首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C Wang  P Sarnow    A Siddiqui 《Journal of virology》1994,68(11):7301-7307
Translation of hepatitis C virus (HCV) RNA is initiated by cap-independent internal ribosome binding to the 5' noncoding region (NCR). To identify the sequences and structural elements within the 5' NCR of HCV RNA that contribute to the initiation of translation, a series of point mutations was introduced within this sequence. Since the pyrimidine-rich tract is considered a characteristic feature of picornavirus internal ribosome entry site (IRES) elements, our mutational analysis focused on two putative pyrimidine tracts (Py-I and Py-II) within the HCV 5' NCR. Translational efficiency of these mutant RNAs was examined by in vitro translation and after RNA transfection into liver-derived cells. Mutational analysis of Py-I (nucleotides 120 to 130), supported by compensatory mutants, demonstrates that the primary sequence of this motif is not important but that a helical structural element associated with this region is critical for HCV IRES function. Mutations in Py-II (nucleotides 191 to 199) show that this motif is dispensable for IRES function as well. Thus, the pyrimidine-rich tract motif, which is considered as an essential element of the picornavirus IRES elements, does not appear to be a functional component of the HCV IRES. Further, the insertional mutagenesis study suggests a requirement for proper spacing between the initiator AUG and the upstream structures of the HCV IRES element for internal initiation of translation.  相似文献   

2.
C Wang  S Y Le  N Ali    A Siddiqui 《RNA (New York, N.Y.)》1995,1(5):526-537
Translation of the human hepatitis C virus (HCV) RNA genome occurs by a mechanism known as "internal ribosome entry." This unusual strategy of translation is employed by naturally uncapped picornaviral genomic RNAs and several cellular mRNAs. A common feature of these RNAs is a relatively long 5' noncoding region (NCR) that folds into a complex secondary structure harboring an internal ribosome entry site (IRES). Evidence derived from the use of dicistronic expression systems, combined with an extensive mutational analysis, demonstrated the presence of an IRES within the HCV 5'NCR. The results of our continued mutational analysis to map the critical structural elements of the HCV IRES has led to the identification of a pseudoknot structure upstream of the initiator AUG. The evidence presented in this study is based upon the mutational analysis of the putative pseudoknot structure. This is further substantiated by biochemical and enzymatic probing of the wild-type and mutant 5'NCR. Further, the thermodynamic calculations, based upon a modified RNAKNOT program, are consistent with the presence of a pseudoknot structure located upstream of the initiator AUG. Maintenance of this structural element is critical for internal initiation of translation. The pseudoknot structure in the 5'NCR represents a highly conserved feature of all HCV subtypes and members of the pestivirus family, including hog cholera virus and bovine viral diarrhea virus.  相似文献   

3.
Genetic and biochemical studies have provided convincing evidence that the 5' noncoding region (5' NCR) of hepatitis C virus (HCV) is highly conserved among viral isolates worldwide and that translation of HCV is directed by an internal ribosome entry site (IRES) located within the 5' NCR. We have investigated inhibition of HCV gene expression using antisense oligonucleotides complementary to the 5' NCR, translation initiation codon, and core protein coding sequences. Oligonucleotides were evaluated for activity after treatment of a human hepatocyte cell line expressing the HCV 5' NCR, core protein coding sequences, and the majority of the envelope gene (E1). More than 50 oligonucleotides were evaluated for inhibition of HCV RNA and protein expression. Two oligonucleotides, ISIS 6095, targeted to a stem-loop structure within the 5' NCR known to be important for IRES function, and ISIS 6547, targeted to sequences spanning the AUG used for initiation of HCV polyprotein translation, were found to be the most effective at inhibiting HCV gene expression. ISIS 6095 and 6547 caused concentration-dependent reductions in HCV RNA and protein levels, with 50% inhibitory concentrations of 0.1 to 0.2 microM. Reduction of RNA levels, and subsequently protein levels, by these phosphorothioate oligonucleotides was consistent with RNase H cleavage of RNA at the site of oligonucleotide hybridization. Chemically modified HCV antisense phosphodiester oligonucleotides were designed and evaluated for inhibition of core protein expression to identify oligonucleotides and HCV target sequences that do not require RNase H activity to inhibit expression. A uniformly modified 2'-methoxyethoxy phosphodiester antisense oligonucleotide complementary to the initiator AUG reduced HCV core protein levels as effectively as phosphorothioate oligonucleotide ISIS 6095 but without reducing HCV RNA levels. Results of our studies show that HCV gene expression is reduced by antisense oligonucleotides and demonstrate that it is feasible to design antisense oligonucleotide inhibitors of translation that do not require RNase H activation. The data demonstrate that chemically modified antisense oligonucleotides can be used as tools to identify important regulatory sequences and/or structures important for efficient translation of HCV.  相似文献   

4.
Translation of hepatitis C virus (HCV) RNA is initiated by internal entry of ribosomes into the 5' noncoding region (NCR). This process depends on genomic elements within the 5' NCR called the internal ribosome entry site (IRES) and may involve host factors. The alpha-branch structure (nucleotides 47 to 67) of the HCV IRES is considered a cis-acting element critical for translation initiation because it is indispensable for translation in vitro (S. Fukushi, K. Katayama, C. Kurihara, N. Ishiyama, F. B. Hoshino, T. Ando, and A. Oya, Biochem. Biophys. Res. Commun. 199:425-432, 1994). In order to further characterize the function of the alpha-branch, we determined whether sequence exchange within the alpha-branch had any effect on translation initiation. An in vitro translation study revealed that the stem sequences of this region played an important role in efficient IRES function. In addition to several HeLa cell proteins, which had a binding affinity for the 5' NCR, a novel 25-kDa protein that specifically interacted with the HCV IRES was discovered. The binding affinity of the 25-kDa protein for the 5' NCR was correlated with the efficiency of translation initiation of HCV RNA, indicating a critical role for the 25-kDa protein in HCV translation.  相似文献   

5.
Some studies suggest that the hepatitis C virus (HCV) internal ribosome entry site (IRES) requires downstream 5' viral polyprotein-coding sequence for efficient initiation of translation, but the role of this RNA sequence in internal ribosome entry remains unresolved. We confirmed that the inclusion of viral sequence downstream of the AUG initiator codon increased IRES-dependent translation of a reporter RNA encoding secretory alkaline phosphatase, but found that efficient translation of chloramphenicol acetyl transferase (CAT) required no viral sequence downstream of the initiator codon. However, deletion of an adenosine-rich domain near the 5' end of the CAT sequence, or the insertion of a small stable hairpin structure (deltaG = -18 kcal/mol) between the HCV IRES and CAT sequences (hpCAT) substantially reduced IRES-mediated translation. Although translation could be restored to both mutants by the inclusion of 14 nt of the polyprotein-coding sequence downstream of the AUG codon, a mutational analysis of the inserted protein-coding sequence demonstrated no requirement for either a specific nucleotide or amino acid-coding sequence to restore efficient IRES-mediated translation to hpCAT. Similar results were obtained with the structurally and phylogenetically related IRES elements of classical swine fever virus and GB virus B. We conclude that there is no absolute requirement for viral protein-coding sequence with this class of IRES elements, but that there is a requirement for an absence of stable RNA structure immediately downstream of the AUG initiator codon. Stable RNA structure immediately downstream of the initiator codon inhibits internal initiation of translation but, in the case of hpCAT, did not reduce the capacity of the RNA to bind to purified 40S ribosome subunits. Thus, stable RNA structure within the 5' proximal protein-coding sequence does not alter the capacity of the IRES to form initial contacts with the 40S subunit, but appears instead to prevent the formation of subsequent interactions between the 40S subunit and viral RNA in the vicinity of the initiator codon that are essential for efficient internal ribosome entry.  相似文献   

6.
7.
The initiation of translation on the positive-sense RNA genome of hepatitis C virus (HCV) is directed by an internal ribosomal entry site (IRES) that occupies most of the 341-nt 5' nontranslated RNA (5'NTR). Previous studies indicate that this IRES differs from picornaviral IRESs in that its activity is dependent upon RNA sequence downstream of the initiator AUG. Here, we demonstrate that the initiator AUG of HCV is located within a stem-loop (stem-loop IV) involving nt -12 to +12 (with reference to the AUG). This structure is conserved among HCV strains, and is present in the 5'NTR of the phylogenetically distant GB virus B. Mutant, nearly genome-length RNAs containing nucleotide substitutions predicted to enhance the stability of stem-loop IV were generally deficient in cap-independent translation both in vitro and in vivo. Additional mutations that destabilize the stem-loop restored translation to normal. Thus, the stability of the stem-loop is strongly but inversely correlated with the efficiency of internal initiation of translation. In contrast, mutations that stabilize this stem-loop had comparatively little effect on translation of 5' truncated RNAs by scanning ribosomes, suggesting that internal initiation of translation follows binding of the 40S ribosome directly at the site of stem-loop IV. Because stem-loop IV is not required for internal entry of ribosomes but is able to regulate this process, we speculate that it may be stabilized by interactions with a viral protein, providing a mechanism for feedback regulation of translation, which may be important for viral persistence.  相似文献   

8.
Translation initiation of hepatitis C virus (HCV) occurs through an internal ribosome entry site (IRES) located at its 5'-end. As a positive-stranded RNA virus, HCV uses its genome as a common template for translation and replication, but the coordination between these two processes remains poorly characterized. Moreover, although genetic evidence of RNA-protein interactions for viral replication is accumulating because of subgenomic replicons and a recent culture system for HCV, such interactions are still contentious in the regulation of translation. To gain insight into such mechanisms, we addressed the involvement of cis and trans viral factors in HCV IRES activity by using a cell-based RNA reporter system. We found that the HCV 3' noncoding region (NCR) strongly stimulates IRES efficiency in cis, depending on the genotype and the cell line. Moreover, we confirmed the role of the core protein in viral gene expression as previously reported in vitro. Surprisingly, we observed a similar effect, i.e. a twofold increase under low amounts of NS5B RNA polymerase, followed by a decrease at higher concentrations. However, no contribution of NS5A to HCV IRES-mediated translation was noted and no cooperative effect could be detected between 3' NCR and viral proteins or between proteins. Collectively, these results suggest that HCV RNA translation is regulated, and that the switch from translation to replication might involve a sequential requirement for both cis and trans viral factors, because of their apparent lack of synergy, probably with the aid of host factors.  相似文献   

9.
The 3' noncoding region element (AUUUA)n specifically targets many short-lived mRNAs for degradation. Although the mechanism by which this sequence functions is not yet understood, a potential link between facilitated mRNA turnover and translation has been implied by the stabilization of cellular mRNAs in the presence of protein synthesis inhibitors. We therefore directly investigated the role of translation on mRNA stability. We demonstrate that mRNAs which are poorly translated through the introduction of stable secondary structure in the 5' noncoding region are not efficiently targeted for selective destabilization by the (AUUUA)n element. These results suggest that AUUUA-mediated degradation involves either a 5'-->3' exonuclease or is coupled to ongoing translation of the mRNA. To distinguish between these two possibilities, we inserted the poliovirus internal ribosome entry site, which promotes internal ribosome initiation, downstream of the 5' secondary structure. Translation directed by internal ribosome binding was found to fully restore targeted destabilization of AUUUA-containing mRNAs despite the presence of 5' secondary structure. This study therefore demonstrates that selective degradation mediated by the (AUUUA)n element is coupled to ribosome binding or ongoing translation of the mRNA and does not involve 5'-to-3' exonuclease activity.  相似文献   

10.
The 5'-noncoding region (5'-NCR) of the hepatitis C virus (HCV) RNA genome serves as an internal ribosome entry site (IRES) and mediates translation initiation in a cap-independent manner. Previously, we reported the interaction between La antigen and the HCV IRES, which appeared to occur in the context of initiator AUG. It was further shown that HCV IRES-mediated translation was stimulated in the presence of human La antigen. In this study, we have defined the cis- and trans-acting elements responsible for La-5'-NCR interactions and established the dependence of the HCV IRES efficiency on cellular La antigen. During the La-IRES interaction, initiator AUG but not the neighboring codons was found to be the direct target of La binding. The C terminus effector domain-dependent modulation of La binding to the HCV IRES is demonstrated by deletion and substitution mutagenesis of the protein. An RNA systematic evolution of ligands by exponential enrichment (SELEX), generated against La protein that selectively binds La in HeLa lysates and competes for the protein binding to the 5'-NCR, was used to demonstrate the requirement of La for the HCV IRES function in the context of mono- and dicistronic mRNAs. Sequestration of La antigen by the RNA SELEX in HeLa translation lysates blocked the HCV and poliovirus IRES-mediated translation in vitro. The functional requirement of La protein for the HCV IRES activity was further established in a liver-derived cell line and in an add-back experiment in which the inhibited IRES was rescued by recombinant human La. These results strongly argue for the novel role of La protein during selection of the initiator AUG and its participation during internal initiation of translation of the HCV RNA genome.  相似文献   

11.
Kong LK  Sarnow P 《Journal of virology》2002,76(24):12457-12462
Translation initiation in many eukaryotic mRNAs is modulated by an interaction between the cap binding protein complex, bound to the 5' end of the mRNA, and the polyadenosine binding protein, bound to the 3'-terminal polyadenosine sequences. A few cellular and viral mRNAs, such as the hepatitis C virus (HCV) mRNA genome, lack 3'-terminal polyadenosine sequences. For such mRNAs, the question of whether their 3'-end sequences also regulate the initiation phase of protein synthesis via an interaction with their 5' ends has received intense scrutiny. For HCV mRNA, various experimental designs have led to conflicting interpretations, that the 3' end of the RNA can modulate translation initiation either in a positive or in a negative fashion. To examine the possibility of end-to-end communication in HCV in detail, mRNAs containing the HCV internal ribosome entry site linked to a luciferase coding region, followed by different 3' noncoding regions, were expressed in the cytoplasm of cultured cells by T7 RNA polymerase. The intracellular translation efficiencies, steady-state levels, stabilities, and 3'-end sequences of these chimeric RNAs were examined. It was found that the HCV 3' noncoding region modulates neither the translation nor the stability of the mRNAs. Thus, there is no detectable end-to-end communication in cytoplasmically expressed chimeric mRNAs containing the HCV noncoding regions. However, it remains an open question whether end-to-end communication occurs in full-length HCV mRNAs in the infected liver.  相似文献   

12.
Poliovirus (PV) RNA is translated by a cap-independent mechanism involving the internal entry of ribosomes onto the 5' noncoding region (NCR). Using the vaccinia virus-T7 RNA polymerase transient expression system, we showed previously that deletion of certain individual predicted secondary structures within the PV 5' NCR rendered the element defective in directing internal initiation when assayed alone. However, these defective 5' NCRs were functional when coexpressed within cells with full-length PV cDNA (N. Percy, G. J. Belsham, J. K. Brangwyn, M. Sullivan, D. M. Stone, and J. W. Almond, J. Virol. 66:1695-1701, 1992). We have extended the study to demonstrate that when these predicted secondary structures are deleted in combination, the enhanced activity in the presence of the full-length PV cDNA is still observed. Indeed, a poliovirus 5' NCR devoid of all predicted secondary structures is capable of initiating protein synthesis under these conditions. Surprisingly, we also found that this enhancement of activity requires neither any PV protein nor the inhibition of cap-dependent translation. The results indicate that the defective PV 5' NCR elements can be complemented in trans by functional 5' NCRs in a highly sequence specific manner.  相似文献   

13.
Human La autoantigen has been shown to influence internal initiation of translation of hepatitis C virus (HCV) RNA. Previously, we have demonstrated that, among the three RRMs of La protein, the RRM2 interacts with HCV internal ribosome entry site (IRES) around the GCAC motif near the initiator AUG present in the stem region of stem-loop IV (SL IV) (Pudi, R., Abhiman, S., Srinivasan, N., and Das S. (2003) J. Biol. Chem. 278, 12231-12240). Here, we have demonstrated that the mutations in the GCAC motif, which altered the binding to RRM2, had drastic effect on HCV IRES-mediated translation, both in vitro and in vivo. The results indicated that the primary sequence of the stem region of SL IV plays an important role in mediating internal initiation. Furthermore, we have shown that the mutations also altered the ability to bind to ribosomal protein S5 (p25), through which 40 S ribosomal subunit is known to contact the HCV IRES RNA. Interestingly, binding of La protein to SL IV region induced significant changes in the circular dichroism spectra of the HCV RNA indicating conformational alterations that might assist correct positioning of the initiation complex. Finally, the ribosome assembly analysis using sucrose gradient centrifugation implied that the mutations within SL IV of HCV IRES impair the formation of functional ribosomal complexes. These observations strongly support the hypothesis that La protein binding near the initiator AUG facilitates the interactions with ribosomal protein S5 and 48 S ribosomal assembly and influences the formation of functional initiation complex on the HCV IRES RNA to mediate efficient internal initiation of translation.  相似文献   

14.
Alternative initiations of translation of the human fibroblast growth factor 2 (FGF-2) mRNA, at three CUG start codons and one AUG start codon, result in the synthesis of four isoforms of FGF-2. This process has important consequences on the fate of FGF-2: the CUG-initiated products are nuclear and their constitutive expression is able to induce cell immortalization, whereas the AUG-initiated product, mostly cytoplasmic, can generate cell transformation. Thus, the different isoforms probably have distinct targets in the cell. We show here that translation initiation of the FGF-2 mRNA breaks the rule of the cap-dependent ribosome scanning mechanism. First, translation of the FGF-2 mRNA was shown to be cap independent in vitro. This cap-independent translation required a sequence located between nucleotides (nt) 192 and 256 from the 5' end of the 318-nt-long 5' untranslated region. Second, expression of bicistronic vectors in COS-7 cells indicated that the FGF-2 mRNA is translated through a process of internal ribosome entry mediated by the mRNA leader sequence. By introducing additional AUG codons into the RNA leader sequence, we localized an internal ribosome entry site to between nt 154 and 318 of the 5' untranslated region, just upstream of the first CUG. The presence of an internal ribosome entry site in the FGF-2 mRNA suggests that the process of internal translation initiation, by controlling the expression of a growth factor, could have a crucial role in the control of cell proliferation and differentiation.  相似文献   

15.
Internal ribosome entry site within hepatitis C virus RNA.   总被引:71,自引:21,他引:50       下载免费PDF全文
The mechanism of initiation of translation on hepatitis C virus (HCV) RNA was investigated in vitro. HCV RNA was transcribed from the cDNA that corresponded to nucleotide positions 9 to 1772 of the genome by using phage T7 RNA polymerase. Both capped and uncapped RNAs thus transcribed were active as mRNAs in a cell-free protein synthesis system with lysates prepared from HeLa S3 cells or rabbit reticulocytes, and the translation products were detected by anti-gp35 antibodies. The data indicate that protein synthesis starts at the fourth AUG, which was the initiator AUG at position 333 of the HCV RNA used in this study. Efficiency of translation of the capped methylated RNA appeared to be similar to that of the capped unmethylated RNA. However, a capped methylated RNA showed a much higher activity as mRNA than did the capped unmethylated RNA in rabbit reticulocyte lysates when the RNA lacked a nucleotide sequence upstream of position 267. The results strongly suggest that HCV RNA carries an internal ribosome entry site (IRES). Artificial mono- and dicistronic mRNAs were prepared and used to identify the region that carried the IRES. The results indicate that the sequence between nucleotide positions 101 and 332 in the 5' untranslated region of HCV RNA plays an important role in efficient translation. Our data suggest that the IRES resides in this region of the RNA. Furthermore, an IRES in the group II HCV RNA was found to be more efficient than that in the group I HCV RNA.  相似文献   

16.
N Ali  A Siddiqui 《Journal of virology》1995,69(10):6367-6375
Initiation of translation of the human hepatitis C virus (HCV) RNA genome occurs by internal ribosome entry into the 5' noncoding region (5'NCR) in a cap-independent manner. The internal ribosome entry site of the HCV 5'NCR has been previously defined to encompass almost the entire 5'NCR. Here we report the interaction of polypyrimidine tract-binding protein (PTB) at three distinct regions within the 5'NCR by UV cross-linking assays. All three regions contain a consensus polypyrimidine tract motif. The evidence for the interaction of recombinant PTB at multiple sites within the 5'NCR is based on the use of 5'NCR mutants as competitors and by direct UV cross-linking of the mutant RNAs. Furthermore, the PTB isomers from HeLa nuclear extracts interact with the HCV 5'NCR, as shown by immunoprecipitation of a UV cross-linked complex with anti-PTB serum. Immunodepletion of PTB from translation lysates suggested the functional requirement for PTB during translation initiation of the HCV RNA. Addition of purified PTB to immunodepleted lysates did not restore translation mediated by the HCV 5'NCR, indicating the requirement of PTB-associated factors that were removed during immunodepletion.  相似文献   

17.
An internal ribosome entry site (IRES) mediates translation initiation of bovine viral diarrhea virus (BVDV) RNA. Studies have suggested that a portion of the N(pro) open reading frame (ORF) is required, although its exact function has not been defined. Here we show that a subgenomic (sg) BVDV RNA in which the NS3 ORF is preceded only by the 5' nontranslated region did not replicate to detectable levels following transfection. However, RNA synthesis and cytopathic effects were observed following serial passage in the presence of a noncytopathic helper virus. Five sg clones derived from the passaged virus contained an identical, silent substitution near the beginning of the NS3 coding sequence (G400U), as well as additional mutations. Four of the reconstructed mutant RNAs replicated in transfected cells, and in vitro translation showed increased levels of NS3 for the mutant RNAs compared to that of wild-type (wt) MetNS3. To more precisely dissect the role of these mutations, we constructed two sg derivatives: ad3.10, which contains only the G400U mutation, and ad3.7, with silent substitutions designed to minimize RNA secondary structure downstream of the initiator AUG. Both RNAs replicated and were translated in vitro to similar levels. Moreover, ad3.7 and ad3.10, but not wt MetNS3, formed toeprints downstream of the initiator AUG codon in an assay for detecting the binding of 40S ribosomal subunits and 43S ribosomal complexes to the IRES. These results suggest that a lack of stable RNA secondary structure(s), rather than a specific RNA sequence, immediately downstream of the initiator AUG is important for optimal translation initiation of pestivirus RNAs.  相似文献   

18.
The internal ribosome entry segment (IRES) of picornaviruses consists of approximately 450 nt of 5'-untranslated region, terminating at the 3' end with an approximately 25 nt element consisting of an absolutely conserved UUUC motif followed by a more variable pyrimidine-rich tract and G-poor spacer, and finally an AUG triplet, which is considered to be the actual ribosome entry site. Events following entry at this site differ among picornaviruses: in encephalomyocarditis virus (EMCV) virtually all ribosomes initiate translation at this site (AUG-11); in foot-and-mouth-disease virus (FMDV), one-third of the ribosomes initiate at this AUG (the Lab site), and the rest at the next AUG 84 nt downstream (Lb site); and in poliovirus (PV), the AUG at the 3' end of the IRES (at nt 586 in PV type 1) is considered to be a silent entry site, with all ribosomes initiating translation at the next AUG downstream (nt 743). To investigate what determines this different behavior, chimeras were constructed with a crossover at the conserved UUUC motif: the body of the IRES, the sequences upstream of this UUUC motif, was derived from one species, and the downstream sequences from another. When the body of the FMDV or PV IRESes was replaced by that of EMCV, there was a marked increase in the absolute and relative frequency of initiation at the upstream AUG, the Lab site of FMDV and 586AUG of PV, respectively. In contrast, when the body of the EMCV IRES was replaced by that of PV, initiation occurred with no preference at three AUGs: the normal site (AUG-11), AUG-10 situated 8 nt upstream, and AUG-12, which is 12 nt downstream. Thus although the context of the AUG at the 3' end of the IRES may influence initiation frequency at this site, as was shown by improving the context of 586AUG of PV, the behavior of the ribosome is also highly dependent on the nature of the upstream IRES. Delivery of the ribosome to this AUG in an initiation-competent manner is particularly efficient and accurate with the EMCV IRES.  相似文献   

19.
Picornavirus internal ribosome entry sites (IRESs) are approximately 450 nt. RNA elements that direct internal initiation of translation, such that when placed between the two cistrons of a dicistronic construct, they drive independent translation of the downstream cistron. Consequently they have been widely used for coordinated expression of two or more proteins. All picornavirus IRESs have an AUG triplet at the very 3' end, which is thought to be the actual site of internal ribosome entry. However with some IRESs, such as foot-and-mouth disease virus, and especially poliovirus, the majority of ribosomes do not initiate translation at this putative entry site AUG, but at the next AUG further downstream, which is thought to be accessed by a process of linear ribosome scanning from the entry site. If this is so, then it should be possible to regulate IRES-dependent translation by inserting an iron responsive element (IRE) between the putative entry site AUG and the main functional initiation site. This should make IRES-dependent translation sensitive to the concentration of iron regulatory protein (IRP), the protein that specifically binds to the IRE. This has been attempted with both the foot-and-mouth disease virus and poliovirus IRESs, and was successful in so far as an inhibition specifically of IRES-dependent translation was observed that was strictly dependent on both the presence of IRP and of a functional IRE motif inserted in the sense orientation. However, the range over which expression could be varied was rather limited (three- to fourfold maximum), because some IRES-dependent translation remained completely refractory to inhibition by even very high IRP concentrations. In contrast, with a cap-proximal IRE in the 5' untranslated region of an mRNA translated by the scanning mechanism, addition of sufficient IRP results in complete inhibition. These results support the model of IRES-promoted ribosome entry at an upstream site followed by strictly linear scanning to the main functional initiation site for the majority of internal initiation events, but imply that some ribosomes must access the functional initiation site by another route, possibly a nonlinear shunting-like mechanism.  相似文献   

20.
The initiation of cap-independent translation of poliovirus mRNA occurs as a result of ribosome entry at an internal site(s) within the 5' noncoding region. A series of linker scanning mutations was constructed to define the genetic determinants of RNA-protein interactions that lead to high-fidelity translation of this unusual viral mRNA. The mutations are located within two distinct stem-loop structures in the 5' noncoding region of poliovirus RNA that constitute a major portion of a putative internal ribosome entry site. On the basis of our data derived from genetic and biochemical assays, the stability of one of the stem-loop structures appears to be essential for translation initiation via internal binding of ribosomes. However, the second stem-loop structure may function in a manner that requires base pairing and proper spacing between specific nucleotide sequences. By employing RNA electrophoretic mobility shift assays, an RNA-protein interaction was detected for this latter stem-loop structure that does not occur in RNAs containing mutations which perturb the predicted hairpin structure. Analysis of in vivo-selected virus revertants, in combination with mobility shift assays, suggests that extensive genetic rearrangement can lead to restoration of 5' noncoding region functions, possibly by the repositioning of specific RNA sequence or structure motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号