首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report for the first time that the C-terminal region of hG-CSF suffers from proteolytic degradation when human granulocyte colony-stimulating factor (hG-CSF) is directly expressed in Escherichia coli BL21(DE3). It is believed that the rapid proteolysis occurs at the C-terminus of hG-CSF that is very easily exposed to E. coli protease(s) during a short period following protein synthesis and prior to completion of the formation of the inclusion body. The recombinant hG-CSF that is expressed with an N-terminal fusion partner is effectively protected from the proteolysis. It seems that since the N-terminus of hG-CSF is located very close to the C-terminus, the presence of the N-terminal fusion partner masks the C-terminal region of hG-CSF and protects it from proteolytic degradation by E. coli protease(s). Furthermore, the solubility of hG-CSF markedly increased in E. coli cytoplasm when a stress-responsive and aggregation-resistant protein, i.e. aspartate carbamoyl-transferase catalytic chain (PyrB) was used as a novel N-terminal fusion partner proteins.  相似文献   

2.
Escherichia coli represents a robust, inexpensive expression host for the production of recombinant proteins. However, one major limitation is that certain protein classes do not express well in a biologically relevant form using standard expression approaches in the cytoplasm of E. coli. To improve the usefulness of the E. coli expression platform we have investigated combinations of promoters and selected N-terminal fusion tags for the extracellular expression of human target proteins. A comparative study was conducted on 24 target proteins fused to outer membrane protein A (OmpA), outer membrane protein F (OmpF) and osmotically inducible protein Y (OsmY). Based on the results of this initial study, we carried out an extended expression screen employing the OsmY fusion and multiple constructs of a more diverse set of human proteins. Using this high-throughput compatible system, we clearly demonstrate that secreted biomedically relevant human proteins can be efficiently retrieved and purified from the growth medium.  相似文献   

3.
Preparations enriched by a specific protein are rarely easily obtained from natural host cells. Hence, recombinant protein production is frequently the sole applicable procedure. The ribosomal machinery, located in the cytoplasm is an outstanding catalyst of recombinant protein biosynthesis. Escherichia coli facilitates protein expression by its relative simplicity, its inexpensive and fast high-density cultivation, the well-known genetics and the large number of compatible tools available for biotechnology. Especially the variety of available plasmids, recombinant fusion partners and mutant strains have advanced the possibilities with E. coli. Although often simple for soluble proteins, major obstacles are encountered in the expression of many heterologous proteins and proteins lacking relevant interaction partners in the E. coli cytoplasm. Here we review the current most important strategies for recombinant expression in E. coli. Issues addressed include expression systems in general, selection of host strain, mRNA stability, codon bias, inclusion body formation and prevention, fusion protein technology and site-specific proteolysis, compartment directed secretion and finally co-overexpression technology. The macromolecular background for a variety of obstacles and genetic state-of-the-art solutions are presented.  相似文献   

4.
Extracellular production of recombinant proteins in Escherichia coli has several advantages over cytoplasmic or periplasmic production. However, nonpathogenic laboratory strains of E. coli generally excrete only trace amounts of proteins into the culture medium under normal growth conditions. Here we report a systematic proteome-based approach for developing a system for high-level extracellular production of recombinant proteins in E. coli. First, we analyzed the extracellular proteome of an E. coli B strain, BL21(DE3), to identify naturally excreted proteins, assuming that these proteins may serve as potential fusion partners for the production of recombinant proteins in the medium. Next, overexpression and excretion studies were performed for the 20 selected fusion partners with molecular weights below 40 kDa. Twelve of them were found to allow fused proteins to excrete into the medium at considerable levels. The most efficient excreting fusion partner, OsmY, was used as a carrier protein to excrete heterologous proteins into the medium. E. coli alkaline phosphatase, Bacillus subtilis alpha-amylase, and human leptin used as model proteins could all be excreted into the medium at concentrations ranging from 5 to 64 mg/L during the flask cultivation. When only the signal peptide or the mature part of OsmY was used as a fusion partner, no such excretion was observed; this confirmed that these proteins were truly excreted rather than released by outer membrane leakage. The recombinant protein of interest could be recovered by cleaving off the fusion partner by enterokinase as demonstrated for alkaline phosphatase as an example. High cell density cultivation allowed production of these proteins to the levels of 250-700 mg/L in the culture medium, suggesting the good potential of this approach for the excretory production of recombinant proteins.  相似文献   

5.
Human granulocyte colony-stimulating factor (hG-CSF) is a glycoprotein, consisting of 174 amino acids, which plays an important role in hematopoietic cell proliferation, differentiation of hemopoietic precursor cells, and activation of mature neutrophilic granulocytes. In this study, secretory production of hG-CSF in the periplasmic space of Escherichia coli using the Bacillus sp. endoxylanase signal peptide was examined. For the efficient expression of hG-CSF gene, the first five codons at the N-terminal were altered based on the E. coli high-frequency codon database. The hG-CSF gene fused to the endoxylanase signal sequence was expressed using an inducible trc promoter. However, recombinant E. coli cells were completely lysed after induction with 1 mM isopropyl-beta-D-thiogalactopyranoside. Insertion of a small oligopeptide (13 amino acids) containing the histidine hexamer and factor Xa cleavage site between the signal peptide and the mature hG-CSF protein allowed successful secretion of hG-CSF into the periplasm without cell lysis. Among the several E. coli strains examined, E. coli BL21(DE3) and E. coli MC4100 allowed production of hG-CSF to the highest levels (20-22% of total proteins) with the secretion efficiencies greater than 98%. The circular dichroism spectra showed that the conformation of purified hG-CSF is almost identical to native hG-CSF.  相似文献   

6.
The Escherichia coli proteome response to the stressor GdnHCl was analyzed through 2-dimensional gel electrophoresis (2-DE). We identified PotD (spermidine/putrescine-binding periplasmic protein) and Crr [glucose-specific phosphotransferase (PTS) enzyme IIA component] as a stress-responsive protein. Even under a stress situation where the total number of soluble proteins decreased by about 10%, 3.5- and 2.2-fold increase was observed in the synthesis of PotD and Crr, respectively. As fusion partners, PotD and Crr dramatically increased the solubility of many aggregation-prone heterologous proteins [e.g. human minipro-insulin (mp-INS), human epidermal growth factor (EGF), human prepro-ghrelin (ppGRN), human interleukin-2(hIL-2), human activation induced cytidine deaminase (AID), human glutamate decarboxylase (GAD(448-585)), Pseudomonas putida cutinase (CUT), human ferritin light chain (hFTN-L), human granulocyte colony-stimulating factor (G-CSF), and cold autoinflammatory syndrome1 protein (NALP3) Nacht domain (NACHT)] in the E. coli cytoplasm. Presumably PotD and Crr were very effective in shielding interactive surfaces of heterologous proteins associated with non-specific protein-protein interactions leading to the formation of inclusion bodies most likely due to intrinsic high folding efficiency, chaperone-like activity, or a combination of both factors. Both the stress-induced proteins were well suited for the production of a biologically active fusion mutant of P. putida cutinase that can be expected to be of biotechnological and commercial interest.  相似文献   

7.
Many proteins that accumulate in the form of insoluble aggregates when they are overproduced in Escherichia coli can be rendered soluble by fusing them to E. coli maltose binding protein (MBP), and this will often enable them to fold in to their biologically active conformations. Yet, although it is an excellent solubility enhancer, MBP is not a particularly good affinity tag for protein purification. To compensate for this shortcoming, we have engineered and successfully tested Gateway destination vectors for the production of dual His6MBP-tagged fusion proteins in the cytoplasm and periplasm of E. coli. The MBP moiety improves the yield and solubility of its fusion partners while the hexahistidine tag (His-tag) serves to facilitate their purification. The availability of a vector that targets His6MBP fusion proteins to the periplasm expands the utility of this dual tagging approach to include proteins that contain disulfide bonds or are toxic in the bacterial cytoplasm.  相似文献   

8.
Zou Z  Cao L  Zhou P  Su Y  Sun Y  Li W 《Journal of biotechnology》2008,135(4):333-339
High expression of recombinant proteins in Escherichia coli (E. coli) often leads to protein aggregation. One popular approach to address this problem is the use of fusion tags (or partners) that improve the solubility of the proteins in question. However, such fusion tags are not effective for all proteins. In this study, we demonstrate that the hyper-acidic protein fusion partners can largely enhance the soluble expression of target proteins recalcitrant to the efforts by using routine solubilising tags. This new type of fusion partners examined includes three extremely acidic E. coli polypeptides, i.e. yjgD, the N-terminal domain of rpoD (sigma 70 factor of RNA polymerase) and our preliminarily evaluated msyB. The target proteins used are highly aggregation-prone, including EK (the bovine enterokinase), TEV (the tobacco etch virus protease) and rbcL (the large subunit of tobacco ribulose-1,5-bisphosphate carboxylase/oxygenase). On removal in vitro and in vivo of the fusion tags by using yeast SUMO/Ulp1 reaction and TEV auto-cleavage, the resultant findings indicate the hyper-acidic fusion partners can function as intramolecular chaperones assisting in the correct folding of the target proteins.  相似文献   

9.
Baculoviral polyhedrin, which originated from Autographa californica nuclear polyhedrosis virus (AcNPV), was employed for the first time as a novel fusion partner for expression of foreign proteins in an Escherichia coli system. We characterized the expression of recombinant polyhedrin protein fused to green fluorescent protein (GFP). The polyhedrin fusion protein ( approximately 58 kDa) was successfully expressed as an insoluble inclusion body comprising approximately 30% of the total cellular protein. The E. coli expressing polyhedrin-GFP fusion protein showed higher cell growth ( approximately 1.8-fold) and higher GFP yield ( approximately 3.5-fold) than the strain expressing soluble single GFP. Interestingly, the polyhedrin fusion portion showed almost the same characteristics as the native baculoviral polyhedrin; it was rapidly solubilized under alkaline conditions, similar to the conditions found in the insect midgut. In addition, the polyhedrin fusion portion was rapidly digested by alkaline proteases in insect Plutella xylostella midgut as well as by alpha-chymotrypsin, a protease that has similar properties to insect midgut polyhedra-associated alkaline proteases. These unique properties suggest that baculoviral polyhedrin might be an advantageous fusion partner for production of foreign proteins, especially harmful proteins, in E. coli expression systems.  相似文献   

10.
An N-terminus sequence of human interleukin 1beta (hIL-1beta) was used as a fusion expression partner for the production of two recombinant therapeutic proteins, human granulocyte-colony stimulating factor (hG-CSF) and human growth hormone (hGH), using Saccharomyces cerevisiae as a host. The expression cassette comprised the leader sequence of killer toxin of Kluyveromyces lactis, the N-terminus 24 amino acids (Ser5-Ala28) of mature hIL-1beta, the KEX2 dibasic endopeptidase cleavage site, and the target protein (hG-CSF or hGH). The gene expression was controlled by the inducible UAS(gal)/MF-alpha1 promoter. With the expression vector above, both recombinant proteins were well secreted into culture medium with high secretion efficiencies, and especially, the recombinant hGH was accumulated up to around 1.3 g/L in the culture broth. This is due presumably to the significant role of fused hIL-1beta as secretion enhancer in the yeast secretory pathway. In our recent report, various immunoblotting analyses have shown that the presence of a core N-glycosylation resident in the hIL-1beta fragment is likely to be of crucial importance in the high-level secretion of hG-CSF from the recombinant S. cerevisiae. When the N-glycosylation was completely blocked with the addition of tunicamycin to the culture, the secretion of hG-CSF and hGH was decreased to a negligible level although the other host-derived proteins were well secreted to the culture broth regardless of the presence of tunicamycin. The N-terminal sequencing of the purified hG-CSF verified that the hIL-1beta fusion peptide was correctly removed by in vivo KEX2 protease upon the exit of fusion protein from Golgi complex. From the results presented in this article, it is strongly suggested that the N-terminus fusion of the hIL-1beta peptide could be utilized as a potent secretion enhancer in the expression systems designed for the secretory production of other heterologous proteins from S. cerevisiae.  相似文献   

11.
BACKGROUND: Antibody fragments are molecules widely used for diagnosis and therapy. A large amount of protein is frequently required for such applications. New approaches using folding reporter enzymes have recently been proposed to increase soluble expression of foreign proteins in Escherichia coli. To date, these methods have only been used to screen for proteins with better folding properties but have never been used to select from a large library of mutants. In this paper we apply one of these methods to select mutations that increase the soluble expression of two antibody fragments in the cytoplasm of E. coli. RESULTS: We used the beta-galactosidase alpha-complementation system to monitor and evolve two antibody fragments for high expression levels in E. coli cytoplasm. After four rounds of mutagenesis and selection from large library repertoires (>107 clones), clones exhibiting high levels of beta-galactosidase activity were isolated. These clones expressed a higher amount of soluble fusion protein than the wild type in the cytoplasm, particularly in a strain deficient in the cytoplasmic Lon protease. The increase in the soluble expression level of the unfused scFv was, however, much less pronounced, and the unfused proteins proved to be more aggregation prone than the wild type. In addition, the soluble expression levels were not correlated with the beta-galactosidase activity present in the cells. CONCLUSION: This is the first report of a selection for soluble protein expression using a fusion reporter method. Contrary to anticipated results, high enzymatic activity did not correlate with the soluble protein expression level. This was presumably due to free alpha-peptide released from the protein fusion by the host proteases. This means that the alpha-complementation assay does not sense the fusion expression level, as hypothesized, but rather the amount of free released alpha-peptide. Thus, the system does not select, in our case, for higher soluble protein expression level but rather for higher protease susceptibility of the fusion protein.  相似文献   

12.
Ahn JH  Keum JW  Kim DM 《PloS one》2011,6(11):e26875
While access to soluble recombinant proteins is essential for a number of proteome studies, preparation of purified functional proteins is often limited by the protein solubility. In this study, potent solubility-enhancing fusion partners were screened from the repertoire of endogenous E. coli proteins. Based on the presumed correlation between the intracellular abundance and folding efficiency of proteins, PCR-amplified ORFs of a series of highly abundant E. coli proteins were fused with aggregation-prone heterologous proteins and then directly expressed for quantitative estimation of the expression efficiency of soluble translation products. Through two-step screening procedures involving the expression of 552 fusion constructs targeted against a series of cytokine proteins, we were able to discover a number of endogenous E. coli proteins that dramatically enhanced the soluble expression of the target proteins. This strategy of cell-free expression screening can be extended to quantitative, global analysis of genomic resources for various purposes.  相似文献   

13.
Su Y  Zou Z  Feng S  Zhou P  Cao L 《Journal of biotechnology》2007,129(3):373-382
Maximization of the soluble protein expression in Escherichia coli (E. coli) via the fusion expression strategy is usually preferred for academic, industrial and pharmaceutical purposes. In this study, a set of distinct protein fusion partners were comparatively evaluated to promote the soluble expression of two target proteins including the bovine enterokinase largely prone to aggregation and the green fluorescent protein with moderate native solubility. Within protein attributes that are putatively involved in protein solubility, the protein acidity was of particular concern. Our results explicitly indicated the protein fusion partners with a stronger acidity remarkably exhibited a higher capacity to enhance the solubility of the target proteins. Among them, msyB, an E. coli acidic protein that suppresses the mutants lacking function of protein export, was revealed as an excellent protein fusion partner with the distinguished features including high potential to enhance protein solubility, efficient expression, relatively small size and the origin of E. coli itself. In principle, our results confirmed the modified solubility model of Wilkinson-Harrison and especially deepened understanding its essence. Meanwhile, the roles of other parameters such as protein hydrophilicity in solubility enhancement were discussed, a guideline to design or search an optimum protein solubility enhancer was also proposed.  相似文献   

14.
G protein coupled receptors (GPCRs) are key players in signal recognition and cellular communication making them important therapeutic targets. Large-scale production of these membrane proteins in their native form is crucial for understanding their mechanism of action and target-based drug design. Here we report the overexpression system for a GPCR, the cannabinoid receptor subtype 2 (CB2), in Escherichia coli C43(DE3) facilitated by two fusion partners: Mistic, an integral membrane protein expression enhancer at the N-terminal, and TarCF, a C-terminal fragment of the bacterial chemosensory transducer Tar at the C-terminal of the CB2 open reading frame region. Multiple histidine tags were added on both ends of the fusion protein to facilitate purification. Using individual and combined fusion partners, we found that CB2 fusion protein expression was maximized only when both partners were used. Variable growth and induction conditions were conducted to determine and optimize protein expression. More importantly, this fusion protein Mistic-CB2-TarCF can localize into the E. coli membrane and exhibit functional binding activities with known CB2 ligands including CP55,940, WIN55,212-2 and SR144,528. These results indicate that this novel expression and purification system provides us with a promising strategy for the preparation of biologically active GPCRs, as well as general application for the preparation of membrane-bound proteins using the two new fusion partners described.  相似文献   

15.
蛋白A信号肽引导的E.coli外泌高表达异源蛋白   总被引:3,自引:0,他引:3  
利用葡萄球菌protein A信号序列(SPA),我们构建了不同启动子控制的分泌表达质粒。经表达研究,获得了可控性好、表达量高的PL启动子控制的分泌表达载体。通过菌种的筛选、培养条件和诱导条件的摸索,获得了能将表达产物的绝大部分分泌到培养液中的大肠杆菌高效外泌表达系统,外泌表达量可达100mg/L(菌浓度为1A600/ml)以上,如此高的分泌表达量尚未见文献报道。利用该系统成功、高效地外泌表达了p  相似文献   

16.
重组人血小板生成素在大肠杆菌中表达的研究   总被引:2,自引:0,他引:2  
采用化学法全合成了编码人血小板生成素(thrombopoietin,TPO)成熟肽N端153氨基酸的基因序列,构建基于该合成基因的表达质粒,结果以谷胱甘肽转硫酶-TPO153(GST-TPO153)融合蛋白的方式获得了占全菌蛋白40%的高效表达.进一步采用PCR方法分别对TPO合成基因及TPOcDNA的翻译起始区(TIR)序列进行定点突变,以降低这一区域的G-C含量.将突变序列分别插入到pBV220表达载体中,重组质粒在转化大肠杆菌JM109后,均获得了表达,其中TIR区突变后的合成基因表达产物约占全菌蛋白的15%.为研究基因下游结构对表达的影响,在不改变氨基酸组成的基础上,构建了TPO合成基因与TPOcDNA的杂合序列表达质粒.研究结果表明翻译起始效率是影响rh-TPO在大肠杆菌中表达的重要因素之一,同时基因下游序列的组成对表达水平也会产生影响.  相似文献   

17.
Human granulocyte-colony stimulating factor (hG-CSF), an important biopharmaceutical drug used in oncology, is currently produced mainly in Escherichia coli. Expression of human hG-CSF gene in E. coli is very low, and therefore a semisynthetic, codon-optimized hG-CSF gene was designed and subcloned into pET expression plasmids. This led to a yield of over 50% of the total cellular proteins. We designed a new approach to biosynthesis at low temperature, enabling the formation of "nonclassical" inclusion bodies from which correctly folded protein can be readily extracted by nondenaturing solvents, such as mild detergents or low concentrations of polar solvents such as DMSO and nondetergent sulfobetaines. FT-IR analysis confirmed different nature of inclusion bodies with respect to the growth temperature and indicated presence of high amounts of very likely correctly folded reduced hG-CSF in nonclassical inclusion bodies. The yield of correctly folded, functional hG-CSF obtained in this way exceeded 40% of the total hG-CSF produced in the cells and is almost completely extractable under nondenaturing conditions. The absence of the need to include a denaturation/renaturation step in the purification process allows the development of more efficient processes characterized by higher yields and lower costs and involving environment-friendly technologies. The technology presented works successfully at the 50-L scale, producing nonclassical inclusion bodies of the same quality. The approach developed for the production of hG-CSF could be extended to other proteins; thus, a broader potential for industrial exploitation is envisaged.  相似文献   

18.
在大肠杆菌中表达可溶的多串心钠素   总被引:2,自引:0,他引:2  
为获得大量的α心钠素,构建了含α心钠素多拷贝基因的重组表达载体pMal-nANP.经IPTG诱导后,在E.coliJM109中稳定表达融合蛋白.优化诱导条件后,重组蛋白主要以可溶形式存在.利用amylose亲和柱初步纯化后的融合蛋白具有较好的生物学活性  相似文献   

19.
将耐辐射球菌(Deinococcus radiodurans)与DNA修复有关的开关基因—pprI通过穿梭质粒pRADZ3导入大肠杆菌TG1中,使其在正常培养条件下(不需诱导剂)表达PprI蛋白,并通过Western blot证实该基因在TG1中可稳定表达。与转化了空白质粒pRADZ3 TG1对照,观察了改造后的两种大肠杆菌在有H2O2氧化压力下的存活率和大肠杆菌中两种过氧化氢酶(KatE, KatG)的活性表达差异。结果表明,无论在指数生长期还是稳定生长期,能表达PprI蛋白的大肠杆菌比对照的存活率要高出10%左右;非变性电泳结果表明,耐辐射球菌pprI 在大肠杆菌中的表达使得KatE活性在指数生长期与稳定生长期分别增加1.5~2倍和2.5~3倍。证明耐辐射球菌pprI 在大肠杆菌中的表达能够增强细胞抗氧化能力。  相似文献   

20.
The human granulocyte colony stimulating factor (hG-CSF) plays an important role in hematopoietic cell proliferation/differentiation and has been widely used as a therapeutic agent for treating neutropenias. Nartograstim is a commercial G-CSF that presents amino acid changes in specific positions when compared to the wild-type form, which potentially increase its activity and stability. The aim of this work was to develop an expression system in Escherichia coli that leads to the production of large amounts of a recombinant hG-CSF (rhG-CSF) biosimilar to Nartograstim. The nucleotide sequence of hg-csf was codon-optimized for expression in E. coli. As a result, high yields of the recombinant protein were obtained with adequate purity, structural integrity and biological activity. This protein has also been successfully used for the production of specific polyclonal antibodies in mice, which could be used in the control of the expression and purification in an industrial production process of this recombinant protein. These results will allow the planning of large-scale production of this mutant version of hG-CSF (Nartograstim), as a potential new biosimilar in the market.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号