首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have previously shown that Rhodnius prolixus' eggs and hemolymph are pink due to the presence of the hemeprotein Rhodnius heme-binding protein (RHBP). In the hemolymph it functions as an antioxidant. Nevertheless, its function in eggs has not been determined. Here we present evidence that RHBP is a source of heme for embryonic development. RHBP content decreases during embryogenesis, but the total heme content of eggs remains unchanged. Biliverdin, the product of heme degradation, is not detectable in late embryos. The activity of the heme-synthesizing pathway is low throughout embryogenesis and rises sharply after nymphs' hatching. Heme-radiolabeled eggs were produced and, at the day of hatching, nymphs were dissected. The presence of radiolabeled heme in their carcass is an indication that heme reutilization is occurring. The only animal known to reutilize heme in significant levels is the cattle tick Boophilus microplus, which cannot synthesize its own heme. Diversely, Rhodnius can synthesize its own heme but, in the context of embryogenesis, heme demand seems to be supplied by the programmed release of heme form RHBP. This behavior indicates that in Rhodnius, we might have a highly unusual profile: heme is both synthesized and reutilized.  相似文献   

3.
Hematophagy is a feeding habit that involves the ingestion of huge amounts of heme. The hematophagous hemipteran Rhodnius prolixus evolved many genetic resources to protect cells against heme toxicity. The primary barrier against the deleterious effects of heme is the aggregation of heme into hemozoin in the midgut lumen. Hemozoin formation is followed by the enzymatic degradation of heme by means of a unique pathway whose end product is dicysteinyl-biliverdin IX-γ (Rhodnius prolixus biliverdin, RpBv). These mechanisms are complemented by a heme-binding protein (RHBP) in the hemolymph that attenuates the pro-oxidant effects of heme. In this work, we show that when insects are fed with blood enriched with a heme analog, Sn-protoporphyrin (SnPP-IX), both hemozoin synthesis and RpBv production are inhibited in a dose-dependent manner. These effects are accompanied by increased oxidative damage to the midgut epithelium and inhibition of oviposition, indicating that hemozoin formation and heme degradation are protective mechanisms that work together and contributed to the adaptation of this insect to successfully feed on vertebrate blood.  相似文献   

4.
The heme molecule is the prosthetic group of many hemeproteins involved in essential physiological processes, such as electron transfer, transport of gases, signal transduction, and gene expression modulation. However, heme is a pro-oxidant molecule capable of propagating reactions leading to the generation of reactive oxygen species. The blood-feeding insect Rhodnius prolixus releases enormous amounts of heme during host blood digestion in the midgut lumen when it is exposed to a physiological oxidative challenge. Additionally, this organism produces a hemolymphatic heme-binding protein (RHBP) that transports heme to pericardial cells for detoxification and to growing oocytes for yolk granules and as a source of heme for embryo development. Here, we show that silencing of RHBP expression in female fat bodies reduced total RHBP circulating in the hemolymph, promoting oxidative damage to hemolymphatic proteins. Moreover, RHBP knockdown did not cause reduction in oviposition but led to the production of heme-depleted eggs (white eggs). A lack of RHBP did not alter oocyte fecundation. However, produced white eggs were nonviable. Embryo development cellularization and vitellin yolk protein degradation, processes that normally occur in early stages of embryogenesis, were compromised in white eggs. Total cytochrome c content, cytochrome c oxidase activity, citrate synthase activity, and oxygen consumption, parameters that indicate mitochondrial function, were significantly reduced in white eggs compared with normal dark red eggs. Our results showed that reduction of heme transport from females to growing oocytes by RHBP leads to embryonic mitochondrial dysfunction and impaired embryogenesis.  相似文献   

5.
Lipid peroxidation is promoted by the quasi‐lipoxygenase (QL) activity of heme proteins and enhanced by the presence of free calcium. Unlike mammalian plasma, the hemolymph of Rhodnius prolixus, a vector of Chagas disease, contains both a free heme‐binding protein (RHBP) and circulating lipoproteins. RHBP binds and prevents the heme groups of the proteins from participating in lipid peroxidation reactions. Herein, we show that despite being bound to RHBP, heme groups promote lipid peroxidation through a calcium‐dependent QL reaction. This reaction is readily inhibited by the presence of ethylene glycol tetraacetic acid (EGTA), the antioxidant butylated hydroxytoluene or micromolar levels of the main yolk phosphoprotein vitellin (Vt). The inhibition of lipid peroxidation is eliminated by the in vitro dephosphorylation of Vt, indicating that this reaction depends on the interaction of free calcium ions with negatively charged phosphoamino acids. Our results demonstrate that calcium chelation mediated by phosphoproteins occurs via an antioxidant mechanism that protects living organisms from lipid peroxidation.  相似文献   

6.
The participation of eicosanoids and second messengers in the regulation of endocytosis by the ovaries was investigated using the uptake of Rhodnius heme binding protein (RHBP) as an experimental model. The rate of RHBP uptake decreased up to 40% in the presence of BWA4C and NDGA, 5 and 12-lipoxygenase inhibitors, respectively, suggesting the involvement of lipoxygenase products in endocytosis regulation. Addition of Leukotriene B4 (LTB(4); one product of the 5 lipoxygenase pathway) increased in vitro the uptake of RHBP by 30%. The content of cAMP in the Rhodnius' ovaries were monitored after treatment with different eicosanoids and inhibitors of eicosanoids synthesis. The amount of cAMP decreased in the presence of indomethacin (by 50%), while treatment with PGE(2) induced an increase of 85% of this messenger in the ovaries. The presence of LTB(4) in the medium inhibited in 60% the content of cAMP in the ovaries, while BWA4C induced a 100% increase of this messenger in the ovaries. Addition of 1 microM DBcAMP in the medium resulted in a 30% decrease in the rate of RHBP uptake. Taken together, these data show that cyclooxygenase and lipoxygenase products participate in the control of protein internalization by modulation of cAMP levels.  相似文献   

7.
When hepatocytes are cultured on matrigel, a reconstituted basement membrane matrix, mRNAs for cytochrome P450 class IIB1/2 and class III genes can be induced by treatment with phenobarbital. We took advantage of this new system to critically evaluate the role of heme as a regulator of these cytochromes P450 and of 5-aminolevulinate synthase (ALA-S), the rate-limiting enzyme in heme biosynthesis. Phenobarbital treatment of rat cultures increased the total amount of cytochrome P450, activities catalyzed by IIB1/2 (benzyloxy- and pentoxyresorufin O-dealkylases) and ALA-S activity, and ALA-S mRNA. Treatments with phenobarbital combined with succinyl acetone, an inhibitor of heme biosynthesis at the step of 5-aminolevulinate dehydrase, blocked the induction of the proteins for cytochrome P450IIB1/2 and cytochrome P450IIIAI, as indicated by spectral, immunological, and enzymatic assays. However, at the same time, succinyl acetone cotreatment failed to inhibit the induction of the mRNAs for cytochrome P450IIB1/2 and cytochrome P450IIIA. Lack of effect on the cytochrome P450 mRNAs was selective inasmuch as treatment with phenobarbital combined with succinyl acetone synergistically increased both ALA-S activity and ALA-S mRNA, presumably by blocking formation of heme, the feedback repressor of ALA-S. Indeed, the increase in ALA-S mRNA caused by the combined treatment was abolished by adding heme itself to the cultures. In contrast to earlier concepts, we conclude that in the intact hepatocyte, phenobarbital-induced cytochrome P450 induction is independent of changes in heme synthesis.  相似文献   

8.
Technologies based on RNA interference may be used for insect control. Sustainable strategies are needed to control vectors of Chagas disease such as Rhodnius prolixus. The insect microbiota can be modified to deliver molecules to the gut. Here, Escherichia coli HT115(DE3) expressing dsRNA for the Rhodnius heme-binding protein (RHBP) and for catalase (CAT) were fed to nymphs and adult triatomine stages. RHBP is an egg protein and CAT is an antioxidant enzyme expressed in all tissues by all developmental stages. The RNA interference effect was systemic and temporal. Concentrations of E. coli HT115(DE3) above 3.35 × 107 CFU/mL produced a significant RHBP and CAT gene knockdown in nymphs and adults. RHBP expression in the fat body was reduced by 99% three days after feeding, returning to normal levels 10 days after feeding. CAT expression was reduced by 99% and 96% in the ovary and the posterior midgut, respectively, five days after ingestion. Mortality rates increased by 24-30% in first instars fed RHBP and CAT bacteria. Molting rates were reduced by 100% in first instars and 80% in third instars fed bacteria producing RHBP or CAT dsRNA. Oviposition was reduced by 43% (RHBP) and 84% (CAT). Embryogenesis was arrested in 16% (RHBP) and 20% (CAT) of laid eggs. Feeding females 105 CFU/mL of the natural symbiont, Rhodococcus rhodnii, transformed to express RHBP-specific hairpin RNA reduced RHBP expression by 89% and reduced oviposition. Modifying the insect microbiota to induce systemic RNAi in R. prolixus may result in a paratransgenic strategy for sustainable vector control.  相似文献   

9.
10.
The participation of eicosanoids and second messengers on the regulation of RHBP endocytosis by the ovaries was investigated, using [(125)I]RHBP in experiments in vivo and in vitro. Addition of PGE(2) (one of the products of the cyclooxygenase pathway) decreased in vitro the uptake of RHBP by 35%. The rate of RHBP endocytosis increased in the presence of indomethacin, a potent cyclooxigenase inhibitor, up to 50% in vitro and up to 55% in vivo, thus giving support to the role of cyclooxygenase derivatives on endocytosis regulation. The amount of PGE(2) secreted to the culture medium by the cells of Rhodnius prolixus ovaries was 1.1 ng/ovary following RHBP uptake assay. The amount of PGE(2) decreases approximately 25% in the presence of 5 microM indomethacin. Using a scanning electron microscope we have observed that neither the surface area nor the patencies of follicle cells were affected by treatment with indomethacin, thus suggesting that, its effect is elicited in the oocyte. Finally, we have identified two ovarian peptides that were dephosphorylated after the indomethacin treatment (18 and 25 kDa). Taken together these data show that local mediators such as eicosanoids act upon the oocytes controlling RHBP endocytosis, perhaps using the protein phosphorylation signal transduction pathway.  相似文献   

11.
The aim of this study was to identify key genes whose expression is altered by heme and heme deficiency in the human erythroleukemia K562 cells and in the NGF-induced rat pheochromocytoma neuronal PC12 cells, respectively. By quantitative RT-PCR, Northern blotting, and Western blotting analyses, we found that the expression of the CDK inhibitors p18 and p21 was upregulated at the early and late stages of heme-induced erythroid differentiation of K562 cells, respectively, while the expression of cyclin D1 was downregulated. Data from succinyl acetone and desferrioxamine treatments suggest that these effects of heme in K562 cells were specific. Further, by microarray expression analysis, we found that inhibition of heme synthesis by succinyl acetone in NGF-induced PC12 cells drastically altered the expression of several groups of important neuronal genes, including the structural genes encoding neurofilament proteins and synaptic vesicle proteins, regulatory genes encoding signaling components beta-arrestin and p38 MAPK, and stress-response genes encoding hsp70. These results show that heme and heme deficiency affect the expression of diverse genes in a cell-type specific manner in mammalian cells, and that heme, although needed at different levels, is critical for both erythropoiesis and neurogenesis. These studies provide insights into how heme may act to control diverse regulatory processes in mammals.  相似文献   

12.
13.
Thyroperoxidase (TPO) is a glycosylated hemoprotein that plays a key role in thyroid hormone synthesis. We previously showed that in CHO cells expressing human TPO (hTPO) only 2% of synthesized hTPO reaches the cell surface. Herein, we investigated the role of heme moiety insertion in the exit of hTPO from the endoplasmic reticulum. Peroxidase activity at the cell surface and cell surface expression of hTPO were decreased by approximately 30 and approximately 80%, respectively, with succinyl acetone, an inhibitor of heme biosynthesis, and were increased by 20% with holotransferrin and aminolevulinic acid, precursors of heme biosynthesis. Results were similar with holotransferrin plus aminolevulinic acid or hemin, but hemin increased cell surface activity more efficiently (+120%) relative to the control. It had been suggested (DePillis, G., Ozaki, S., Kuo, J. M., Maltby, D. A., and Ortiz de Montellano, P. R. (1997) J. Biol. Chem. 272, 8857-8960) that covalent attachment of heme to mammalian peroxidases could be an H2O2-dependent autocatalytic processing. In our study, heme associated intracellularly with hTPO, and we hypothesized that there was insufficient exposure to H2O2 in Chinese hamster ovary cells before hTPO reached the cell surface. After a 10-min incubation, 10 microM H2O2 led to a 65% increase in cell surface activity. In contrast, in thyroid cells, H2O2 was synthesized at the apical cell surface and allowed covalent attachment of heme. Two-day incubation of primocultures of thyroid cells with catalase led to a 30% decrease in TPO activity at the cell surface. In conclusion, we provide compelling evidence for an essential role of 1) heme incorporation in the intracellular trafficking of hTPO and of 2) H2O2 generated at the apical pole of thyroid cells in the autocatalytic covalent heme binding to the TPO molecule.  相似文献   

14.
The uptake of RHBP (Rhodnius heme-binding protein) by the ovaries of Rhodnius prolixus was characterized. RHBP purified from oocyte was labeled with 125I and used to study the process of uptake by the ovary in vivo and in vitro. After injection, the [125I]RHBP was readily removed from the hemolymph and accumulated especially in the ovary. The capacity of the ovary to take up [125I]RHBP from the hemolymph varied during the days following blood meal. It increased up to day 2, remained stable until day 5, and then decreased up to the end of oogenesis. In vitro, the uptake of [125I]RHBP was linear at least up to 60 min. The uptake was dependent on [125I]RHBP concentration and showed to be a saturable process. The addition of a molar excess of non-related proteins such as Vitellin (Vt), Lipophorin (Lp), and Bovine Serum Albumin (BSA) did not reduce [125I]RHBP uptake. Using immunogold technique the RHBP was localized at the microvilli, coated pits, and yolk granules. The main yolk protein, Vt, did not compete with RHBP for the uptake. Thus, it is discussed here that they bind to independent binding sites of the oocytes, and are directed later on to the same compartment. The need of both proteins for the completion of mature oocyte was verified in vivo. The reduction of heme-RHBP in the hemolymph, by changing the diet, decreased the number of eggs laid. Increasing the concentration of heme-RHBP in the hemolymph, the number of eggs produced increased in a dose dependent manner. In vitro, both apo-RHBP and heme-RHBP can be taken up by the oocyte. Since the mature oocyte contains only heme-saturated RHBP, the possible fate of apo-RHBP is also discussed. Arch. Insect Biochem. Physiol. 39:133–143, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Heme (Fe2+ protoporphyrin IX) is an essential molecule that has been implicated the potent antimalarial action of artemisinin and its derivatives, although the source and nature of the heme remain controversial. Artemisinins also exhibit selective cytotoxicity against cancer cells in vitro and in vivo. We demonstrate that intracellular heme is the physiologically relevant mediator of the cytotoxic effects of artemisinins. Increasing intracellular heme synthesis through the addition of aminolevulinic acid, protoporphyrin IX, or transferrin-bound iron increased the cytotoxicity of dihydroartemisinin, while decreasing heme synthesis through the addition of succinyl acetone decreased its cytotoxic activity. A simple and robust high throughput assay was developed to screen chemical compounds that were capable of interacting with heme. A natural products library was screened which identified the compound coralyne, in addition to artemisinin, as a heme interacting compound with heme synthesis dependent cytotoxic activity. These results indicate that cellular heme may serve a general target for the development of both anti-parasitic and anti-cancer therapeutics.  相似文献   

16.
The phagocyte NADPH-dependent oxidase generates superoxide by reducing molecular oxygen through a transmembrane heterodimer known as flavocytochrome b(558) (flavocytochrome b). We investigated the biosynthesis of flavocytochrome b subunits gp91(phox) and p22(phox) to elucidate features of flavocytochrome b processing in myeloid cells. Although the gp91(phox) precursor, gp65, was processed to gp91(phox) within 4-8 h of chase, unassembled gp65 and p22(phox) monomers were degraded by the cytosolic proteasome. gp65 associated with p22(phox) post-translationally, within 1-4 h of chase, but prior to its modification in the Golgi complex. Moreover, p22(phox) coprecipitated with unglycosylated gp91(phox) primary translation product made in the presence of tunicamycin, suggesting that heterodimer formation does not require glycosylation. Blocking heme synthesis with succinyl acetone completely inhibited heterodimer formation, although biogenesis of gp65 and p22(phox) was unaffected. In succinyl acetone-treated cells, p22(phox) and gp65 were degraded completely by 8 h of chase, a process mediated by the cytosolic proteasome. Taken together, these data suggest that the formation of the gp65-p22(phox) heterodimer is relatively inefficient and that acquisition of heme by gp65 precedes and is required for its association with p22(phox), a process that requires neither the addition of N-linked oligosaccharides nor modification in the Golgi complex.  相似文献   

17.
18.
Rhodnius prolixus is a blood-sucking bug whose saliva contains a family of nitric oxide-carrying proteins named nitrophorins (NPs). Saliva is injected into the host bloodstream during insect feeding. Nitric oxide is then released from NPs and will act on vascular smooth muscle, promoting vasodilation. Epithelial cells of salivary glands then undergo a massive synthesis of antihemostatics including NPs which produces saliva for the next blood meal. Here, we demonstrate the transient activation of a protein kinase in the salivary glands of R. prolixus after a blood meal. Biochemical, immunological, and pharmacological assays were used to identify this enzyme as protein kinase CK2. CK2 is activated after a blood meal and decreases to basal levels when salivary gland refilling is resumed. Inhibition of CK2 blocked [(35)S]methionine incorporation into newly synthesized salivary gland proteins in cultured tissue. Dissected salivary glands were then incubated with the heme fluorescent analog palladium (II) mesoporphyrin IX (Pd-MP) in the presence of a selective cell-permeable CK2 inhibitor, TBB (4,5,6,7-tetrabromobenzotriazole). NP synthesis was quantified based on fluorescence of the Pd-MP group bound to the NP heme pocket. TBB dramatically blocked NP synthesis. Altogether, these data are the first demonstration to show that antihemostatic synthesis in a blood-sucking arthropods is under protein phosphorylation control.  相似文献   

19.
The possibility that glutathione-S-transferases can serve as heme carriers in cells was studied via the following two characteristics: the ability to bind hemin reversibly and the coordination between heme and glutathione-S-transferases level in the cell. two erythroleukemic cell lines that can be induced to synthesize hemoglobin were studied, K-562 and Friend murine erythroleukemia cells. It was found that hemin-associated glutathione-S-transferase tends to lose its native structure as expressed by partial irreversible inhibition of glutathione conjugation activity. In K-562 cells, a small increase in heme synthesis was induced, but under no condition could glutathione-S-transferase be elevated. In addition, introduction of high hemin from without caused large hemoglobin production but did not induce changes in the glutathione-S-transferase content. Dimethyl sulfoxide-induced Friend murine erythroleukemia cells synthesized a large amount of endogenous hemin that had to be transported from the mitochondria for hemoglobin synthesis. Although a concomitant increase in glutathione-S-transferase level (20-40%) was observed, it was only short-lived, unlike hemin, which continued to increase. These data indicate a lack of correlation between glutathione-S-transferase and hemin or hemoglobin levels. Finally, dimethyl sulfoxide-induced cells were treated with succinyl acetone to inhibit heme synthesis. These cells showed the same increased levels and time-dependent pattern of glutathione-S-transferase as untreated cells. A similar phenomenon was observed when different substrates were used to measure the activities of glutathione-S-transferases. These results raise doubts about the possibility of glutathione-S-transferases functioning as heme carriers in cells.  相似文献   

20.
Glu-tRNA is either bound to elongation factor Tu to enter protein synthesis or is reduced by glutamyl-tRNA reductase (GluTR) in the first step of tetrapyrrole biosynthesis in most bacteria, archaea and in chloroplasts. Acidithiobacillus ferrooxidans, a bacterium that synthesizes a vast amount of heme, contains three genes encoding tRNA(Glu). All tRNA(Glu) species are substrates in vitro of GluRS1 from A. ferrooxidans.Glu-tRNA(3)(Glu), that fulfills the requirements for protein synthesis, is not substrate of GluTR. Therefore, aminoacylation of tRNA(3)(Glu) might contribute to ensure protein synthesis upon high heme demand by an uncoupling of protein and heme biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号