorporation of exogenous 3H-TdR from accurately reflecting the true level of DNA synthesis.  相似文献   

12.
The enzyme folylpolyglutamate synthetase (FPGS) catalyzes the conversion of folate (pteroylmonoglutamate) to the polyglutamate forms (pteroylpolyglutamates) that are required for folate retention by mammalian cells. A rapid in situ autoradiographic assay for FPGS was developed which is based on the folate cofactor requirement of thymidylate synthase. Chinese hamster AUX B1 mutant cells lack FPGS activity and are unable to accumulate folate. As a result, the conversion of [6-3H]deoxyuridine to thymidine via the thymidylate synthase reaction is impaired in AUX B1 cells and no detectable label is incorporated into DNA. In contrast, FPGS in wild-type Chinese hamster CHO cells causes folate retention and enables the incorporation of [6-3H]deoxyuridine into DNA. Incorporation may be detected by autoradiography of monolayer cultures or of colonies replica plated onto polyester discs. Introduction of Escherichia coli FPGS into AUX B1 cells restores the activity of the thymidylate synthase pathway and demonstrates that the E. coli FPGS enzyme can provide pteroylpolyglutamates which function in mammalian cells.  相似文献   

13.
Thymidylate synthetase catalyses the formation of thymidine monophosphate from deoxyuridine monophosphate. Purified thymidylate synthetase can be assayed radiochemically using labelled deoxyuridine monophosphate as substrate, but cells are impervious to deoxyuridine monophosphate and so intracellular thymidylate synthetase activity cannot be assayed in this way. In this paper we describe the assay of intracellular thymidylate synthetase activity in intact cells using labelled 2'-deoxyuridine. The assay showed linear kinetics with respect to time, concentration of 2'-deoxyuridine, and cell concentration. 5-fluoro-2'-deoxyuridine inhibited intracellular thymidylate synthetase activity measured with this assay by 50% at 5 nM. Cell growth was inhibited by 50% at 6 nM 5-fluoro-2'-deoxyuridine. The assay was specific for thymidylate synthetase and enabled measurement of thymidylate synthetase activity in situ in intact cells.  相似文献   

14.
A study of optimal thymine and deoxythymidine (dThd) growth requirements of the thymineless mutants of Escherichia coli 15, E. coli 70-462 (strain 70), and a variant, E. coli 70V3-462 (strain 70V3), showed that for maximal turbidity (growth) strain 70 required 10-fold greater concentrations of thymine or dThd than did strain 70V3. On suboptimal concentrations of thymine or dThd, growth of strain 70 was greater on dThd than on thymine. In contrast, maximal growth of strain 70V3 was the same on equimolar concentrations of thymine and dThd. Growth rate of strain 70V3 was the same on equimolar concentrations of thymine and dThd up to 4 mum; at concentrations of 5 mum and greater, the "4-hr" growth was lower on dThd than on corresponding concentrations of thymine. Cultures of both thymineless mutants synthesized equal maximal amounts of DNA. Whereas strain 70V3 incorporated a maximum of 90% of the thymine or dThd in the media, strain 70 incorporated a maximum of only 10%. This poor utilization by strain 70 was neither a result of thymine or dThd conversion to a low-molecular-weight thymine derivative nor the production of a nonthymine inhibitory substance. Since strains 70 and 70V3 exhibited no thymidylate synthetase activity, the first mutation (strain 15 to strain 70) resulted in the loss of this activity. The second mutation (strain 70 to strain 70V3) probably brought about the loss of an enzyme(s) that catabolizes deoxyribose phosphate, permitting a greater net synthesis of dThd from thymine.  相似文献   

15.
Proliferative and mature intestinal cells of the jejunum and colon of rat, colon of man, and the surface cells of neoplastic colon lesions of man were assayed for thymidylate synthetase and thymidine kinase activities. Cells from the proliferative region of rat jejunal mucosa were found to have higher enzyme activities than cells from the non-proliferative region. Thymidylate synthetase activity was observed to decrease as cells migrated from base to upper crypt, whereas thymidine kinase activity increased during crypt migration and then declined as cells migrated onto villi. Thymidine kinase activity also remained elevated longer than thymidylate synthetase during cell migration in colonic mucosa of rat and man. High thymidine kinase: thymidylate synthetase ratios similar to those observed in flat mucosa before cells become fully mature were found in cells removed from expanding neoplastic lesions of man.  相似文献   

16.
A multienzyme complex containing at least DNA polymerase (EC 2.7.7.7), thymidine kinase (EC 2.7.1.21), dTMP kinase (EC 2.7.4.9) nucleoside diphosphokinase (EC 2.7.4.6) and thymidylate synthetase was separated from the corresponding free enzymes of DNA precursor synthesis by gel filtration of a gently lysed preparation of HPB-ALL cells (a human lymphoblastoid cell line). The isolated incorporated the distal DNA precursors [3H]thymidine or [3H]dTMP into an added DNA template at rates comparable to those observed using the immediate precursor [3H]dTTP. Measurement of the apparent overall concentrations of [3H]dTTP produced during incorporation of [3H]thymidine and of [3H]dTMP were so low as to suggest that these precursors were channelled into DNA by the operation of a kinetically linked complex of precursor-synthesizing enzymes and of DNA polymerase. The DNA polymerase inhibitor 1-beta-D-arabinofuranosylcytosine triphosphate reduced incorporation of distal precursors into DNA. However [3H]dTTP did not accumulate in the reaction mixture. This suggested that the DNA polymerase regulated the flow of substrates through the complex. The results in this paper constitute direct evidence for the existence of multienzyme complexes of DNA synthesis in mammalian cells.  相似文献   

17.
The increases in the activity of hepatic thymidylate synthetase and thymidine kinase, which catalyzes the formation of thymidylate via the de novo and salvage pathways, respectively, were significantly suppressed 24 h after 70% partial hepatectomy in female rats administered either alpha- or beta-adrenoreceptor antagonists. The injection of beta-antagonist to male or ovariectomized female rats had no effect on the activities of these enzymes. Only alpha-adrenoceptor antagonist depressed these enzymatic activities of 24-h-regenerating liver in male and ovariectomized female rats. The decrease of the activities of thymidylate synthetase and thymidine kinase was accompanied by a concomitant reduction of DNA content in 24-h-regenerating liver. It is concluded that catecholamine regulates the female rat liver regeneration through both alpha- and beta-adrenergic pathways by the inductions of thymidylate synthase and thymidine kinase, while in adult male and ovariectomized female rats, only the alpha-mediated pathway is involved.  相似文献   

18.
The changes in activities of thymidine phosphorylase (EC 2.4.2.4), thymidine kinase (EC 2.7.1.75) and thymidylate synthetase (methylenetetrahydrofolate:dUrd-5′-P C-methyltransferase, EC 2.1.1.-) in the cerebral hemispheres of developing chick embryos were determined and compared with the course of DNA synthesis and of natural cell death in this organ. Thymidine phosphorylase activity reaches a broad maximum at the 12th to 14th day of incubation, followed by a rapid decrease. Thymidine kinase and thymidylate synthetase activities are highest at the earliest time studied (day 10) and decrease until day 14, followed by an increase from day 14 to 16 and a further decrease from day 16 through 1 day post-hatching. The rate of DNA synthesis essentially follows these activities, but the increase at day 16 is not discernible. Our previous study revealed high DNA synthesis at day 10, with natural cell death concurring on days 12-14, followed by another peak after day 16 (glial proliferation) and a decrease after day 16. It appears that thymidine phosphorylase activity reaches a maximum (days 12-14) at the time of maximum cell death, which may be correlated with the degradative function of this enzyme. This was also the time for minimum activities of thymidine kinase and thymidylate synthetase; on the other hand, these activities reach a first (day 10) and second (day 16) maximum at the time of maximum DNA synthesis; this may be correlated with the synthetic functions of these enzymes.  相似文献   

19.
K Sakka  T Watanabe  R Beers    H C Wu 《Journal of bacteriology》1987,169(8):3400-3408
We isolated a globomycin-resistant, temperature-sensitive mutant of Escherichia coli K-12 strain AB1157. The mutation mapped in dnaE, the structural gene for the alpha-subunit of DNA polymerase III. The in vivo processing of lipid-modified prolipoprotein was more resistant to globomycin in the mutant strain 307 than in its parent. The prolipoprotein signal peptidase activity was also increased twofold in the mutant, and there was a threefold increase in the activity of isoleucyl-tRNA synthetase. The results suggest that a mutation in dnaE may affect the expression of the ileS-lsp operon in E. coli. In addition, strain 307 showed a reduced level of streptomycin resistance compared with its parental strain AB1157 (rpsL31). Strain 307 was killed by streptomycin at a concentration of 200 micrograms/ml, which did not affect the rate of bulk protein synthesis in this mutant. A second mutation which was involved in the reduced streptomycin resistance in strain 307 was identified and found to be closely linked to or within the rpsD (ramA, ribosomal ambiguity) gene. Both dnaE and rpsD were required for the reduced streptomycin resistance in strain 307.  相似文献   

20.
The activities of enzymes related to deoxyribonucleic acid (DNA) synthesis were studied in uninfected L cells and in L cells infected with Chlamydia psittaci (strain meningopneumonitis). The meningopneumonitis agent multiplied normally but failed to induce the synthesis of thymidine kinase in LM (TK(-)) cells which contain no thymidine kinase in the uninfected state. It was concluded that this microorganism has no thymidine kinase of its own and that it does not depend on the functioning of the host enzyme for synthesizing its DNA. Exposure of clone 5b L cells to the meningopneumonitis agent was followed by a decline in their thymidine kinase activity to nearly zero levels, whereas the levels of uridine kinase and thymidylate synthetase remained unchanged. Inhibition of thymidine kinase activity in L cells occurred soon after infection and required new protein synthesis by the meningopneumonitis agent. This inhibition occurred before inhibition of host DNA synthesis, but it was not an essential prelude to the latter inhibition. On the basis of this and previous investigations and in light of present knowledge of the mammalian cell cycle, it was postulated that the meningopneumonitis agent inhibits macromolecular synthesis in L cells by preventing the initiation of a new cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号