首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
代谢工程   总被引:11,自引:1,他引:10  
郁静怡  杨胜利   《生物工程学报》1996,12(2):109-112
代谢工程,也称途径工程,是基因工程一个重要分支,一般是多基因的基因工程,与细胞的基因调控、代谢调控和生化工程密切相关。讨论了代谢工程的应用,包括通过改变代谢流和代谢途径提高产量,改善生产过程,构建新的代谢途径和产生新的代谢产物等。  相似文献   

2.
Metabolic engineering involves the engineering and optimization of processes from single-cell to fermentation in order to increase production of valuable chemicals for health, food, energy, materials and others. A systems approach to metabolic engineering has gained traction in recent years thanks to advances in strain engineering, leading to an accelerated scaling from rapid prototyping to industrial production. Metabolic engineering is nowadays on track towards a truly manufacturing technology, with reduced times from conception to production enabled by automated protocols for DNA assembly of metabolic pathways in engineered producer strains. In this review, we discuss how the success of the metabolic engineering pipeline often relies on retrobiosynthetic protocols able to identify promising production routes and dynamic regulation strategies through automated biodesign algorithms, which are subsequently assembled as embedded integrated genetic circuits in the host strain. Those approaches are orchestrated by an experimental design strategy that provides optimal scheduling planning of the DNA assembly, rapid prototyping and, ultimately, brings forward an accelerated Design-Build-Test-Learn cycle and the overall optimization of the biomanufacturing process. Achieving such a vision will address the increasingly compelling demand in our society for delivering valuable biomolecules in an affordable, inclusive and sustainable bioeconomy.  相似文献   

3.
The quantitative estimation of intracellular metabolite concentrations (metabolic profiling) is a prerequisite for a better understanding of biological processes and thus inevitable for the rational improvement of microbial production strains and process design. Since pool sizes of substrates regulate flux through different enzymes, the accurate determination of intracellular metabolite concentrations is necessary to understand in vivo reaction kinetics. Quantification of intracellular concentrations of glycolytic intermediates in Escherichia coli K12 was achieved by using a novel in situ rapid sampling and quenching procedure. A new extraction procedure using buffered hot water was established. By use of simultaneous multi-substrate feeding with various ratios of glucose, fructose and acetate during continuous cultivations several metabolic states were induced. Metabolic flux analysis and the newly developed metabolic profiling procedure were used to determine in vivo enzyme kinetics as exemplified for fructose 1,6-bisphosphate aldolase and citrate synthase.  相似文献   

4.
Succinic acid is a cellular metabolite belonging to the C4-dicarboxylic acid family, and the fermentative production of succinic acid via the use of recombinant microorganisms has recently become the focus of an increasing amount of attention. Considering the difficulty inherent to the direct application of natural succinic acid producers to the industrial process, a variety of systems biology studies have been conducted regarding the development of enhanced succinic acid production systems. This review shows how the metabolic processes of microorganisms, includingEscherichia coli andMannheimia succiniciproducens, have been optimized in order to achieve enhanced succinic acid production. First, their metabolic networks were constructed on the basis of complete genome sequences, after which their metabolic characteristics were estimated viain silico computer modeling. Metabolic engineering strategies were designed in accordance with the results ofin silico modeling and metabolically engineered versions of bothE. coli andM. succiniciproducens have been constructed. The succinic acid productivity and yield obtained using metabolically engineered bacteria was significantly higher than that obtained using wild-type bacteria.  相似文献   

5.
The understanding of control of metabolic processes requires quantitative studies of the importance of the different enzymatic steps for the magnitude of metabolic fluxes and metabolite concentrations. An important element in such studies is the modulation of enzyme activities in small steps above and below the wild-type level. We review a genetic approach that is well suited for both Metabolic Optimization and Metabolic Control Analysis and studies on the importance of a number of glycolytic enzymes for metabolic fluxes in Lactococcus lactis. The glycolytic enzymes phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK) and lactate dehydrogenase (LDH) are shown to have no significant control on the glycolytic flux in exponentially growing cells of L. lactis MG1363. Introduction of an uncoupled ATPase activity results in uncoupling of glycolysis from biomass production. With MG1363 growing in defined medium supplemented with glucose, the ATP demanding processes do not have a significant control on the glycolytic flux; it appears that glycolysis is running at maximal rate. It is likely that the flux control is distributed over many enzymes in L. lactis, but it cannot yet be excluded that one of the remaining glycolytic steps is a rate-limiting step for the glycolytic flux.  相似文献   

6.
Metabolic engineering has been defined as the purposeful modification of intermediary metabolism using recombinant DNA techniques. With this definition metabolic engineering includes: (1) inserting new pathways in microorganisms with the aim of producing novel metabolites, e.g., production of polyketides by Streptomyces; (2) production of heterologous peptides, e.g., production of human insulin, erythropoitin, and tPA; and (3) improvement of both new and existing processes, e.g., production of antibiotics and industrial enzymes. Metabolic engineering is a multidisciplinary approach, which involves input from chemical engineers, molecular biologists, biochemists, physiologists, and analytical chemists. Obviously, molecular biology is central in the production of novel products, as well as in the improvement of existing processes. However, in the latter case, input from other disciplines is pivotal in order to target the genetic modifications; with the rapid developments in molecular biology, progress in the field is likely to be limited by procedures to identify the optimal genetic changes. Identification of the optimal genetic changes often requires a meticulous mapping of the cellular metabolism at different operating conditions, and the application of metabolic engineering to process optimization is, therefore, expected mainly to have an impact on the improvement of processes where yield, productivity, and titer are important design factors, i.e., in the production of metabolites and industrial enzymes. Despite the prospect of obtaining major improvement through metabolic engineering, this approach is, however, not expected to completely replace the classical approach to strain improvement-random mutagenesis followed by screening. Identification of the optimal genetic changes for improvement of a given process requires analysis of the underlying mechanisms, at best, at the molecular level. To reveal these mechanisms a number of different techniques may be applied: (1) detailed physiological studies, (2) metabolic flux analysis (MFA), (3) metabolic control analysis (MCA), (4) thermodynamic analysis of pathways, and (5) kinetic modeling. In this article, these different techniques are discussed and their applications to the analysis of different processes are illustrated.  相似文献   

7.
Plants produce a plethora of secondary metabolites which constitute a wealth of potential pharmaceuticals, pro-vitamins, flavours, fragrances, colorants and toxins as well as a source of natural pesticides. Many of these valuable compounds are only synthesized in exotic plant species or in concentrations too low to facilitate commercialization. In some cases their presence constitutes a health hazard and renders the crops unsuitable for consumption. Metabolic engineering is a powerful tool to alter and ameliorate the secondary metabolite composition of crop plants and gain new desired traits. The interplay of a multitude of biosynthetic pathways and the possibility of metabolic cross-talk combined with an incomplete understanding of the regulation of these pathways, explain why metabolic engineering of plant secondary metabolism is still in its infancy and subject to much trial and error. Cyanogenic glucosides are ancient defense compounds that release toxic HCN upon tissue disruption caused e.g. by chewing insects. The committed steps of the cyanogenic glucoside biosynthetic pathway are encoded by three genes. This unique genetic simplicity and the availability of the corresponding cDNAs have given cyanogenic glucosides pioneering status in metabolic engineering of plant secondary metabolism. In this review, lessons learned from metabolic engineering of cyanogenic glucosides in Arabidopsis thaliana (thale cress), Nicotiana tabacum cv Xanthi (tobacco), Manihot esculenta Crantz (cassava) and Lotus japonicus (bird’s foot trefoil) are presented. The importance of metabolic channelling of toxic intermediates as mediated by metabolon formation in avoiding unintended metabolic cross-talk and unwanted pleiotropic effects is emphasized. Likewise, the potential of metabolic engineering of plant secondary metabolism as a tool to elucidate, for example, the impact of secondary metabolites on plant–insect interactions is demonstrated.  相似文献   

8.
Metabolic engineering   总被引:9,自引:0,他引:9  
Metabolic engineering has developed as a very powerful approach to optimising industrial fermentation processes through the introduction of directed genetic changes using recombinant DNA technology. Successful metabolic engineering starts with a careful analysis of cellular function; based on the results of this analysis, an improved strain is designed and subsequently constructed by genetic engineering. In recent years some very powerful tools have been developed, both for analysing cellular function and for introducing directed genetic changes. In this paper, some of these tools are reviewed and many examples of metabolic engineering are presented to illustrate the power of the technology. The examples are categorised according to the approach taken or the aim: (1) heterologous protein production, (2) extension of substrate range, (3) pathways leading to new products, (4) pathways for degradation of xenobiotics, (5) improvement of overall cellular physiology, (6) elimination or reduction of by-product formation, and (7) improvement of yield or productivity.  相似文献   

9.
The field of metabolic engineering is primarily concerned with improving the biological production of value-added chemicals, fuels and pharmaceuticals through the design, construction and optimization of metabolic pathways, redirection of intracellular fluxes, and refinement of cellular properties relevant for industrial bioprocess implementation. Metabolic network models and metabolic fluxes are central concepts in metabolic engineering, as was emphasized in the first paper published in this journal, “Metabolic fluxes and metabolic engineering” (Metabolic Engineering, 1: 1–11, 1999). In the past two decades, a wide range of computational, analytical and experimental approaches have been developed to interrogate the capabilities of biological systems through analysis of metabolic network models using techniques such as flux balance analysis (FBA), and quantify metabolic fluxes using constrained-based modeling approaches such as metabolic flux analysis (MFA) and more advanced experimental techniques based on the use of stable-isotope tracers, i.e. 13C-metabolic flux analysis (13C-MFA). In this review, we describe the basic principles of metabolic flux analysis, discuss current best practices in flux quantification, highlight potential pitfalls and alternative approaches in the application of these tools, and give a broad overview of pragmatic applications of flux analysis in metabolic engineering practice.  相似文献   

10.
11.
Exacerbation of climate change and air pollution around the world have emphasized the necessity of replacing fossil fuels with clean and sustainable energy. Metabolic engineering has provided strategies to engineer diverse organisms for the production of biofuels from renewable carbon sources. Although some of the processes are commercialized, there has been continued effort to produce advanced biofuels with higher efficiencies. In this article, metabolic engineering strategies recently exploited to enhance biofuel production and facilitate utilization of non-edible low-value carbon sources are reviewed. The strategies include engineering enzymes, exploiting new pathways, and systematically optimizing metabolism and fermentation processes, among others. In addition, metabolic and bioprocess engineering strategies to achieve competitiveness of current biofuel production systems compared with fossil fuels are discussed.  相似文献   

12.
Confronted with the gradual and inescapable exhaustion of the earth’s fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now.  相似文献   

13.
Constant progress in genetic engineering has given rise to a number of promising areas of research that facilitated the expansion of industrial biotechnology. The field of metabolic engineering, which utilizes genetic tools to manipulate microbial metabolism to enhance the production of compounds of interest, has had a particularly strong impact by providing new platforms for chemical production. Recent developments in synthetic biology promise to expand the metabolic engineering toolbox further by creating novel biological components for pathway design. The present review addresses some of the recent advances in synthetic biology and how these have the potential to affect metabolic engineering in the yeast Saccharomyces cerevisiae. While S. cerevisiae for years has been a robust industrial organism and the target of multiple metabolic engineering trials, its potential for synthetic biology has remained relatively unexplored and further research in this field could strongly contribute to industrial biotechnology. This review also addresses are general considerations for pathway design, ranging from individual components to regulatory systems, overall pathway considerations and whole-organism engineering, with an emphasis on potential contributions of synthetic biology to these areas. Some examples of applications for yeast synthetic biology and metabolic engineering are also discussed.  相似文献   

14.
The development of new or improved traits in plants, whether that is through traditional genetic modification and selection or through transgenic technologies, is associated with the potential risk of unintended changes with harmful or unacceptable consequences. The greater definition and precision of transgenic modification and the regulatory oversight of such technology may, however, confer advantages in safety and efficacy. This bears considerable relevance to the use of transgenic-based metabolic engineering in agricultural trait development. Metabolic engineering seeks to modify the amounts or chemical structures within selected biosynthetic routes without introducing inadvertent effects on other metabolic pathways. Examples discussed here include attempts to; (i) modify benzylisoquinoline alkaloid biosynthesis in poppy, (ii) improve the nutritional value of maize by increasing levels of free lysine, and (iii) increase the nutritional value of cottonseed by eliminating gossypol production. Clearly, evaluation of the efficacy (and unintended consequences) of such approaches is vital. A role for metabolomics in the compositional and metabolite analyses of new plant varieties derived from transgenic-based metabolic engineering is discussed. Major themes discussed in this review include; (i) the heightened level of scrutiny associated with genetically modified (GM) crop evaluations has markedly contributed to the safety in the adoption of transgenic technology, and (ii) the nature of any introduced trait may prove more relevant to safety assessments than the means by which the trait is introduced.  相似文献   

15.
Metabolic engineering technology for industrial microorganisms is under development to create rational, more reliable, and more cost-effective approaches to strain improvement. Strain improvement is a critical component of the drug development process, yet the genetic basis for high production by industrial microorganisms is still a mystery. In this study, a search was begun for genetic modifications critical for high-level antibiotic production. The model system used was erythromycin production studied in the unicellular actinomycete, Aeromicrobium erythreum. A tagged-mutagenesis approach allowed reverse engineering of improved strains, revealing two genes, mutB and cobA, in the primary metabolic branch for methylmalonyl-CoA utilization. Knockouts in these genes created a permanent metabolic switch in the flow of methylmalonyl-CoA, from the primary branch into a secondary metabolic branch, driving erythromycin overproduction. The model provides insights into the regulation and evolution of secondary metabolism.  相似文献   

16.
代谢工程利用重组DNA技术导入定向改造的基因 ,以改进微生物细胞的某些代谢特性 ,已经发展成为一个工业微生物育种和优化发酵过程的强有力工具。基因的修饰与表达是代谢工程的重要组成部分。本文介绍了近年来代谢工程中基因修饰与表达所用的工具方面的进展。  相似文献   

17.
Beer production is one of the oldest known traditional biotechnological processes, but is nowadays facing increasing demands not only for enhanced product quality, but also for improved production economics. Targeted genetic modification of a yeast strain is one way to increase beer quality and to improve the economics of beer production. In this review we will present current knowledge on traditional approaches for improving brewing strains and for rational metabolic engineering. These research efforts will, in the near future, lead to the development of a wider range of industrial strains that should increase the diversity of commercial beers.  相似文献   

18.
19.
微生物发酵产光学纯度D-乳酸研究进展   总被引:2,自引:0,他引:2  
D-乳酸作为一种重要的手性中间体和聚乳酸合成的原料,其生产已越来越受到人们的重视。然而,低光学纯度D-乳酸在很多领域的应用都受到限制。微生物发酵法能够生产高光学纯度的D-乳酸。除了乳酸生产的传统菌株-乳酸细菌,研究者们还通过基因工程的手段不断探索其它种属菌株利用更廉价的可再生资源高产光学纯度D-乳酸的可行性。介绍了D-乳酸的物化性质及其在工业生产、化学加工和聚乳酸合成中的应用,并详细综述了国内外发酵法生产光学纯度D-乳酸的最新研究进展,着重介绍了采用基因工程育种策略提高菌株的D-乳酸产量、转化率、生产强度以及光学纯度,降低副产物的合成,扩大底物利用范围的研究成果。所涉及的菌株包括:乳酸细菌、大肠杆菌、谷氨酸棒杆菌以及酵母等。这些研究表明,应用基因工程手段改造生产菌株的代谢途径是选育D-乳酸发酵生产菌株的发展趋势。最后还对D-乳酸发酵生产的前景进行了展望。  相似文献   

20.
Confronted with inescapable exhaustion of the earth’s fossil energy resources, the bio-based process to produce industrial chemicals is receiving significant interest. Biotechnological production of four-carbon 1,4-dicarboxylic acids (C4 diacids) from renewable plant biomass is a promising and attractive alternative to conventional chemistry routes. Although the C4 diacids pathway is well characterized and microorganisms able to convert biomass to these acids have been isolated and described, much still has to be done to make this process economically feasible. Metabolically engineered Escherichia coli has been developed as a biocatalyst to provide new processes for the biosynthesis of many valuable chemicals. However, E. coli does not naturally produce C4 diacids in large quantities. Rational strain development by metabolic engineering based on efficient genetic tools and detailed knowledge of metabolic pathways are crucial to successful production of these compounds. This review summarizes recent efforts and experiences devoted to metabolic engineering of the industrial model bacteria E. coli that led to efficient recombinant biocatalysts for the production of C4 diacids, including succinate, fumarate, malate, oxaloacetate, and aspartate, as well as the key limitations and challenges. Continued advancements in metabolic engineering will help to improve the titers, yields, and productivities of the C4 diacids discussed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号