首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mice pretreated with an intravenous (i.v.) injection of BCG (BCG-sensitized mice) and then immunized intravenously with a high dose (10(8)--10(9)) of sheep red blood cells (SRBC) 2 weeks later developed strong delayed-type hypersensitivity (DTH) to SRBC, as in mice pretreated with cyclophosphamide (CY) (CY-treated mice) and then immunized with SRBC 2 days later; normal mice given the same dose of SRBC did not show such DTH. The mechanism of this strong DTH to SRBC which developed in BCG-sensitized mice was studied, by comparing it with that in CY-treated mice. The transfer of either whole spleen cells or thymus cells, but not serum, obtained from mice immunized with i.v. injections of 10(9) SRBC 4 days previously (hyperimmune mice) did not suppress either the induction or the expression of DTH to SRBC in BCG-sensitized mice, but suppressed those in CY-treated mice. The suppressor cells were SRBC-specific T cells. Adoptive transfer of DTH to SRBC by spleen cells from either BCG-sensitized mice of CY-treated mice to hyperimmune recipients failed. The adoptive transfer of DTH from BCG-sensitized mice to normal recipients also failed if the spleen cells from hyperimmune mice were cotransferred. Whole body irradiation (600 rad) of mice 2 hr before or after the time of immunization with SRBC reduced significantly DTH to SRBC in both BCG-sensitized and CY-treated mice. It was noticed that the total number of spleen cells in BCG-sensitized mice was 3--4 times larger than that in CY-treated mice. From these results, we conclude that the entity of effector T cells of DTH to SRBC induced in BCG-sensitized mice and in CY-treated mice was not different in terms of susceptibility to suppressor T cells and irradiation, but that the total numbers of effector T cells generated in these mice differed remarkably, resulting in the above-described different responsiveness to suppressor T cells transferred passively.  相似文献   

2.
Mice injected intravenously with 1 X 10(9) sheep red blood cells (SRBC) showed no delayed-type hypersensitivity (DTH) response to SRBC and were unresponsive to DTH induction by sc injection of an optimal dose of SRBC. However, when treated with T-2 toxin, a mycotoxin, 2 days after the iv injection, mice became to show significant DTH response and to be responsive to the DTH induction by the sc injection. When the spleen cells of the mice receiving the iv injection were transferred to unsensitized syngeneic recipients, the DTH response of the recipients to SRBC was suppressed. However, the suppressor activity of the spleen cells was decreased by T-2 toxin treatment. By the iv injection, cell population of the spleen was increased and that of the thymus decreased. In contrast, by T-2 toxin treatment 2 days after the iv injection, cell population of the spleen was not increased and that of the thymus was markedly decreased. The ratio of theta-bearing cells was increased in the spleen by the iv injection. However, such increase was not observed after the T-2 toxin treatment. The ratio of Ig-bearing cells in the spleen was not changed by the iv injection and the T-2 toxin treatment after the iv injection. T-2 toxin seems to interfere with generation of suppressor cells for the DTH response.  相似文献   

3.
A delayed-type hypersensitivity (DTH) reaction can be elicited by an injection of 10(8) sheep red blood cells (SRBC) into a rear footpad of conventional (CV) mice previously immunized with small doses of SRBC. In contrast, immunization of germ-free (GF) mice with the same doses of SRBC produced no DTH when immunization was by the intravenous (i.v.) route, and only weak reactions when immunization was by the subcutaneous (footpad) route. Varying the immunizing dose of SRBC, or the time at which DTH was elicited, did not produce a state of DTH responsiveness in i.v. immunized GF mice. However, the transfer of lymphocytes from CV mice, immunized 4 to 5 days previously with SRBC, into GF mice, conferred on GF mice the capacity to express DTH. Although DTH was not readily demonstrable in GF mice immunized with SRBC, they nevertheless produced normal levels of hemagglutinating antibody to SRBC. Finally, it was shown that GF mice could generate a normal DTH response to SRBC if they were first monoassociated with a Gram-negative bacterial flora.  相似文献   

4.
Administration to mice of 10(5) syngeneic splenocytes modified with trinitrobenzene sulfonic acid leads to the formation of a population of T suppressors which are capable to sorb on a specific antigen. In recipients, these cells suppress only one phase of the induction of delayed type hypersensitivity (DTH). Their precursors are sensitive to the action of low doses of cyclophosphamide. The formation of the suppressors in question occurs during the generation of T effectors of DTH. It is suggested that the suppressors described may be attributed to Tc3 which are activated in the lymph nodes as a result of subcutaneous sensitization with antigen, and which are similar to Tc1 but have the Ly 2+ phenotype.  相似文献   

5.
Ly-2+ effectors of T cell-mediated suppression require inducing signals from antigen and a helper cell bearing the Ly-1+:Qa1+ surface phenotype. In this report, we have further examined the helper cell requirements for suppressor cell induction of antibody production in mice. By using the T cell subset education procedure in vitro, we have activated T cells to sheep red blood cells (SRBC) antigens and then purified Ly-2 cells before testing for suppressor activity in assay cultures of defined T and B cell subsets. We have confirmed our previous observations that Ly-1+:Qa1+ cells are required for activation of T suppressors, but have found that under the appropriate conditions, there is not a strict requirement for the Ly-123 subset of T cells. Furthermore, if Ly-23 cells are stimulated in the presence of Ly-1+:Qa1- T cells, effective suppressors can be obtained only if a source of Ly-1:Qa1+ inducers is added to the assay culture. If Ly-23 cells are activated by antigen in the absence of Ly-1 cells, subsequent exposure to the Ly-1+:Qa1+ subset under the conditions tested here is not sufficient to activate suppressors. These results show that effectors of suppression, like B cells and cytotoxic T lymphocytes, may respond to two helper cells.  相似文献   

6.
Suppressor cells for delayed footpad reaction (DFR) against syngeneic testicular cells (TC) were detected in the spleen cells of donor mice immunized intravenously (iv) with viable syngeneic TC. Cyclophosphamide (CY)-pretreated recipients were given spleen cells from donors iv, immunized subcutaneously (sc) with syngeneic TC, and the footpad reaction at 24 hr was elicited with syngeneic TC 6 days after immunization. DFR in the recipients was suppressed by the transfer of spleen suppressor cells. The suppressor cells induced were Thy-1+, CY-sensitive, adult thymectomy (ATx)-resistant and act only at the induction stage. They directly suppress the generation of effector T cells for delayed-type hypersensitivity (DTH). When mice pretreated with CY were actively immunized with syngeneic TC, DFR could be provoked to a measurable level only when they were immunized sc. However, peritoneal exudate cells of those tolerant mice immunized sc without CY pretreatment or immunized iv with CY pretreatment also passively transferred DFR locally, suggesting the existence of effector T cells for DTH even in tolerant mice.  相似文献   

7.
Immunization of mice with sheep red blood cells (SRBC) can induce the capacity to react with a secondary delayed-type hypersensitivity (DTH) immune response upon a booster injection of the antigen. In this paper the kinetics of secondary DTH after intravenous (iv) immunization with various doses of SRBC was studied by means of the foot swelling test. Dose-response studies showed that maximal secondary DTH responsiveness was obtained by iv administration of a priming dose of 3 × 104 SRBC and a booster dose of 3 × 105 SRBC 2 months later. Secondary DTH in such treated mice was characterized by an earlier appearance of the state of DTH, an earlier peak reactivity, and an increased intensity of the DTH response as compared to the primary DTH response. Up to 1 year after priming, a secondary DTH could be elicited, indicating the long-lived character of this memory phenomenon. With increasing intervals between the priming and booster injection, a gradual shift to a later time, of the peak secondary DTH reactivity was found. The capacity of primed mice to react with an increased intensity upon a booster injection could be adoptively transferred into lethally irradiated recipients by means of spleen cells obtained from primed mice. This phenomenon appeared to be highly dependent on Thy 1.2+ cells and on the booster dose of SRBC. The DTH reaction, evoked in such recipients, showed a prolonged time course.  相似文献   

8.
Subcutaneous (sc) hind-foot immunization (HFI) of mice with allogeneic spleen cells can induce a state of delayed-type hypersensitivity (DTH) as well as a state of suppression of DTH. This paper deals with the suppression induced by HFI. The state of suppression could be adoptively transferred by spleen cells and lymph node cells between Days 3 and 7 after HFI only. However, in the hind-foot-immunized mice the state of suppression lasted at least 25 days. The suppressor cells expressed the Thy-1+, Lyt-1-2+ phenotype and suppressed DTH antigen-specifically. The suppressor cells, however, also suppressed DTH responses to unrelated third-party alloantigens, provided the latter were administered during the induction of DTH together with the same alloantigens that were used for HFI. The HFI-induced T-suppressor cells suppressed the induction phase of DTH (i.e., the proliferative activity of the draining lymph node cells after secondary sc immunization), but not the expression phase of DTH (i.e., the activity of previously activated DTH effector T cells). H-2D compatibility between the donors of the HFI-induced T-suppressor cells and the recipients was required for the adoptive transfer of suppression. The differences in effect of local immunization versus systemic immunization on the induction and functional activity of T-suppressor cells are discussed.  相似文献   

9.
10.
CBA mice were immunized with sheep red blood cells (SRBC) to obtain immune spleen cells (ISc) which were used to suppressor cells. Administration of ISC to intact syngeneic recipients on the immunization day led to a more powerful suppression of the immune response as compared to that seen one day after antigen injection. Four days after immunization the animals' immune response was not liable to be suppressed. ISC extract possessed similar effects with respect to the immune response of normal spleen cells which were transplanted to the cyclophosphamide-treated recipients. The immune response of spleen cells from mice immunized with SRBC in a dose of 10(6) was less liable to be suppressed. Hyperimmune spleen cells from donors immunized with SRC in a dose of 10(9) were insensitive to ISC or to the extract. Experiments with the use of adoptive transfer of a mixture of immune and intact T- and B-cells have disclosed that B-cells from hyperimmune donors were resistant to suppression. Therefore, B-lymphocytes are the most probable target cells exposed to T-suppressors in the given system. The mechanism is discussed of the selective effect of T-suppressors on B-cells in the course of the immune response development during immunization with high doses of antigen.  相似文献   

11.
Injection of 6 X 10(9) sheep red blood cells (SRBC) to mice led to parallel formation, on days 4-5, of delayed hypersensitivity effector cells (the activity was tested in local transfer experiments) and delayed hypersensitivity T-suppressors preventing sensitization of syngeneic recipients. After massive injection of SRBC the activity of spleen suppressors gave 2 peaks: on days 5 and 14. Five days after massive antigen injection only T-cells capable of sorbing on a specific antigen manifested suppressor activity. On day 14 T-cells capable of sorbing on specific antibodies showed a specific activity, whereas T-cells capable of sorbing on a specific antigen retained only part of their activity. The mechanism of delayed hypersensitivity inhibition following massive antigen injection by suppressors obtained by day 5 is reviewed in terms of Germain and Benacerraf's theory postulating that delayed hypersensitivity is regulated by Ly 2+, I-J+ antiidiotypic suppressors capable of sorbing on specific antibodies and formed upon injection of Ly 1+, I-J+, Id+ inductor cells capable of sorbing on a specific antigen.  相似文献   

12.
The elimination of suppressor cells by aclacinomycin, which could be the mechanism by which immune responses are enhanced after its administration, was studied in mice in which tolerance had been induced by the injection of high doses of sheep red blood cells (SRBC). We observed that tolerance could not be induced in aclacinomycin-treated mice, and that aclacinomycin inhibited the expression of tolerance to SRBC. This drug also diminished the capacity of spleen cells from SRBC-tolerant mice to inhibit the response of normal animals upon adoptive transfer, indicating that suppressor cells had been eliminated from the tolerant spleen cell population. The efficiency of the elimination of suppressor cells for DTH reactions appears greater than that of suppressor cells for plaque-forming cell responses.  相似文献   

13.
The delayed-type hypersensitivity (DTH) reaction, a peripheral expression of cell-mediated immunity is still a crucial in vivo immunological test. Nevertheless, the biological significance of its time course remains unclear. Thus, an exhaustive study of DTH was undertaken in mice immunized with increasing doses of sheep red blood cells (SRBC) inoculated intravenously (iv) or subcutaneously. The results showed that overall DTH reactions peaked at 18 hr except in mice iv immunized with the lowest doses (10(5) and 10(6)) and elicited at Day 4. The protracted DTH reaction was shown to be associated with an histological picture of tuberculin-type reaction. A part of the 18-hr DTH reaction is mediated by serum in mice inoculated with large doses of SRBC; nevertheless, numeration by limiting dilution analysis of circulating DTH cells showed that the frequency of these cells correlates with the 18-hr DTH level. The protracted DTH shown at 42 and 48 hr, 4 days after immunization with 10(5) and 10(6) SRBC, could not be transferred in naive recipients with immune spleen cells; it was independent of the antigen life span and did not result from immunization modulation at the bone marrow level on recruitable cells.  相似文献   

14.
The mouse antiserum against isologous aggregated immunoglobulins (MAAS) injected to mice sensitized with 10(5) sheep red blood cells (SRBC) did not influence the delayed-type hypersensitivity (DTH) tested on the peak of sensitization (the 4th day) but enhanced significantly DTH tested on the 6th day. MAAS completely abolished the DTH suppression observed after sensitization with 5 x 10(7) SRBC. In transfer experiments the number of the DTH suppressor cells decreased in the spleen of sensitized mice under the MAAS action. MAAS did not affect the proliferation of antibody-forming cells (AFC) and hemagglutinin production but reduced by 70% the number of rosette-forming cells (RFC) in the spleen on the peak of the initial immune response. The data obtained may indicate that RFC participate in DTH suppression.  相似文献   

15.
Mice immunized with glutaraldehyde-fixed sheep red blood cells (G-SRBC) show delayed-type hypersensitivity (DTH) reactions to G-SRBC or SRBC. The specificity of the DTH reaction of mice sensitized with glutaraldehyde-fixed antigens is similar to that found after sensitization with unfixed antigens. The dose-response curve for sensitization by glutaraldehyde-fixed SRBC was very different from the curve for normal SRBC. At low doses, both antigens were effective in sensitizing to show DTH but neither induced an antibody response. However, at high antigen doses, only the glutaraldehyde-fixed antigen was efficient in sensitizing to show DTH and it failed to raise an antibody titer. Spleen cells of mice sensitized with fixed RBC can transfer DTH locally but if the donor cells are irradiated (500 R), the transfer is abrogated. In contrast, the transfer of DTH by spleen cells of mice immunized with unfixed antigen is not affected by 500 R. The transfer of DTH by spleen cells of mice immunized with fixed antigen can be blocked by “in vitro desensitization” while the transfer of DTH by spleen cells from mice primed with normal antigen is resistant to “in vitro desensitization.” These results suggest that immunization of mice with different physical states of the same antigen can result in the activation of antigen-specific T cells which exhibit markedly different properties.  相似文献   

16.
Suppressor T cells of humoral immune responses, effector T cells mediating DTH, suppressor T cells of DTH, and helper T cells of humoral immune responses, all with specificity to SRBC, were produced in mice. The biologic activity was tested in adoptive transfer experiments. In vitro treatment with different doses of 4-hydroperoxycyclophosphamide (4-HPCy) yielded the result that the various activities tested were not uniformly sensitive to the action of this drug: Suppressor T cells of humoral immune responses and effector T cells mediating DTH were resistant to doses of 4-HPCy that eliminated the activities of suppressor T cells of DTH and helper cells of the humoral immune response. These findings help to explain the various effects cyclophosphamide has on the in vivo immune response and may help to form a basis for the rational manipulation of the immune response by drugs that selectively affect different subgroups of immune cells.  相似文献   

17.
The responsiveness of BALB/c mice to protective i.v. immunization with 150,000-rad irradiated or heat-killed Leishmania major promastigotes can be totally suppressed by prior subcutaneous (s.c.) injection of the same "vaccine." Induction of this effect is leishmania specific for although prevention of protection against L. major infection can be obtained with either homologous or Leishmania donovani promastigotes, it does not follow s.c. administration of an immunogenic Trypanosoma cruzi epimastigote preparation. Multiple s.c. injections of irradiated L. major promastigotes do not inhibit the subsequent antibody response of any major isotype to i.v. immunization, but rather induce some priming. The same s.c. injections induced delayed-type hypersensitivity (DTH) reactivity that could be transferred locally or systemically, although it was weaker than in mice with cured infections. Parallel cell-mediated immunity (CMI) responses were also reflected in vitro in specific lymphocyte transformation assays. Despite this evidence of a DTH/helper type of T cell response, transfer of 5 X 10(7) viable T cell-enriched spleen cells from 4 X s.c. immunized donors to normal recipients completely abrogated the protective response to i.v. immunization. Conversely, T cell-depleted (anti-Thy-1.2 + C treated) cells were without effect. The inhibitory T cells were defined by monoclonal antibody pretreatment as possessing an Lyt-1+2-,L3T4+ phenotype. T cells from s.c. immunized donors were also shown, by mixed transfer experiments, to counteract completely the protective effect of T cells from i.v. immunized donors in 550-rad irradiated recipients. They were as potent as suppressor T cells from donors with progressive disease both in this capacity and in abrogating the prophylactic effect of sublethal irradiation itself. The similarities and differences between suppressor and immune effector T cells induced by s.c. or i.v. immunization and those arising in response to leishmanial infection itself are discussed.  相似文献   

18.
Delayed-type hypersensitivity (DTH) to Listeria monocytogenes was measured in rats that were recipients of syngeneic, semisyngeneic, and allogeneic immune thoracic duct lymphocytes (TDL). DTH could be transferred only to recipients that shared at least one haplotype with the TDL donors. The restriction was expressed in an inability of sensitized lymphoblasts to localize efficiently at antigen injection sites in the pinna of the ear and peritoneal cavity. Failure of allogeneic lymphoblasts to extravasate in more than trace numbers into Listeria-antigen-induced exudates was reflected in an absence of other lymphocyte-mediated expressions of DTH. Thus, lymphocyte-dependent MCA was not detected in Listeria-antigen-induced peritoneal exudates borne by recipients of allogeneic immune TDL and blood monocytes were not recruited in increased numbers into such exudates as they were in exudates borne by syngeneic rats. But allogeneic restriction of the delayed inflammatory response to Listeria antigen was overcome, at least in part, when antigen-presenting macrophages of the same MHC type as the immune TDL donors were implanted in the peritoneal cavity. The results encourage the belief that the observed failure of immune TDL to transfer DTH to allogeneic recipients is related to the inability of sensitized donor T cells to recognize antigen displayed by allogeneic macrophages.  相似文献   

19.
Subcutaneous (s.c.) immunization of mice with allogeneic spleen cells can induce delayed-type hypersensitivity (DTH) to both major and minor histocompatibility antigens. Intravenous immunization with allogeneic spleen cells, however, induces a poor state of DTH. Furthermore, i.v. immunization with allogeneic spleen cells, especially if they have been irradiated, induces suppressor T lymphocytes. These suppressor T cells are capable of suppressing the host-vs-graft (HvG) DTH reactivity that normally arises after s.c. immunization. Moreover, they can suppress the development of anti-host DTH effector T cells during graft-vs-host (GvH) reactions. These models for HvG and GvH DTH reactivity were used to study the influence of 2'-deoxyguanosine (dGuo) and guanosine (Guo) on the generation of DTH-reactive T cells and suppressor T cells in vivo. It was found that daily i.p. administration of 0.01 mg dGuo to mice immunized i.v. partially prevented the generation of suppressor T cell activity, whereas daily administration of 0.1 or 1 mg dGuo resulted in a complete abolition. Administration of dGuo has no effect on the anti-host DTH reactivity by spleen cells from nonsuppressed donors except for when a daily dose of 10 mg is administered. This dose proved to be toxic for precursors of DTH effector T cells. Daily i.p. injection of Guo had no effect on the generation of suppressor T cells nor on the generation of DTH effector T cells. The effect of dGuo was found to be due to a direct effect on suppressor T cells and not to the induction of contrasuppressor cells. These data suggest a differential sensitivity of DTH-reactive T cells and suppressor T cells for dGuo. Because suppressor T cells and DTH-reactive T cells require proliferation for expressing maximal functional activity in the systems used, both cell types probably have different enzyme activities involved in the purine metabolism and similar deoxycytidine kinase activities, but have different nucleotidase (5'NT) activities, those in suppressor T cells being the lowest. If so, suppressor T cells will accumulate deoxyguanosine triphosphate, which causes an inhibition of the ribonucleotide reductase activity and thus of the DNA synthesis by these cells.  相似文献   

20.
Delayed-type hypersensitivity (DTH) to sheep erythrocytes (SRBC) was found to be depressed during fatal Plasmodium berghei and self-limiting P. yoelii infections of mice. By testing mice presensitized to SRBC before P. berghei infection, and by transfer of cells sensitized in uninfected mice into P. yoelii-infected recipients, the immunological lesion was found to be at the level of DTH expression, rather than at the level of T cell sensitization. That acute inflammatory responsiveness is impaired during malarial infection was confirmed by testing this response to local injection of LPS in P. yoelii-infected mice. The results suggested that depressed DTH responsiveness in malarious mice is not a valid indication of impaired T cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号