首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autoreactive T cells are critical in the initiation and maintenance of autoantibody responses that are a hallmark of systemic lupus erythematosus. However, the direct contribution of T cells in end-organ disease like lupus glomerulonephritis (GN) is poorly understood. In this study, we investigated the role of T cells in progression of lupus GN in NZM2328 mice, a murine model of spontaneous systemic lupus erythematosus. At 26 wk of age, NZM2328 female mice showed glomerular immune complex deposits and acute proliferative GN. This was associated with up-regulation of MHC class II and the detection of T cells and CD11c(+) dendritic cells in the glomeruli. The regional lymph nodes (LN) showed preferential activation of T cells and an oligoclonal T cell response with skewed expansion of certain Vbeta families. This suggests an Ag-driven response occurring in the regional LN of nephritic mice during acute GN. In contrast, male NZM2328 mice developed glomerular immune complexes and acute GN, but rarely progressed to fatal chronic GN. Significantly, male kidneys at 40 wk of age did not have detectable dendritic cells and T cells in the glomeruli. Thus, glomerular immune complex deposition initiates an immune response against renal Ags in the regional LN, leading to T cell recruitment into the kidney during acute proliferative GN. This T cell activation and infiltration are influenced by gender-dependent end-organ factors and may determine the progression of acute GN to chronic GN and renal failure.  相似文献   

2.
3.
The chemokine receptor CCR7 represents an important determinant for circulating lymphocytes to enter lymph nodes (LN) via high endothelial venules. High endothelial venules also represent the major site of entry for plasmacytoid dendritic cells (pDC). In the steady-state, murine pDC have been suggested to home to LN engaging the chemokine receptors CXCR3, CXCR4, and CCR5, whereas responsiveness to CCR7 ligands is thought to be acquired only upon activation. In this study, we show that already resting pDC express minute amounts of CCR7 that suffice to trigger migration to CCL19/CCL21 in vitro. Upon activation with TLR ligands, CCR7 levels on pDC are strongly increased. Notably, CCR7-deficient mice display substantially reduced pDC counts in LN but not in bone marrow and spleen. Adoptive cell transfer experiments revealed that under both steady-state as well as inflammatory conditions, the homing of CCR7-deficient pDC is severely impaired, indicating that the reduced cell counts of naive pDC observed in CCR7(-/-) mice reflect an intrinsic homing defect of pDC. Together, these observations provide strong evidence that similar to naive lymphocytes, nonstimulated pDC exploit CCR7 to gain entry into LN. This adds to the repertoire of chemokine receptors permitting them to enter diverse tissues.  相似文献   

4.
T cells are critically dependent on cellular proliferation in order to carry out their effector functions. Autoimmune strains are commonly thought to have uncontrolled T cell proliferation; however, in the murine model of autoimmune diabetes, hypo-proliferation of T cells leading to defective AICD was previously uncovered. We now determine whether lupus prone murine strains are similarly hyporesponsive. Upon extensive characterization of T lymphocyte activation, we have observed a common feature of CD4 T cell activation shared among three autoimmune strains–NOD, MRL, and NZBxNZW F1s. When stimulated with a polyclonal mitogen, CD4 T cells demonstrate arrested cell division and diminished dose responsiveness as compared to the non-autoimmune strain C57BL/6, a phenotype we further traced to a reliance on B cell mediated costimulation, which underscores the success of B cell directed immune therapies in preventing T cell mediated tissue injury. In turn, the diminished proliferative capacity of these CD4 T cells lead to a decreased, but activation appropriate, susceptibility to activation induced cell death. A similar decrement in stimulation response was observed in the CD8 compartment of NOD mice; NOD CD8 T cells were distinguished from lupus prone strains by a diminished dose-responsiveness to anti-CD3 mediated stimulation. This distinction may explain the differential pathogenetic pathways activated in diabetes and lupus prone murine strains.  相似文献   

5.
Complement activation and tissue deposition of complement fragments occur during disease progression in lupus nephritis. Genetic deficiency of some complement components (e.g., Factor B) and infusion of complement inhibitors (e.g., Crry, anti-C5 Ab) protect against inflammatory renal disease. Paradoxically, genetic deficiencies of early components of the classical complement pathway (e.g., C1q, C4, and C2) are associated with an increased incidence of lupus in humans and lupus-like disease in murine knockout strains. Complement protein C3 is the converging point for activation of all three complement pathways and thus plays a critical role in biologic processes mediated by complement activation. To define the role of C3 in lupus nephritis, mice rendered C3 deficient by targeted deletion were backcrossed for eight generations to MRL/lpr mice, a mouse strain that spontaneously develops lupus-like disease. We derived homozygous knockout (C3(-/-)), heterozygous (C3(+/-)), and C3 wild-type (C3(+/+)) MRL/lpr mice. Serum levels of autoantibodies and circulating immune complexes were similar among the three groups. However, there was earlier and significantly greater albuminuria in the C3(-/-) mice compared with the other two groups. Glomerular IgG deposition was also significantly greater in the C3(-/-) mice than in the other two groups, although overall pathologic renal scores were similar. These results indicate that C3 and/or activation of C3 is not required for full expression of immune complex renal disease in MRL/lpr mice and may in fact play a beneficial role via clearance of immune complexes.  相似文献   

6.
7.
Dai R  Zhang Y  Khan D  Heid B  Caudell D  Crasta O  Ahmed SA 《PloS one》2010,5(12):e14302

Background

Recent reports have shown that microRNAs (miRNAs) regulate vital immunological processes and have emerged as key regulators of immune system development and function. Therefore, it is important to determine miRNA dysregulation and its pathogenic contribution in autoimmune diseases, an aspect not adequately addressed thus far.

Methodology/Principal Findings

In this study, we profiled miRNA expressions in splenic lymphocytes from three murine lupus models (MRL-lpr, B6-lpr and NZB/WF1) with different genetic background by miRNA microarray assays and Real-time RT-PCR. Despite the genetic differences among these three lupus stains, a common set of dysregulated miRNAs (miR-182-96-183 cluster, miR-31, and miR-155) was identified in splenocytes when compared with age-matched control mice. The association of these miRNAs with the disease was highlighted by our observation that this miRNA expression pattern was evident in NZB/W mice only at an age when lupus disease is manifested. Further, we have shown that the miRNA dysregulation in MRL-lpr mice was not simply due to the activation of splenocytes. By Real-time RT-PCR, we confirmed that these miRNAs were upregulated in both purified splenic B and T cells from MRL-lpr mice. miR-127 and miR-379, which were greatly upregulated in splenocytes from lpr mice, were moderately increased in diseased NZB/W mice. In addition, Real-time RT-PCR revealed that miR-146a, miR-101a, and miR-17-92 were also markedly upregulated in splenic T, but not B cells from MRL-lpr mice.

Conclusions/Significance

The identification of common lupus disease-associated miRNAs now forms the basis for the further investigation of the pathogenic contribution of these miRNAs in autoimmune lupus, which will advance our knowledge of the role of miRNAs in autoimmunity. Given that miRNAs are conserved, with regard to both evolution and function, our observation of a common lupus disease-associated miRNA expression pattern in murine lupus models is likely to have significant pathogenic, diagnostic, and/or therapeutic implications in human lupus.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
TRIM27 (tripartite motif-containing 27) is a member of the TRIM (tripartite motif) protein family and participates in a variety of biological processes. Some research has reported that TRIM27 was highly expressed in certain kinds of carcinoma cells and tissues and played an important role in the proliferation of carcinoma cells. However, whether TRIM27 takes part in the progression of lupus nephritis (LN) especially in cells proliferation remains unclear. Our study revealed that the overexpression of TRIM27 was observed in the kidneys of patients with LN, lupus mice and mesangial cells exposed to LN plasma which correlated with the proliferation of mesangial cells and ECM (extracellular matrix) deposition. Downregulation of TRIM27 expression suppressed the proliferation of mesangial cells and ECM accumulation in MRL/lpr mice and cultured human mesangial cells (HMCs) by regulating the FoxO1 pathway. Furthermore, the overexpression of FoxO1 remarkably decreased HMCs proliferation level and ECM accumulation in LN plasma-treated HMCs. In addition, the protein kinase B (Akt) signal pathway inhibitor LY294002 significantly reduced the expression of TRIM27 and inhibited the dysfunction of mesangial cells. These above data suggested that TRIM27 mediated abnormal mesangial cell proliferation in kidney of lupus and might be the potential target for treating mesangial cell proliferation of lupus nephritis.  相似文献   

17.
18.
In murine mammary epithelial cancer cells, galectin-3 binding to β1,6-acetylglucosaminyltransferase V (Mgat5)–modified N-glycans restricts epidermal growth factor (EGF) receptor mobility in the plasma membrane and acts synergistically with phospho-caveolin-1 to promote integrin-dependent matrix remodeling and cell migration. We show that EGF signaling to RhoA is galectin-3 and phospho-caveolin-1 dependent and promotes the formation of transient, actin-rich, circular dorsal ruffles (CDRs), cell migration, and fibronectin fibrillogenesis via Src- and integrin-linked kinase (ILK)–dependent signaling. ILK, Src, and galectin-3 also mediate EGF stimulation of caveolin-1 phosphorylation. Direct activation of integrin with Mn2+ induces galectin-3, ILK, and Src-dependent RhoA activation and caveolin-1 phosphorylation. This suggests that in response to EGF, galectin-3 enables outside-in integrin signaling stimulating phospho-caveolin-1–dependent RhoA activation, actin reorganization in CDRs, cell migration, and fibronectin remodeling. Similarly, caveolin-1/galectin-3–dependent EGF signaling induces motility, peripheral actin ruffling, and RhoA activation in MDA-MB-231 human breast carcinoma cells, but not HeLa cells. These studies define a galectin-3/phospho-caveolin-1/RhoA signaling module that mediates integrin signaling downstream of growth factor activation, leading to actin and matrix remodeling and tumor cell migration in metastatic cancer cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号