首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported the isolation of two forms of cytochrome P-450 (P-450) with omega-hydroxylase activities toward prostaglandin A (PGA) and fatty acids, designated as P-450ka-1 and P-450ka-2, from kidney cortex microsomes of rabbits treated with di(2-ethylhexyl)phthalate [Kusunose, E. et al. (1989) J. Biochem. 106, 194-196]. In the present work, we have purified and characterized two additional forms of rabbit kidney fatty acid omega-hydroxylase, designated as P-450kc and P-450kd. The purified P-450kc and P-450kd had specific contents of 13 and 16 nmol of P-450/mg of protein, with apparent molecular weights of 52,000 and 55,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), respectively. Both the forms showed absorption maxima at 450 nm in the carbon monoxide-difference spectra for their reduced forms. These P-450s efficiently catalyzed the omega- and (omega-1)-hydroxylation of fatty acids such as caprate, laurate, myristate, and palmitate, in a reconstituted system containing P-450, NADPH-P-450 reductase, and phosphatidylcholine. Cytochrome b5 stimulated the reactions to only a slight extent. They had no detectable activity toward PGA and several xenobiotics tested. The two P-450s showed different peptide map patterns after limited proteolysis with papain or Staphylococcus aureus V8 protease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Two different forms of cytochrome P-450, highly active in the omega-hydroxylation of prostaglandin A, and the omega- and (omega-1)-hydroxylation of fatty acids (P-450ka-1 and P-450ka-2), have been purified from kidney cortex microsomes of rabbits treated with di(2-ethylhexyl)-phthalate. On the basis of the peptide map patterns and NH2-terminal amino acid sequence, P-450ka-1 was determined to be a new form of omega-hydroxylase cytochrome P-450, whereas P-450ka-2 is identical to P-450ka reported earlier. The first 20 NH2-terminal amino acid sequence (ALNPTRLPGSLSGLLQVAGL) and (ALSPTRLPGSFSGFLQAAGL) of P-450ka-1 and P-450ka-2 showed 90 and 80% homology with that of the lung prostaglandin omega-hydroxylase, respectively, suggesting that these three cytochromes P-450 are members of the same omega-hydroxylase cytochrome P-450 gene family.  相似文献   

3.
X X Ding  M J Coon 《Biochemistry》1988,27(22):8330-8337
Two forms of cytochrome P-450, designated P-450NMa and P-450NMb, were purified to electrophoretic homogeneity from rabbit nasal microsomes. The purified cytochromes, which contained 14-16 nmol of P-450/mg of protein, exhibited apparent monomeric molecular weights of 49,500 and 51,000, respectively. As indicated by several criteria, including the amino acid composition, absorption spectra, and peptide maps, the two nasal forms of P-450 are distinct from each other. Furthermore, as judged by the NH2-terminal amino acid sequences, they are distinct from all other P-450 cytochromes described to date. In the ferric form, P-450NMa is in the low-spin state, whereas P-450NMb is predominantly in the high-spin state. When reconstituted with NADPH-cytochrome P-450 reductase and phospholipid, P-450NMa is very active in the oxidation of ethanol as well as several nasal procarcinogens, including the N-deethylation of N-nitrosodiethylamine, the O-deethylation of phenacetin, and the N-demethylation of hexamethyl-phosphoramide. P-450NMb also metabolizes these substrates, but at lower rates. Both nasal forms are also active with testosterone, with P-450NMa oxidizing the substrate in the 17-position to give androstenedione and P-450NMb catalyzing hydroxylation in the 15 alpha-, 16 alpha-, and 19-positions. The two cytochromes represent the major portion of the total P-450 in nasal microsomes, but the corresponding forms could not be detected in hepatic microsomes.  相似文献   

4.
The microsomes of placenta and uterus from pregnant rabbits have been found to catalyze the omega-hydroxylation of PGE1, PGE2, PGF2 alpha, and PGA1 as well as the omega- and (omega-1)-hydroxylation of palmitate and myristate in the presence of NADPH. These activities were greatly inhibited by carbon monoxide, indicating the involvement of cytochrome P-450. The apparent Km for PGE1 was 2.38 microM and 2.1 microM with the placental and uterus microsomes, respectively. Cytochrome P-450 has been solubilized with 1% cholate from the placental microsomes, and partially purified by chromatography on 6-amino-n-hexyl Sepharose 4B, DEAE-Sephadex A-50 and hydroxylapatite columns. The partially purified cytochrome P-450 efficiently catalyzed the omega-hydroxylation of various prostaglandins such as PGE1, PGE2, PGF2 alpha, PGD2, and PGA1 in a reconstituted system containing NADPH-cytochrome P-450 reductase, cytochrome b5, and phosphatidylcholine. The reconstituted system also hydroxylated palmitate and myristate at the omega- and (omega-1)-position, but could not hydroxylate laurate. These catalytic properties resemble those of a new form of cytochrome P-450 highly purified from the lung microsomes of progesterone-treated rabbits (Yamamoto, S., Kusunose, E., Ogita, K., Kaku, M., Ichihara, K., and Kusunose, M. (1984) J. Biochem. 96, 593-603). This type of cytochrome P-450, viz., cytochrome P-450 with high prostaglandin omega-hydroxylase activity may play a role in the regulation of prostaglandin levels in pregnancy.  相似文献   

5.
Prostaglandin omega-hydroxylase, designated as cytochrome P-450 LPG omega (P-450 LPG omega), has been purified, to a specific content of 15 nmol of cytochrome P-450/mg of protein, from liver microsomes of pregnant rabbits. The purified P-450 LPG omega was found to be homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and to have an apparent molecular weight of 52,000. The enzyme showed a maximum at 450 nm in the carbon monoxide (CO)-difference spectrum for its reduced form. This cytochrome P-450 efficiently catalyzed the omega-hydroxylation of prostaglandin E1 (PGE1), prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), prostaglandin F2 alpha (PGF 2 alpha), prostaglandin A1 (PGA1), and prostaglandin A2 (PGA2), as well as the omega- and (omega-1)-hydroxylation of myristate and palmitate, in a reconstituted system containing cytochrome P-450, NADPH-cytochrome P-450 reductase, phospholipid, and cytochrome b5. Various monovalent and divalent cations further stimulated these reactions in the presence of cytochrome b5. In addition, the reactions were also markedly enhanced by various organic solvents, such as ethanol and acetone. This cytochrome P-450 showed no detectable activity toward several xenobiotics tested. P-450 LPG omega was very similar or identical to the pulmonary prostaglandin omega-hydroxylase (P-450p-2) (Yamamoto, S., Kusunose, E., Ogita, K., Kaku, M., Ichihara, K., & Kusunose, M. (1984) J. Biochem. 96, 593-603) in its molecular weight, absorption spectra, catalytic activity, peptide mapping pattern, and N-terminal amino acid sequence. However, P-450 LPG omega was more unstable than P-450p-2 on storage. In sharp contrast to P-450p-2, P-450 LPG omega was not induced by progesterone.  相似文献   

6.
Two forms of cytochrome P-450 (P-450), designated P-450 k-1 and P-450 k-2, have been purified about 100-fold from rat kidney cortex microsomes. P-450 k-1 and P-450 k-2 have monomeric molecular weights of 51,500 and 52,000, respectively, on sodium dodecyl sulfate(SDS)-polyacrylamide gel electrophoresis. Absolute spectra of the oxidized forms indicate that P-450 k-1 is largely in the low-spin state and partly in the high-spin state, and that P-450 k-2 is essentially all in the former. The absorption maxima in reduced carbon monoxide difference spectra are at 450.5 and 451 nm with P-450 k-1 and P-450 k-2, respectively. The two P-450s catalyze the omega- and (omega-1)-hydroxylation of fatty acids such as caprate, laurate, myristate, and palmitate, although P-450 k-1 exhibits a higher specific activity with all fatty acids tested. In addition, P-450 k-1 is capable of hydroxylating prostaglandin (PG) A1 and A2 at the omega-position, whereas P-450 k-2 has no activity toward PGs. These activities are all stimulated by addition of cytochrome b5. The two P-450s give different peptide map patterns when partially digested with Staphylococcus aureus V8 protease or papain.  相似文献   

7.
Cytochrome P-450 which catalyzes the 7 alpha-hydroxylation of cholesterol was purified from liver microsomes of untreated rabbits. The minimum molecular weight of the cytochrome P-450 was estimated to be 48,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The preparation contained 7 nmol of cytochrome per mg of protein. The oxidized form of the P-450 showed absorption maxima at 568, 535, and 417 nm, which are characteristic of a low spin hemoprotein, while the reduced form showed maxima at 545 and 413 nm. The carbon monoxide complex of the reduced form showed maxima at 550 and 447 nm. The cholesterol 7 alpha-hydroxylase system of untreated rabbit liver microsomes was reconstituted with the purified P-450, NADPH-cytochrome P-450 reductase, and cytochrome b5. The P-450 catalyzed the 7 alpha-hydroxylation of cholesterol 500 times more efficiently than the starting microsomes. The reconstituted hydroxylase system showed a substantial salt dependency. In the presence of cytochrome b5 the activity was maximum at 0.4 M KCl (4.55 nmol product formed/mg of protein per min), whereas in the absence of cytochrome b5 the activity was marginal (0.65 nmol product formed/mg of protein per min) and inhibited by KCl. Thus, cytochrome b5 stimulated the hydroxylase activity by one order of magnitude. These results indicate that cytochrome b5 is an essential component of the cholesterol 7 alpha-hydroxylase system of untreated rabbit liver microsomes.  相似文献   

8.
Two forms of cytochrome P-450 with different substrate specificities were isolated from liver microsomes of rabbits treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). A specific antibody was produced toward the major form of the cytochrome. The antibody inhibits microsomal acetanilide hydroxylation (80%). It does not cross-react with the minor fraction of the cytochrome or inhibit the hydroxylation of 3,4-benzpyrene or coumarin, the N-demethylation of aminopyrine or the O-deethylation of 7-ethoxycoumarin catalyzed by rabbit liver microsomes. The major form has an estimated Mr = 54,000 and displays an n-octylamine difference spectrum with an absorption maximum at 426 nm and a minimum at 391 nm. When reconstituted, this cytochrome catalyzes acetanilide hydroxylation at a higher rate than microsomes or the minor fraction. The n-octylamine difference spectrum of the minor fraction displays an absorption maximum at 431 nm and a minimum at 410 nm. When reconstituted, this fraction catalyzes the hydroxylation of 3,4-benzpyrene and the O-deethylation of 7-ethoxycoumarin. The two cytochromes appear to be distinct entities and function in different catalytic pathways.  相似文献   

9.
Three forms of cytochrome P-450, tentatively designated P-450(M-1), P-450(M-2), and P-450(M-3), and one form of cytochrome P-450, P-450(F-1), were purified from the liver microsomes of untreated male and female rats, respectively. Each purified form of the cytochrome showed a single protein band on SDS-polyacrylamide gel electrophoresis, and gave a minimum molecular weight of 51,000 for P-450(M-1), 48,000 for P-450(M-2), 49,000 for P-450(M-3), and 50,000 for P-450(F-1). The carbon monoxide-difference spectra of reduced P-450(M-1), P-450(M-2), P-450(M-3), and P-450(F-1) showed an absorption maximum at 451, 451, 448, and 449 nm, respectively. Judging from the absolute absorption spectra, the four forms of cytochrome P-450 were of low-spin type in the oxidized forms. The antibodies against P-450(M-2) did not crossreact with the other forms in the Ouchterlony double diffusion test, whereas the immunodiffusion test showed immunocrossreactivity between P-450(M-1) and P-450(F-1), P-450(M-1) and P-450(M-3), and P-450(M-3) and P-450(F-1). The NH2-terminal amino acid sequences of the four forms confirmed that they were different molecular species, although significant homology was noticed among P-450(M-1), P-450(M-3), and P-450(F-1). The quantitation of P-450(M-1) and P-450(F-1) in liver microsomes by quantitative immunoprecipitation confirmed that these two forms of cytochrome P-450 were developmentally induced in male and female rats, respectively. P-450(M-2) was also developmentally induced in male rats. In a reconstituted system containing NADPH and NADPH-cytochrome P-450 reductase, P-450(M-1) oxidized benzphetamine at a high rate, whereas the other forms had low activity toward benzphetamine. None of the four forms showed high activity toward benzo(a)pyrene. P-450(M-1) catalyzed the hydroxylation testosterone at the 16 alpha and 2 alpha positions, whereas P-450(M-2) catalyzed the 15 alpha hydroxylation of the same substrate.  相似文献   

10.
We have purified two distinct isoforms of mitochondrial cytochrome P-450 from beta-naphthoflavone (beta-NF)-induced rat liver to greater than 85% homogeneity and characterized their molecular and catalytic properties. One of these isoforms showing an apparent molecular mass of 52 kDa is termed P-450mt1 and the second isoform with 54-kDa molecular mass is termed P-450mt2. Cytochrome P-450mt2 comigrates with similarly induced microsomal P-450c (the major beta-NF-inducible form) on sodium dodecyl sulfate-polyacrylamide gels and cross-reacts with polyclonal antibody monospecific for cytochrome P-450c. Cytochrome P-450mt2, however, represents a distinct molecular species since it failed to react with a monoclonal antibody to P-450c and produced V8 protease fingerprints different from P-450c. Cytochrome P-450mt1, on the other hand, did not show any immunochemical homology with P-450c or P-450mt2 as well as partially purified P-450 from control mitochondria. Electrophoretic comparisons and Western blot analysis show that both P-450mt1 and P-450mt2 are induced forms not present in detectable levels in control liver mitochondria. A distinctive property of mitochondrial P-450mt1 and P-450mt2 was that their catalytic activities could be reconstituted with both NADPH-cytochrome P-450 reductase as well as mitochondrial specific ferredoxin and ferredoxin reductase electron transfer systems, while P-450c showed exclusive requirement for NADPH-cytochrome P-450 reductase. Cytochromes P-450mt1 and P-450mt2 were able to metabolize xenobiotics like benzo(a)pyrene and dimethyl benzanthracene at rates only one-tenth with cytochrome P-450c. Furthermore, P-450mt1, P-450mt2, as well as partially purified P-450 from control liver, but not P-450c, showed varying activities for 25- and 26-hydroxylation of cholesterol and 25-hydroxylation of vitamin D3. These results provide evidence for the presence of at least two distinct forms of beta-NF-inducible cytochrome P-450 in rat hepatic mitochondria.  相似文献   

11.
Two forms of cytochrome P-450 (P-450) from liver microsomes of hamsters treated with 2,3,4,7,8-pentachlorodibenzofuran (PenCDF), which possesses the potent acute toxicity and 3-methylcholanthrene (MC)-type inducing ability of liver microsomal monooxygenases in animals, were purified and characterized. These P-450 forms, designated as hamster P-450H and hamster P-450L, had the molecular masses of 52 and 50 kDa, respectively, and showed the absorption maximum of CO-reduced difference spectra at 446 nm. The absolute spectra of their oxidized forms indicated that hamster P-450H was in high-spin state and hamster P-450L was in low-spin state. A part of PenCDF injected into hamster was tightly bound to purified hamster P-450H at a ratio of 0.107 nmol PenCDF/nmol P-450. In a reconstituted system, both hamster P-450H and hamster P-450L showed relatively low catalytic activities for 3-hydroxylation of benzo[a]pyrene and O-deethylations of both 7-ethoxyresorufin and 7-ethoxycoumarin, while they both catalyzed 7 alpha- and 2 alpha-hydroxylations of testosterone effectively to a similar extent. Addition of cytochrome b5-to a reconstituted system accelerated the formation of 7 alpha-hydroxytestosterone 5.3-fold with hamster P-450L and 2.2-fold with hamster P-450H. In addition, hamster P-450H catalyzed estradiol 2-hydroxylation at a high rate but hamster P-450L did not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Three cytochrome P-450 preparations, designated as cytochrome P-450ca, cytochrome P-450cb, and cytochrome P-448c fraction, were separated and purified about 23-, 50-, and 29-fold, respectively, from the cholate extracts of rabbit colon mucosa microsomes. Their specific contents were 1.2, 2.6, and 1.5 nmol of cytochrome P-450 per mg of protein, respectively. Cytochrome P-450ca and cytochrome P-450cb migrated as heme-containing polypeptide bands with molecular weights of about 53,000 and 57,000, respectively, on SDS-polyacrylamide gel electrophoresis. The CO-reduced difference spectra of cytochrome P-450ca, cytochrome P-450cb, and cytochrome P-448c fraction showed maxima at 451, 450, and 449 nm, respectively. Cytochrome P-450ca efficiently catalyzed the omega-hydroxylation of prostaglandin A1 (PGA1) and the omega- and (omega-1)-hydroxylation of caprate, laurate, and myristate in the reconstituted system containing cytochrome P-450ca, NADPH-cytochrome P-450 reductase, cytochrome b5, and phosphatidylcholine. In contrast, cytochrome P-450cb and cytochrome P-448c fraction had no detectable activity toward PGA1 and fatty acids. Both catalyzed aminopyrine and benzphetamine N-demethylation. Cytochrome P-448c fraction also hydroxylated benzo(a)pyrene, and phosphatidylinositol or phosphatidylserine exhibited a stimulatory effect on this activity. The results show that rabbit colon microsomes contain catalytically different cytochrome P-450, one of which is specialized for the omega-oxidation prostaglandins, the others being involved in the metabolism of exogenous compounds such as drugs and polycyclic hydrocarbons.  相似文献   

14.
Cytochrome P-450-dependent prostaglandin omega-hydroxylation is induced over 100-fold during late gestation in rabbit pulmonary microsomes (Powell, W.S. (1978) J. Biol. Chem. 253, 6711-6716). Purification of cytochromes P-450 from lung microsomes of pregnant rabbits yielded three fractions. Two of these fractions correspond to rabbit lung P-450I (LM2) and P-450II (LM5), which together constitute 70-97% of total cytochrome P-450 in lung microsomes from nonpregnant rabbits. The third form, which we designate rabbit cytochrome P-450PG-omega, regioselectively hydroxylates prostaglandins at the omega-position in reconstituted systems with a turnover of 1-5 min-1. Titration with purified pig liver cytochrome b5, demonstrated a 4-fold maximum stimulation at a cytochrome b5 to a P-450 molar ratio of 1-2. Rabbit lung P-450PG-omega formed a typical type I binding spectrum upon the addition of prostaglandin E1 with a calculated K8 of 1 microM, which agreed reasonably well with the kinetically calculated Km of 3 microM. Cytochrome P-450PG-omega was isolated as a low-spin isozyme with a lambda max (450 nm) in the CO-difference spectrum distinguishable from P-450I (451 nm) and P-450II (449 nm). Sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis demonstrated that although purified P-450PG-omega had a relatively low specific content (12.1 nmol mg-1), it appeared homogeneous with a calculated minimum Mr of 56,000, intermediate between rabbit LM4 and LM6. When lung microsomes from pregnant and nonpregnant rabbit were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a protein band, with a Mr identical to P-450PG-omega, was observed in the pregnant rabbit, whereas this band appeared to be very faint or absent in microsomes from the nonpregnant rabbit. Purification of cytochromes P-450 from nonpregnant rabbit lung yielded only P-450I and P-450II. P-450PG-omega appears to be a novel rabbit P-450, possessing high activity towards omega-hydroxylation of prostaglandins, and is greatly induced during pregnancy in rabbit lung.  相似文献   

15.
Purification of a new cytochrome P-450 from human liver microsomes   总被引:3,自引:0,他引:3  
Using a classical methodology of purification consisting of three chromatographic steps (Octyl-Sepharose, DEAE-cellulose, CM-cellulose) we have purified a new cytochrome P-450 from human liver microsomes. It was called cytochrome P-450(9). It has been proven to be different from all precedingly purified human liver microsomal cytochrome P-450 isozymes by its immunological and electrophoretical properties. It does not cross-react with any rat liver cytochrome P-450 and anti-cytochrome P-450(9) does not recognize rat liver microsomes; thus this cytochrome P-450(9) is specific to humans. This cytochrome P-450 isozyme exists in low amounts in human liver microsomes and exhibits an important quantitative polymorphism. In reconstituted system, cytochrome P-450(9) is able to hydroxylate all substrates tested but is not specific of any; its exact role in xenobiotic metabolism in man remains to be elucidated.  相似文献   

16.
Untreated monkey liver cytochrome P-450 (monkey P-450) has been purified to a specific content of 14.9 n mole/mg protein. The purified preparation was apparently homogeneous and the minimum molecular weight was estimated to be 50,000 by SDS-PAGE. Absolute spectrum of the oxidized form showed peaks at 565, 535 and 417 nm. The monkey P-450 was active in the mixed function oxidation of benzphetamine, aminopyrine, ethylmorphine, aniline and 7-ethoxycoumarin in the presence of rat liver NADPH-cytochrome P-450 reductase and DLPC. Anti monkey P-450 IgG could not inhibit rat P-450s (PB P-450, MC P-448(1) and MC P-448(2] catalyzed 7-ethoxycoumarin O-deethylation activities.  相似文献   

17.
A purified low-spin form of cytochrome P-450 was isolated from phenobarbital-induced rabbit liver microsomes. The preparation was functionally active and free from cytochromes b5 and P-420 and phospholipids. The specific content of the cytochrome was 18 nmoles per mg of protein. At the molecular weight of the hemoprotein of 50,000, it corresponds to 90% of purification. The purified hemoprotein binds substrates of type II and some substrates of type I. The complexes formed reveal spectral properties, similar to those for the complexes of these substrates with the microsomal form of cytochrome P-450.  相似文献   

18.
The "major" phenobarbital (PB)-induced cytochrome P-450 species present in livers of male Sprague-Dawley rats was resolved into two catalytically active heme-protein fractions on diethylaminoethyl cellulose. The two species, P-450 PB-4 (Mr = 49,000) and P-450 PB-5 (Mr = 51,000), were purified to homogeneity, and their chromatographic, spectral, catalytic, and structural properties were compared. P-450 BP-5 eluted earlier on hydroxylapatite and exhibited a more significant cholate-induced Type I spectral shift than P-450 BP-4. Very similar substrate specificity profiles were evident when the two isozymes were reconstituted with lipid, cytochrome P-450 reductase, and cytochrome b5 for oxidative metabolism of several xenobiotics, although P-450 PB-4 exhibited a higher specific catalytic activity (greater than or equal to 5-fold) with all substrates tested. Marked differences were also observed in the sensitivities of both isozymes to several P-450 inhibitors. In addition, P-450 PB-4 was greater than or equal to 10-fold more susceptible than P-450 PB-5 to suicide inactivation by two allyl-containing compounds, allylisopropylacetamide and secobarbital, providing a possible explanation of the previously observed partial inactivation by such compounds of phenobarbital-induced P-450 activity in liver microsomes. One-dimensional peptide maps of the two isoenzymes were highly similar. Antibody raised against purified Long Evans rat liver P-450b (Thomas, P. E., Korzeniowski, D., Ryan, D., and Levin, W. (1979) Arch. Biochem. Biophys. 192, 524-532) cross-reacted with P-450 PB-4 and P-450 PB-5. NH2-terminal sequence analysis demonstrated that the first 31 residues of both PB-4 and PB-5 were identical. These sequences indicated that a highly hydrophobic terminal segment, observed previously for other P-450s as well, is followed by a cluster of basic residues, suggesting that the NH2-terminal portion of these P-450s might be involved in membrane anchoring. Although it is unclear whether P-450 PB-4 and P-450 PB-5 are separate gene products or are related by post-translational modifications, this present demonstration of closely related isozymic forms suggests the possible added complexity of microheterogeneity for this family of microsomal monooxygenases.  相似文献   

19.
Cytochrome P-450 was purified from phenobarbital-treated guinea pigs to a specific content of 19.8 nmoles per mg of protein, and was free of cytochrome b5 and NADPH-cytochrome c reductase. The purified cytochrome P-450 gave a single protein band on sodium dodecylsulfate-polyacrylamide gel electrophoresis, and an apparent molecular weight of about 49,000 was estimated. Benzphetamine N-demethylation activity could be reconstituted by mixing the purified cytochrome, NADPH-cytochrome c reductase and phosphatidylcholine.  相似文献   

20.
This laboratory has previously reported the occurrence in rabbit liver microsomes of a non-inducible form of cytochrome P-450, designated P-450lm3b because of its electrophoretic mobility relative to that of phenobarbital-inducible P-450lm2 and 5,6-benzoflavone-inducible P-450lm4. In the present study, P-450lm3b was purified to electrophoretic homogeneity and a specific content of over 19 nmol per mg of protein by chromatographic procedures carried out in the presence of detergents. The isolated cytochrome has a minimal molecular weight of 52,000 and exhibits absorption maxima at 418, 537, and 571 nm in the oxidized state, 412 and 547 nm in the reduced state, and 451 and 555 nm as the CO complex. In a reconstituted system containing NADPH-cytochrome P-450 reductase and phosphatidylcholine, P-450lm3b has relatively high activity in the hydroxylation of testosterone in the 6β and 16α positions as well as significant activity toward a number of other substrates tested. The NADPH oxidase activity of P-450lm3b is less than half that of P-450lm2 and lm4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号