首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Xia S  Christian TD  Wang J  Konigsberg WH 《Biochemistry》2012,51(21):4343-4353
Minor groove hydrogen bonding (HB) interactions between DNA polymerases (pols) and N3 of purines or O2 of pyrimidines have been proposed to be essential for DNA synthesis from results obtained using various nucleoside analogues lacking the N3 or O2 contacts that interfered with primer extension. Because there has been no direct structural evidence to support this proposal, we decided to evaluate the contribution of minor groove HB interactions with family B pols. We have used RB69 DNA pol and 3-deaza-2'-deoxyadenosine (3DA), an analogue of 2-deoxyadenosine, which has the same HB pattern opposite T but with N3 replaced with a carbon atom. We then determined pre-steady-state kinetic parameters for the insertion of dAMP opposite dT using primer/templates (P/T)-containing 3DA. We also determined three structures of ternary complexes with 3DA at various positions in the duplex DNA substrate. We found that the incorporation efficiency of dAMP opposite dT decreased 10(2)-10(3)-fold even when only one minor groove HB interaction was missing. Our structures show that the HB pattern and base pair geometry of 3DA/dT is exactly the same as those of dA/dT, which makes 3DA an optimal analogue for probing minor groove HB interactions between a DNA polymerase and a nucleobase. In addition, our structures provide a rationale for the observed 10(2)-10(3)-fold decrease in the rate of nucleotide incorporation. The minor groove HB interactions between position n - 2 of the primer strand and RB69pol fix the rotomer conformations of the K706 and D621 side chains, as well as the position of metal ion A and its coordinating ligands, so that they are in the optinal orientation for DNA synthesis.  相似文献   

3.
Morales JC  Kool ET 《Biochemistry》2000,39(42):12979-12988
Recent studies have identified amino acid side chains forming several hydrogen bonds in the DNA minor groove as potentially important in polymerase replication of DNA. Few studies have probed these interactions on the DNA itself. Using non-hydrogen-bonding nucleoside isosteres, we have now studied effects in both primer and template strands with several polymerases to investigate the general importance of these interactions. All six polymerases show differences in the H-bonding effects in the minor groove. Two broad classes of activity are seen, with a first group of DNA polymerases (KF(-), Taq, and HIV-RT) that efficiently extends nonpolar base pairs containing nucleoside Q (9-methyl-1H-imidazo[4,5-b]pyridine) but not the analogue Z (4-methylbenzimidazole), implicating a specific minor groove interaction at the first extension site. A second group of polymerases (Pol alpha, Pol beta, and T7(-)) fails to extend all non-H-bonding base pairs, indicating that these enzymes may need minor groove hydrogen bonds at both minor groove sites or that they are especially sensitive to noncanonical DNA structure or stability. All DNA polymerases examined use energetically important minor groove interactions to probe newly synthesized base pairs before extending them. The positions of these interactions vary among the enzymes, and only a subset of the interactions identified structurally appears to be functionally important. In addition, polymerases appear to be differently sensitive to small changes in base pair geometry.  相似文献   

4.
Gestl EE  Eckert KA 《Biochemistry》2005,44(18):7059-7068
The importance of DNA polymerase-DNA minor groove interactions on translesion synthesis (TLS) was examined in vitro using variants of exonuclease-deficient Klenow polymerase and site-specifically modified DNA oligonucleotides. Polymerase variant R668A lacks primer strand interactions, while variant Q849A lacks template strand interactions. O(6)-Methylguanine (m6G) and abasic site TLS was examined in three stages: dNTP insertion opposite the lesion, extension from a terminal lesion-containing base pair, and the dissociation equilibrium of the polymerase from the lesion-containing template. Less than 5% TLS was observed at the insertion step for either variant on the lesion-containing templates. While extensive TLS was observed for WT polymerase on the m6G template, only incorporation opposite the lesion was observed for the R668A variant. Loss of the template strand interaction, Q849A, resulted in the inability to insert dNTPs opposite either the m6G or abasic lesion. For both variants, extension of purine-containing m6G primer-templates was increased relative to WT polymerase. We observed similar extension efficiencies for all variants, relative to WT, using abasic template-primers. Polymerase dissociation/reassociation was studied through the use of a competitor primer/template complex. Dissociation for WT polymerase increased 2-fold and 3-fold, respectively, for m6G and abasic lesion-containing templates, relative to the natural template. Variants lacking DNA minor groove interactions displayed increased dissociation from DNA templates, relative to WT polymerase, but do not display an increased level of lesion-induced polymerase dissociation. Our results indicate that the primer and template strand interactions of the Klenow polymerase with the DNA minor groove are critical for maintaining the DNA-polymerase complex during translesion synthesis.  相似文献   

5.
6.
To examine the hypothesis that interactions between a DNA polymerase and the DNA minor groove are critical for accurate DNA synthesis, we studied the fidelity of DNA polymerase beta mutants at residue Arg(283), where arginine, which interacts with the minor groove at the active site, is replaced by alanine or lysine. Alanine substitution, removing minor groove interactions, strongly reduces polymerase selectivity for all single-base mispairs examined. In contrast, the lysine substitution, which retains significant interactions with the minor groove, has wild-type-like selectivity for T.dGMP and A.dGMP mispairs but reduced selectivity for T.dCMP and A.dCMP mispairs. Examination of DNA crystal structures of these four mispairs indicates that the two mispairs excluded by the lysine mutant have an atom (N2) in an unfavorable position in the minor groove, while the two mispairs permitted by the lysine mutant do not. These results suggest that unfavorable interactions between an active site amino acid side chain and mispair-specific atoms in the minor groove contribute to DNA polymerase specificity.  相似文献   

7.
8.
9.
RT29 is a dicationic diamidine derivative that does not obey the classical "rules" for shape and functional group placement that are expected to result in strong binding and specific recognition of the DNA minor groove. The compound contains a benzimidazole diphenyl ether core that is flanked by the amidine cations. The diphenyl ether is highly twisted and gives the entire compound too much curvature to fit well to the shape of the minor groove. DNase I footprinting, fluorescence intercalator displacement studies, and circular dichroism spectra, however, indicate that the compound is an AT specific minor groove binding agent. Even more surprisingly, quantitative biosensor-surface plasmon resonance and isothermal titration calorimetric results indicate that the compound binds with exceptional strength to certain AT sequences in DNA with a large negative enthalpy of binding. Crystallographic results for the DNA complex of RT29 compared to calculated results for the free compound show that the compound undergoes significant conformational changes to enhance its minor groove interactions. In addition, a water molecule is incorporated directly into the complex to complete the compound-DNA interface, and it forms an essential link between the compound and base pair edges at the floor of the minor groove. The calculated DeltaCp value for complex formation is substantially less than the experimentally observed value, which supports the idea of water being an intrinsic part of the complex with a major contribution to the DeltaCp value. Both the induced fit conformational changes of the compound and the bound water are essential for strong binding to DNA by RT29.  相似文献   

10.
DB921 and DB911 are benzimidazole-biphenyl isomers with terminal charged amidines. DB911 has a central meta-substituted phenyl that gives it a shape similar to those of known minor groove binding compounds. DB921 has a central para-substituted phenyl with a linear conformation that lacks the appropriate radius of curvature to match the groove shape. It is thus expected that DB911, but not DB921, should be an effective minor groove binder, but we find that DB921 not only binds in the groove but also has an unusually high binding constant in SPR experiments (2.9 x 10(8) M(-)(1), vs 2.1 x 10(7) M(-)(1) for DB911). ITC thermodynamic analysis with an AATT sequence shows that the stronger binding of DB921 is due to a more favorable binding enthalpy relative to that of DB911. CD results support minor groove binding for both compounds but do not provide an explanation for the binding of DB921. X-ray crystallographic analysis of DB921 bound to AATT shows that an induced fit structural change in DB921 reduces the twist of the biphenyl to complement the groove, and places the functional groups in position to interact with bases at the floor of the groove. The phenylamidine of DB921 forms indirect contacts with the bases through a bound water. The DB921-water pair forms a curved binding module that matches the shape of the minor groove and provides a number of strong interactions that are not possible with DB911. This result suggests that traditional views of compound curvature required for minor groove complex formation should be reevaluated.  相似文献   

11.
DNA ligases, found in both prokaryotes and eukaryotes, covalently link the 3′-hydroxyl and 5′-phosphate ends of duplex DNA segments. This reaction represents a completion step for DNA replication, repair and recombination. It is well established that ligases are sensitive to mispairs present on the 3′ side of the ligase junction, but tolerant of mispairs on the 5′ side. While such discrimination would increase the overall accuracy of DNA replication and repair, the mechanisms by which this fidelity is accomplished are as yet unknown. In this paper, we present the results of experiments with Tth ligase from Thermus thermophilus HB8 and a series of nucleoside analogs in which the mechanism of discrimination has been probed. Using a series of purine analogs substituted in the 2 and 6 positions, we establish that the apparent base pair geometry is much more important than relative base pair stability and that major groove contacts are of little importance. This result is further confirmed using 5-fluorouracil (FU) mispaired with guanine. At neutral pH, the FU:G mispair on the 3′ side of a ligase junction is predominantly in a neutral wobble configuration and is poorly ligated. Increasing the solution pH increases the proportion of an ionized base pair approximating Watson–Crick geometry, substantially increasing the relative ligation efficiency. These results suggest that the ligase could distinguish Watson–Crick from mispaired geometry by probing the hydrogen bond acceptors present in the minor groove as has been proposed for DNA polymerases. The significance of minor groove hydrogen bonding interactions is confirmed with both Tth and T4 DNA ligases upon examination of base pairs containing the pyrimidine shape analog, difluorotoluene (DFT). Although DFT paired with adenine approximates Watson–Crick geometry, a minor groove hydrogen bond acceptor is lost. Consistent with this hypothesis, we observe that DFT-containing base pairs inhibit ligation when on the 3′ side of the ligase junction. The NAD+-dependent ligase, Tth, is more sensitive to the DFT analog on the unligated strand whereas the ATP-dependent T4 ligase is more sensitive to substitutions in the template strand. Electrophoretic gel mobility-shift assays demonstrate that the Tth ligase binds poorly to oligonucleotide substrates containing analogs with altered minor groove contacts.  相似文献   

12.
13.
Alternative models have been presented to provide explanations for the sequence-dependent variation of the DNA minor groove width. In a structural model groove narrowing in A-tracts results from direct, short-range interactions among DNA bases. In an electrostatic model, the narrow minor groove of A-tracts is proposed to respond to sequence-dependent localization of water and cations. Molecular dynamics simulations on partially methylphosphonate substituted helical chains of d(TATAGGCCTATA) and d(CGCGAATTCGCG) duplexes have been carried out to help evaluate the effects of neutralizing DNA phosphate groups on the minor groove width. The results show that the time-average minor groove width of the GGCC duplex becomes significantly more narrow on neutralizing the phosphate backbone with methylphosphonates. The minor groove of the AATT sequence is normally narrow and the methylphosphonate substitutions have a smaller but measurable affect on this sequence. These results and models provide a system that can be tested by experiment and they support the hypothesis that the electrostatic environment around the minor groove affects the groove width in a sequence-dependent dynamic and time-average manner.  相似文献   

14.
15.
Nitrogen mustards are commonly used in cancer chemotherapy. They interact with DNA at electronegative sites, primarily forming N7 guanine mono-adducts and interstrand cross-links. Targeting nitrogen mustards to DNA by attachment of a DNA minor groove binding carrier such as the bisbenzimidazoles Hoechst 33258 (pibenzimol) or Hoechst 33342 (HOE) makes it possible to direct DNA alkylation to more specific stretches of DNA. We have performed a detailed molecular analysis of 6-thioguanine resistant clones arising in Chinese hamster AS52 cells after treatment with HOE, in comparison with a mono- and bifunctional pair of bisbenzimidazole-targeted nitrogen mustards (MGBs). HOE showed no significant ability to induce 6-thioguanine resistant mutants, possibly because drug-treated cells are highly susceptible to apoptosis within very short times. Neither of the MGBs caused the rapid cell death seen with the bisbenzimidazole. However, both MGBs were weaker mutagens than previously found for undirected mustards in the same system, an effect that we suggest could relate to greater structure-directed binding to less mutable DNA sites in the minor groove. Additionally, the nature of some of the mutants suggested there may be a small component of topo I and/or II-mediated events in the mutagenicity of the MGBs. Both MGBs showed high activity in causing deletion mutations, which may be due to errors in attempted repair of the complex lesions formed by minor groove targeted alkylators.  相似文献   

16.
The major and minor groove in duplex DNA are sites of specific molecular recognition by DNA-binding agents such as proteins, drugs and metal complexes and have functional significance. In view of this, understanding of the inherent differences in their environment and the allosteric information transfer between them induced by DNA-binding agents assumes importance. Site-specific incorporation of 5-aminodansyl-dU, (U*) in oligonucleotides d(CGCGAAU*TCGCG) and d(CGCGAATU*CGCG) leads to fluorogenic nucleic acids, in which the reporter group resides in the major groove. The fluorescent observables from such a probe are used to estimate the dielectric constant of the major groove to be approximately 55D, in comparison to the reported non polar environment of the minor groove (approximately 20D) in poly d[AT]-poly d[AT]. An exclusive minor groove event such as DNA-netropsin association can be quantitatively monitored by fluorescence of the dansyl moiety located in the major groove. This suggests existence of an information network among the two grooves. The fluorescent DNA probes as reported here may have potential applications in the study of structural polymorphisms in DNA, DNA-ligand interactions and triple helix structure.  相似文献   

17.
The hydrogen bonding interactions between the Klenow fragment of Escherichia coli DNA polymerase I with the proofreading exonuclease inactivated (KF(-)) and the minor groove of DNA were examined with modified oligodeoxynucleotides in which 3-deazaguanine (3DG) replaced guanine. This substitution would prevent a hydrogen bond from forming between the polymerase and that one site on the DNA. If the hydrogen bonding interaction were important, then we should observe a decrease in the rate of reaction. The steady-state and pre-steady-state kinetics of DNA replication were measured with 10 different oligodeoxynucleotide duplexes in which 3DG was placed at different positions. The largest decrease in the rate of replication was observed when 3DG replaced guanine at the 3'-terminus of the primer. The effect of this substitution on mispair extension and formation was then probed. The G to 3DG substitution at the primer terminus decreased the k(pol) for the extension past G/C, G/A, and G/G base pairs but not the G/T base pair. The G to 3DG substitution at the primer terminus also decreased the formation of correct base pairs as well as incorrect base pairs. However, in all but two mispairs, the effect on correct base pairs was much greater than that of mispairs. These results indicate that the hydrogen bond between Arg668 and the minor groove of the primer terminus is important in the fidelity of both formation and extension of mispairs. These experiments support a mechanism in which Arg668 forms a hydrogen bonding fork between the minor groove of the primer terminus and the ring oxygen of the deoxyribose moiety of the incoming dNTP to align the 3'-hydroxyl group with the alpha-phosphate of the dNTP. This is one mechanism by which the polymerase can use the geometry of the base pairs to modulate the rate of formation and extension of mispairs.  相似文献   

18.
A procedure was developed for quantitative estimation of the ligand affinity for the DNA minor groove with allowance for ligand hydration, whereby the binding energy was calculated as the difference in the energies of ligand-DNA and ligand-water interactions. Adequacy of the procedure was demonstrated with the structural motifs (pyrrolecarboxamide, benzimidazole, furancarboxamide, and phthalimide) of well-known ligands for the case of a d(GCA10CG).d(CGT10GC) duplex. On the strength of the results obtained, an indole-based motif was proposed as the basis for a highly affined minor groove binder.  相似文献   

19.
Information readout in the DNA minor groove is accompanied by substantial DNA deformations, such as sugar switching between the two conformational domains, B-like C2'-endo and A-like C3'-endo. The effect of sugar puckering on the sequence-dependent protein-DNA interactions has not been studied systematically, however. Here, we analyzed the structural role of A-like nucleotides in 156 protein-DNA complexes solved by X-ray crystallography and NMR. To this end, a new algorithm was developed to distinguish interactions in the minor groove from those in the major groove, and to calculate the solvent-accessible surface areas in each groove separately. Based on this approach, we found a striking difference between the sets of amino acids interacting with B-like and A-like nucleotides in the minor groove. Polar amino acids mostly interact with B-nucleotides, while hydrophobic amino acids interact extensively with A-nucleotides (a hydrophobicity-structure correlation). This tendency is consistent with the larger exposure of hydrophobic surfaces in the case of A-like sugars. Overall, the A-like nucleotides aid in achieving protein-induced fit in two major ways. First, hydrophobic clusters formed by several consecutive A-like sugars interact cooperatively with the non-polar surfaces in proteins. Second, the sugar switching occurs in large kinks promoted by direct protein contact, predominantly at the pyrimidine-purine dimeric steps. The sequence preference for the B-to-A sugar repuckering, observed for pyrimidines, suggests that the described DNA deformations contribute to specificity of the protein-DNA recognition in the minor groove.  相似文献   

20.
The tripeptide 1,2-dihydro-(3 H )-pyrrolo[3,2- e ]indole-7-carboxylate (CDPI3) binds to the minor groove of DNA with high affinity. When this minor groove binder is conjugated to the 5'-end of short oligonucleotides the conjugates form unusually stable hybrids with complementary DNA and thus may have useful diagnostic and/or therapeutic applications. In order to gain an understanding of the structural interactions between the CDPI3minor groove binding moiety and the DNA, we have determined and compared the solution structure of a duplex consisting of oligodeoxyribonucleotide 5'-TGATTATCTG-3' conjugated at the 5'-end to CDPI3 and its complementary strand to an unmodified control duplex of the same sequence using nuclear magnetic resonance techniques. Thermal denaturation studies indicated that the hybrid of this conjugate with its complementary strand had a melting temperature that was 30 degrees C higher compared with the unmodified control duplex. Following restrained molecular dynamics and relaxation matrix refinement, the solution structure of the CDPI3-conjugated DNA duplex demonstrated that the overall shape of the duplex was that of a straight B-type helix and that the CDPI3moiety was bound snugly in the minor groove, where it was stabilized by extensive van der Waal's interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号