首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two Clostridium thermocellum strains were improved for ethanol tolerance, to 5% (v/v), by gradual adaptation and mutation. The best mutant gave an ethanol yield of 0.37 g/g substrate, with a growth yield 1.5 times more than its parent. Accumulation of acids and reducing sugars by the mutant strain with 5% (v/v) ethanol was lower than that of the parent strain with 1.5% (v/v) ethanol.  相似文献   

2.
Clostridium thermocellum is a candidate organism for consolidated bioprocessing of lignocellulosic biomass into ethanol. However, commercial use is limited due to growth inhibition at modest ethanol concentrations. Recently, an ethanol-adapted strain of C. thermocellum was produced. Since ethanol adaptation in microorganisms has been linked to modification of membrane lipids, we tested the hypothesis that ethanol adaptation in C. thermocellum involves lipid modification by comparing the fatty acid composition and membrane anisotropy of wild-type and ethanol-adapted strains. Derivatization to fatty acid methyl esters provided quantitative lipid analysis. Compared to wild-type, the ethanol-adapted strain had a larger percentage of fatty acids with chain lengths >16:0 and showed a significant increase in the percentage of 16:0 plasmalogens. Structural identification of fatty acids was confirmed through mass spectral fragmentation patterns of picolinyl esters. Ethanol adaptation did not involve modification at sites of methyl branching or the unsaturation index. Comparison of steady-state fluorescence anisotropy experiments, in the absence and presence of ethanol, provided evidence for the effects of ethanol on membrane fluidity. In the presence of ethanol, both strains displayed increased fluidity by approximately 12%. These data support the model that ethanol adaptation was the result of fatty acid changes that increased membrane rigidity that counter-acted the fluidizing effect of ethanol.  相似文献   

3.
4.
Clostridium thermocellum, a cellulolytic, thermophilic anaerobe, has potential for commercial exploitation in converting fibrous biomass to ethanol. However, ethanol concentrations above 1% (w/v) are inhibitory to growth and fermentation, and this limits industrial application of the organism. Recent work with ethanol-adapted strains suggested that protein changes occurred during ethanol adaptation, particularly in the membrane proteome. A two-stage Bicine-doubled sodium dodecyl sulfate-polyacrylamide gel electrophoresis protocol was designed to separate membrane proteins and circumvent problems associated with membrane protein analysis using traditional gel-based proteomics approaches. Wild-type and ethanol-adapted C. thermocellum membranes displayed similar spot diversity and approximately 60% of proteins identified from purified membrane fractions were observed to be differentially expressed in the two strains. A majority (73%) of differentially expressed proteins were down-regulated in the ethanol-adapted strain. Based on putative identifications, a significant proportion of these down-regulated proteins were involved with carbohydrate transport and metabolism. Approximately one-third of the up-regulated proteins in the ethanol-adapted species were associated with chemotaxis and signal transduction. Overall, the results suggested that membrane-associated proteins in the ethanol-adapted strain are either being synthesized in lower quantities or not properly incorporated into the cell membrane.  相似文献   

5.
The phase behavior of aqueous dispersions of extracted lipids from Clostridium thermocellum wild-type and ethanol-tolerant C919 cells has been examined by DSC. The optimum growth temperature of this anaerobe is 60°C. The wild-type lipids exhibit a broad phase transition centered at 30°C; the C919 mutant lipids show a 10°C lower Tm. The direct addition of growth inhibiting concentrations of ethanol has no significant effect on Tm or headgroup mobility (monitored by 2H-NMR) of either set of lipids. In contrast, wild-type cells adapted to growth in ethanol exhibit a broadened and lower Tm (15–25°C plateau); C919 membrane lipids do not exhibit significantly altered phase behavior when adapted to growth in ethanol. Both wild-type and mutant membranes have fatty acid composition changes upon growth in ethanol, which increases lower-melting components. It is concluded that fatty acid changes which occur upon adaptation of the organism to growth in ethanol are secondary responses and not necessarily direct responses to alter membrane fluidity.  相似文献   

6.
Clostridium thermocellum is a major candidate for bioethanol production via consolidated bioprocessing. However, the low ethanol tolerance of the organism dramatically impedes its usage in industry. To explore the mechanism of ethanol tolerance in this microorganism, systematic metabolomics was adopted to analyse the metabolic phenotypes of a C. thermocellum wild-type (WT) strain and an ethanol-tolerant strain cultivated without (ET0) or with (ET3) 3% (v/v) exogenous ethanol. Metabolomics analysis elucidated that the levels of numerous metabolites in different pathways were changed for the metabolic adaption of ethanol-tolerant C. thermocellum. The most interesting phenomenon was that cellodextrin was significantly more accumulated in the ethanol-tolerant strain compared with the WT strain, although cellobiose was completely consumed in both the ethanol-tolerant and wild-type strains. These results suggest that the cellodextrin synthesis was active, which might be a potential mechanism for stress resistance. Moreover, the overflow of many intermediate metabolites, which indicates the metabolic imbalance, in the ET0 cultivation was more significant than in the WT and ET3 cultivations. This indicates that the metabolic balance of the ethanol-tolerant strain was adapted better to the condition of ethanol stress. This study provides additional insight into the mechanism of ethanol tolerance and is valuable for further metabolic engineering aimed at higher bioethanol production.  相似文献   

7.
Summary Among twelve strains of Clostridium thermocellum isolated from faecal droppings of various herbivorous animals and birds, three of the strains, SS21, SS22 and SS19, produced 0.37, 0.33 and 0.32 g of ethanol per g of the substrate consumed and had ethanol to acetate ratios of 2.21, 2.45 and 1.72 respectively. These are the highest substrate conversion yields of ethanol amongst the wild strains of C. thermocellum reported so far. The optimum temperature and pH for growth and ethanol production were 60 °C and 7.5, respectively.  相似文献   

8.

Background

An industrially robust microorganism that can efficiently degrade and convert lignocellulosic biomass into ethanol and next-generation fuels is required to economically produce future sustainable liquid transportation fuels. The anaerobic, thermophilic, cellulolytic bacterium Clostridium thermocellum is a candidate microorganism for such conversions but it, like many bacteria, is sensitive to potential toxic inhibitors developed in the liquid hydrolysate produced during biomass processing. Microbial processes leading to tolerance of these inhibitory compounds found in the pretreated biomass hydrolysate are likely complex and involve multiple genes.

Methodology/Principal Findings

In this study, we developed a 17.5% v/v Populus hydrolysate tolerant mutant strain of C. thermocellum by directed evolution. The genome of the wild type strain, six intermediate population samples and seven single colony isolates were sequenced to elucidate the mechanism of tolerance. Analysis of the 224 putative mutations revealed 73 high confidence mutations. A longitudinal analysis of the intermediate population samples, a pan-genomic analysis of the isolates, and a hotspot analysis revealed 24 core genes common to all seven isolates and 8 hotspots. Genetic mutations were matched with the observed phenotype through comparison of RNA expression levels during fermentation by the wild type strain and mutant isolate 6 in various concentrations of Populus hydrolysate (0%, 10%, and 17.5% v/v).

Conclusion/Significance

The findings suggest that there are multiple mutations responsible for the Populus hydrolysate tolerant phenotype resulting in several simultaneous mechanisms of action, including increases in cellular repair, and altered energy metabolism. To date, this study provides the most comprehensive elucidation of the mechanism of tolerance to a pretreated biomass hydrolysate by C. thermocellum. These findings make important contributions to the development of industrially robust strains of consolidated bioprocessing microorganisms.  相似文献   

9.
An ethanol hyper-producing clostridial strain, I-1-B, was isolated from Shibi hot spring, Kagoshima prefecture and identified as Clostridium thermocellum based on morphological and physiological proper­ ties. The carbohydrates used as energy sources were glucose, fructose, cellobiose, cellulose and esculin. Fermentation products were ethanol, lactate, acetate, formate, carbon dioxide, and hydrogen. The optimum, maximum, and minimum temperature for growth are about 60, 70, and 47°C, respectively. Optimum pH for growth is about 7.5, and growth occurs at starting pH between 6.0 and 9.0. I-1-B strain has strong tolerance for ethanol and hyper ethanol-productivity. Ethanol concentrations causing 50%. decrease of growth yield are 27 and 16g/liter for I-1-B and ATCC27405 of C. thermocellum, respectively. The organism was cultured on a medium containing 80 g/liter cellulose at 60°C for 156 h. The culture was fed with a vitamin mixture containing vitamin B12 and mineral salts solution at intervals. In this culture the organism produced 23.6 g/liter (512mM) ethanol, 8.5 g/liter (94mM) lactate, 2.9 g/liter (48mM) acetate, and 0.9 g/liter (20mM) formate. The molar ratio of ethanol to total acidic products was 3.2. The ethanol productivity of the strain I-1-B is superior to any of the wild and mutant strains of C. thermocellum so far reported.  相似文献   

10.
Six strains of Clostridium thermocellum isolated from various environments were characterized as to growth rate, production of reducing sugars, ethanol, and acetic acid from cellulose, base composition of DNA, and the abilities to adapt to ethanol and to grow at 45°C. Five of the six new isolates produced 7 to 15% more ethanol and two produced about 45% more reducing sugars than a standard reference strain. One strain (MC-6) adapted more readily to growth in 2% ethanol than the others.  相似文献   

11.
The xylose-fermenting yeast Spathaspora passalidarum showed excellent fermentation performance utilizing glucose and xylose under anaerobic conditions. But this yeast is highly sensitive to the inhibitors such as furfural present in the pretreated lignocellulosic biomass. In order to improve the inhibitor tolerance of this yeast, a combination of UV mutagenesis and protoplast fusion was used to construct strains with improved performance. Firstly, UV-induced mutants were screened and selected for improved tolerance towards furfural. The most promised mutant, S. passalidarum M7, produced 50% more final ethanol than the wild-type strain in a synthetic xylose medium containing 2 g/l furfural. However, this mutant was unable to grow in a medium containing 75% liquid fraction of pretreated wheat straw (WSLQ), in which furfural and many other inhibitors were present. Hybrid yeast strains, obtained from fusion of the protoplasts of S. passalidarum M7 and a robust yeast, Saccharomyces cerevisiae ATCC 96581, were able to grow in 75% WSLQ and produce around 0.4 g ethanol/g consumed xylose. Among the selected hybrid strains, the hybrid FS22 showed the best fermentation capacity in 75% WSLQ. Phenotypic and partial molecular analysis indicated that S. passalidarum M7 was the dominant parental contributor to the hybrid. In summary, the hybrids are characterized by desired phenotypes derived from both parents, namely the ability to ferment xylose from S. passalidarum and an increased tolerance to inhibitors from S. cerevisiae ATCC 96581.  相似文献   

12.
Summary To improve the conversion of hexoses and pentoses to ethanol, a pyruvate-negative (PN) mutant of Clostridium saccharolyticum, having lower acetate kinase activity, was obtained. The PN mutant used more substrate (glucose or xylose) and produced more biomass and ethanol, but less acetic acid. This shift in catabolism raised the ethanol/acetate ratio from 6.7 to 13. The PN mutant converted both glucose and xylose to ethanol at an efficiency of 80% of the theoretical yield as compared to 64% for C. saccharolyticum wild type. This improved production of ethanol was also accompanied by an increased tolerance to ethanol. The PN mutant showed 50% growth inhibition at an ethanol concentration of 6.5% (v/v) as compared to 3.5% for the parent strain.National Research Council of Canada No. 21316  相似文献   

13.
Summary Two strains of the thermophilic anaerobe Clostridium thermocellum, the wild type NCIB 10682 and its ethanol-hyperproductive mutant 647, were tested for their ability to grow on natural lignocellulosic materials (poplar wood, wheat straw) which had been pretreated by either hydrothermolysis or an organosolv process. For both materials and both strains, the dependencies of substrate accessibility on the pretreatment temperature were established in terms of cellulose hydrolysis and of product formation.In addition to the non-pH-controlled shake flask assays, in vitro experiments with cell-free culture supernatant and in vivo cellulolyses under pH regulation in a laboratory fermenter indicated that lignocellulosics pretreated at approx. 230°C were degraded efficiently by the Clostridium strains investigated.  相似文献   

14.
Novel processing strategies for hydrolysis and fermentation of lignocellulosic biomass in a single reactor offer large potential cost savings for production of biocommodities and biofuels. One critical challenge is retaining high enzyme production in the presence of elevated product titers. Toward this goal, the cellulolytic, ethanol-producing bacterium Clostridium phytofermentans was adapted to increased ethanol concentrations. The resulting ethanol-tolerant (ET) strain has nearly doubled ethanol tolerance relative to the wild-type level but also reduced ethanol yield and growth at low ethanol concentrations. The genome of the ET strain has coding changes in proteins involved in membrane biosynthesis, the Rnf complex, cation homeostasis, gene regulation, and ethanol production. In particular, purification of the mutant bifunctional acetaldehyde coenzyme A (CoA)/alcohol dehydrogenase showed that a G609D variant abolished its activities, including ethanol formation. Heterologous expression of Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase in the ET strain increased cellulose consumption and restored ethanol production, demonstrating how metabolic engineering can be used to overcome disadvantageous mutations incurred during adaptation to ethanol. We discuss how genetic changes in the ET strain reveal novel potential strategies for improving microbial solvent tolerance.  相似文献   

15.
Lignocellulosic biomass provides attractive nonfood carbohydrates for the production of ethanol, and dilute acid pretreatment is a biomass-independent process for access to these carbohydrates. However, this pretreatment also releases volatile and nonvolatile inhibitors of fermenting microorganisms. To identify unique gene products contributing to sensitivity/tolerance to nonvolatile inhibitors, ethanologenic Escherichia coli strain LY180 was adapted for growth in vacuum-treated sugarcane bagasse acid hydrolysate (VBHz) lacking furfural and other volatile inhibitors. A mutant, strain AQ15, obtained after approximately 500 generations of growth in VBHz, grew and fermented the sugars in a medium with 50% VBHz. Comparative genome sequence analysis of strains AQ15 and LY180 revealed 95 mutations in strain AQ15. Six of these mutations were also found in strain SL112, an independent inhibitor-tolerant derivative of strain LY180. Among these six mutations, null mutations in mdh and bacA were identified as contributing factors to VBHz tolerance in strain AQ15, based on the genetic and physiological analysis. The deletion of either gene in strain LY180 increased tolerance to VBHz from approximately 30–50% (vol/vol). Considering the location and physiological role of the two enzymes in the cell, it is likely that the two enzymes contribute to the VBHz sensitivity of ethanologenic E. coli by different mechanisms.  相似文献   

16.
Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum.  相似文献   

17.
Summary Experiments were performed to investigate growth, ethanol and glycerol production by wild-type strains (RHO) and respiratory-deficient (rho) mutants of Saccharomyces cerevisiae. Furthermore protoplasts were fused in order to enhance the fermentation capacity of a flocculent strain. At high substrate conditions, 150 g/l of saccharose, there is no difference in cell growth. However, at a glucose concentration of 10–20 g/l the mutants grow much slower. After 3 days of incubation at 28° C in a complete medium the viability of the two strains is the same. In minimal medium on the other hand the number of viable cells of the mutant is 100-fold reduced. All mutants tested showed a higher specific activity of alcohol dehydrogenase (ADH I) and an enhanced production of glycerol compared with the wild-type strain. By protoplast fusion a modified flocculent strain was obtained with higher specific activity of ADH I and a reduced biosynthesis of glycerol. However, the yields of ethanol (75–78%) are about the same for the wild-type strain and the rho mutants under aerobic conditions in absence of catabolite repression.  相似文献   

18.
Summary Two strains of Clostridium thermocellum ATCC 27405 and NRCC 2688 demonstrated similar product yields and cellulase activities when grown on solka floc. A sequential culture of C. thermocellum and Zymomonas anaerobia supplemented with cellobiase could produce 1.8 mg/ml of ethanol when grwon on 1% solka floc. Different media were evaluated for their ability to enhance the product and cellulase yields of C. thermocellum grown on cellulose substrates. Ethanol and reducing sugar values of 1.5 and 3.8 mg/ml respectively and an endoglucanase activity of 3 IU/ml were obtained after growth of Clostridium thermocellum in a modified medium containing 1% solka floc. Three different pretreated wood fractions were assessed as substrates for growth. A steam exploded wood fraction gave comparable values to those obtained after growth on solka floc. Sequential cultures of C. thermocellum and Zymomonas anaerobia grown on a 1% steam exploded wood fraction could produce 1.6 mg/ml ethanol after 3 days growth.  相似文献   

19.
The fermentation of various saccharides derived from cellulosic biomass to ethanol was examined in mono- and cocultures of Clostridium thermocellum strain LQRI and C. thermohydrosulfuricum strain 39E. C. thermohydrosulfuricum fermented glucose, cellobiose, and xylose, but not cellulose or xylan, and yielded ethanol/acetate ratios of >7.0. C. thermocellum fermented a variety of cellulosic substrates, glucose, and cellobiose, but not xylan or xylose, and yielded ethanol/acetate ratios of ~1.0. At nonlimiting cellulosic substrate concentrations (~1%), C. thermocellum cellulase hydrolysis products accumulated during monoculture fermentation of Solka Floc cellulose and included glucose, cellobiose, xylose, and xylobiose. A stable coculture that contained nearly equal numbers of C. thermocellum and C. thermohydrosulfuricum was established that fermented a variety of cellulosic substrates, and the ethanol yield observed was twofold higher than in C. thermocellum monoculture fermentations. The metabolic basis for the enhanced fermentation effectiveness of the coculture on Solka Floc cellulose included: the ability of C. thermocellum cellulase to hydrolyze α-cellulose and hemicellulose; the enhanced utilization of mono- and disaccharides by C. thermohydrosulfuricum; increased cellulose consumption; threefold increase in the ethanol production rate; and twofold decrease in the acetate production rate. The coculture actively fermented MN300 cellulose, Avicel, Solka Floc, SO2-treated wood, and steam-exploded wood. The highest ethanol yield obtained was 1.8 mol of ethanol per mol of anhydroglucose unit in MN300 cellulose.  相似文献   

20.
A dual-fluorescent-dye protocol to visualize and quantify Clostridium phytofermentans ISDg (ATCC 700394) cells growing on insoluble cellulosic substrates was developed by combining calcofluor white staining of the growth substrate with cell staining using the nucleic acid dye Syto 9. Cell growth, cell substrate attachment, and fermentation product formation were investigated in cultures containing either Whatman no. 1 filter paper, wild-type Sorghum bicolor, or a reduced-lignin S. bicolor double mutant (bmr-6 bmr-12 double mutant) as the growth substrate. After 3 days of growth, cell numbers in cultures grown on filter paper as the substrate were 6.0- and 2.2-fold higher than cell numbers in cultures with wild-type sorghum and double mutant sorghum, respectively. However, cells produced more ethanol per cell when grown with either sorghum substrate than with filter paper as the substrate. Ethanol yields of cultures were significantly higher with double mutant sorghum than with wild-type sorghum or filter paper as the substrate. Moreover, ethanol production correlated with cell attachment in sorghum cultures: 90% of cells were directly attached to the double mutant sorghum substrate, while only 76% of cells were attached to wild-type sorghum substrate. With filter paper as the growth substrate, ethanol production was correlated with cell number; however, with either wild-type or mutant sorghum, ethanol production did not correlate with cell number, suggesting that only a portion of the microbial cell population was active during growth on sorghum. The dual-staining procedure described here may be used to visualize and enumerate cells directly on insoluble cellulosic substrates, enabling in-depth studies of interactions of microbes with plant biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号