首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predicting muscle fascicle length changes during passive movements may lead to a better understanding of muscle function. The purpose of this study was to experimentally compare fascicle length changes in the gastrocnemius during two-joint passive movements with a previously derived kinematic model based on anatomical measures from a cadaver. The ratio of passive ankle to knee motion was manipulated to generate medial gastrocnemius fascicle elongation and lateral gastrocnemius fascicle shortening. Ultrasound images from both heads of the gastrocnemius fascicles were acquired at 10 degrees knee flexion increments and compared with this kinematic model. Our results suggest that the two-joint kinematic model from which we originally based our knee and ankle movements did not adequately reflect fascicle length changes during any of the movement conditions in this study. From our data, we propose that for every degree of ankle motion the medial and lateral gastrocnemius changes 0.42 mm and 0.96 mm, respectively, whereas changes of 0.14 mm and 0.22 mm are observed for the medial and lateral gastrocnemius, respectively, during knee movements.  相似文献   

2.
Muscle fiber deformation is related to its cellular structure, as well as its architectural arrangement within the musculoskeletal system. While playing an important role in aponeurosis displacement, and efficiency of force transmission to the tendon, such deformation also provides important clues about the underlying mechanical structure of the muscle. We hypothesized that muscle fiber cross section would deform asymmetrically to satisfy the observed constant volume of muscle during a contraction. Velocity-encoded, phase-contrast, and morphological magnetic resonance imaging techniques were used to measure changes in fascicle length, pinnation angle, and aponeurosis separation of the human gastrocnemius muscle during passive and active eccentric ankle joint movements. These parameters were then used to subsequently calculate the in-plane muscle area subtended by the two aponeuroses and fascicles and to calculate the in-plane (dividing area by fascicle length), and through-plane (dividing muscle volume by area) thicknesses. Constant-volume considerations of the whole-muscle geometry require that, as fascicle length increases, the muscle fiber cross-sectional area must decrease in proportion to the length change. Our empirical findings confirm the definition of a constant-volume rule that dictates that changes in the dimension perpendicular to the plane, i.e., through-plane thickness, (-6.0% for passive, -3.3% for eccentric) equate to the reciprocal of the changes in area (6.8% for passive, 3.7% for eccentric) for both exercise paradigms. The asymmetry in fascicle cross-section deformation for both passive and active muscle fibers is established in this study with a ~22% in-plane and ~6% through-plane fascicle thickness change. These fiber deformations have functional relevance, not only because they affect the force production of the muscle itself, but also because they affect the characteristics of adjacent muscles by deflecting their line of pull.  相似文献   

3.
The present study was designed to explore how the interaction between the fascicles and tendinous tissues is involved in storage and utilization of elastic energy during human walking. Eight male subjects walked with a natural cadence (1.4 +/- 0.1 m/s) on a 10-m-long force plate system. In vivo techniques were employed to record the Achilles tendon force and to scan real-time fascicle lengths for two muscles (medial gastrocnemius and soleus). The results showed that tendinous tissues of both medial gastrocnemius and soleus muscles lengthened slowly throughout the single-stance phase and then recoiled rapidly close to the end of the ground contact. However, the fascicle length changes demonstrated different patterns and amplitudes between two muscles. The medial gastrocnemius fascicles were stretched during the early single-stance phase and then remained isometrically during the late-stance phase. In contrast, the soleus fascicles were lengthened until the end of the single-stance phase. These findings suggest that the elastic recoil takes place not as a spring-like bouncing but as a catapult action in natural human walking. The interaction between the muscle fascicles and tendinous tissues plays an important role in the process of release of elastic energy, although the leg muscles, which are commonly accepted as synergists, do not have similar mechanical behavior of fascicles in this catapult action.  相似文献   

4.
In humans, an inhibitory via Ia afferent pathway from the medial gastrocnemius (MG) to the soleus (SOL) motoneuron pool has been suggested. Herein, we examined the relation between MG fascicle length changes and the SOL H-reflex modulation during passive knee movement. Twelve subjects performed static and passive (5° s?1) knee movement tasks with the ankle immobilized using an isokinetic dynamometer in sitting posture. The maximal H- and M-waves were measured at four target angles (20°, 40°, 60°, and 80° flexion from full knee extension). The MG fascicles length and velocity were measured using a B-mode ultrasonic apparatus. Results demonstrated that the SOL Hmax/Mmax; i.e., ratio of the maximal H- to M-waves, was attenuated with increasing MG fascicle length in static tasks. The SOL Hmax/Mmax at 20° was significantly attenuated compared with 60° and 80° with increasing MG fascicle length and lengthening velocity in passive knee extension. However, no significant differences in the SOL Hmax/Mmax were found across the target angles in the passive knee flexion task. In conclusion, as muscle spindles increase their discharge with lengthening fascicle velocity, but keep silent when fascicles shorten, our data suggest that lengthening the MG facilitates an inhibitory Ia pathway from MG to SOL, and modulates SOL motoneuron activity during movements.  相似文献   

5.
The purpose of this study was to investigate the effect of the differences between the actual fascicle length during a voluntary contraction and the fascicle length at rest of the triceps surae muscle on the determination of the voluntary activation (VA) by using the interpolated twitch technique. Twelve participants performed isometric voluntary maximal (MVC) and submaximal (20%, 40%, 60% and 80% MVC) contractions at two different ankle angles (75 degrees and 90 degrees ) under application of the interpolated twitch technique. Two ultrasound probes were used to determine the fascicle length of soleus, gastrocnemius medialis and gastrocnemius lateralis muscles. Further, the MVCs and the twitches were repeated for six more ankle angles (85 degrees , 95 degrees , 100 degrees , 105 degrees , 110 degrees and 115 degrees ). The VA of the triceps surae muscle were calculated (a) using the rest twitch force (RTF) measured during the same trial as the interpolated twitch force (ITF; traditional method) and (b) using the RTF at an ankle angle where the fascicle length showed similar values between ITF and RTF (fascicle length consideration method). The continuous changes in fascicle length from rest to MVC affect the accuracy of the assessment of the VA. The traditional method overestimates the assessment of the VA on average 4% to 12%, especially at 90 degrees ankle angle (i.e. short muscle length). The reason for this influence is the unequal force-length potential of the muscle at twitch application by the measure of ITF and RTF. These findings provide evidence that the fascicle length consideration method permits a more precise prediction (an improvement of 4-12%) of the voluntary contraction compared to the traditional method.  相似文献   

6.
This paper examines the acute effect of a bout of static stretches on torque fluctuation during an isometric torque-matching task that required subjects to sustain isometric contractions as steady as possible with the plantar flexor muscles at four intensities (5, 10, 15, and 20% of maximum) for 20 s. The stretching bout comprised five 60-s passive stretches, separated by 10-s rest. During the torque-matching tasks and muscle stretching, the torque (active and passive) and surface electromyogram (EMG) of the medial gastrocnemius (MG), soleus (Sol), and tibialis anterior (TA) were continuously recorded. Concurrently, changes in muscle architecture (fascicle length and pennation angle) of the MG were monitored by ultrasonography. The results showed that during stretching, passive torque decreased and fascicle length increased gradually. Changes in these two parameters were significantly associated (r(2) = 0.46; P < 0.001). When data from the torque-matching tasks were collapsed across the four torque levels, stretches induced greater torque fluctuation (P < 0.001) and enhanced EMG activity (P < 0.05) in MG and TA muscles with no change in coactivation. Furthermore, stretching maneuvers produced a greater decrease (~15%; P < 0.001) in fascicle length during the torque-matching tasks and change in torque fluctuation (CV) was positively associated with changes in fascicle length (r(2) = 0.56; P < 0.001), MG and TA EMG activities, and coactivation (r(2) = 0.35, 0.34, and 0.35, respectively; P < 0.001). In conclusion, these observations indicate that repeated stretches can decrease torque steadiness by increasing muscle compliance and EMG activity of muscles around the joint. The relative influence of such adaptations, however, may depend on the torque level during the torque-matching task.  相似文献   

7.
The purpose of this study was to choose between two popular models of skeletal muscle: one with the parallel elastic component in parallel with both the contractile element and the series elastic component (model A), and the other in which it is in parallel with only the contractile element (model B). Passive and total forces were obtained at a variety of muscle lengths for the medial gastrocnemius muscle in anesthetized rats. Passive force was measured before the contraction (passive A) or was estimated for the fascicle length at which peak total force occurred (passive B). Fascicle length was measured with sonomicrometry. Active force was calculated by subtracting passive (A or B) force from peak total force at each fascicle or muscle length. Optimal length, that fascicle length at which active force is maximized, was 13.1 +/- 1.2 mm when passive A was subtracted and 14.0 +/- 1.1 mm with passive B (P < 0.01). Furthermore, the relationship between double-pulse contraction force and length was broader when calculated with passive B than with passive A. When the muscle was held at a long length, passive force decreased due to stress relaxation. This was accompanied by no change in fascicle length at the peak of the contraction and only a small corresponding decrease in peak total force. There is no explanation for the apparent increase in active force that would be obtained when subtracting passive A from the peak total force. Therefore, to calculate active force, it is appropriate to subtract passive force measured at the fascicle length corresponding to the length at which peak total force occurs, rather than passive force measured at the length at which the contraction begins.  相似文献   

8.
Length-force relations, both active and passive, and twitch contraction characteristics were quantified for left medial gastrocnemius muscles of four young, four adult, and four old male Wistar rats. Muscle and bundle optimum length and muscle weight were also determined and subsequently used for calculation of a number of morphological characteristics of the muscles. Fiber optimum length was derived from muscle bundle optimum length. Generally, physiological characteristics remained constant during growth. There was no change either in active tension at muscle optimum length or in active working range relative to fiber optimum length, relative passive fiber stiffness, active force relative to passive force at optimum length, twitch contraction time and twitch half relaxation time at optimum length. A number of morphological changes, however, did take place in the medial gastrocnemius muscle during growth. Fiber optimum length increased but only by about 2 mm from youth to old age, whereas muscle optimum length increased by approximately 14 mm, presumably owing to extensive hypertrophy of the muscle fibers during growth. The priority for force of the medial gastrocnemius muscle (defined as the quotient of physiological cross-sectional area of a muscle and the cubed root of its volume, a measure independent of architecture and dimensions of muscles) increased during growth. This increase indicates that during growth the muscle shifts relatively more towards force generation than towards excursion generation. These findings are discussed in view of existing scaling theories.  相似文献   

9.
This study estimated the passive ankle joint moment during standing and walking initiation and its contribution to total ankle joint moment during that time. The decrement of passive joint moment due to muscle fascicle shortening upon contraction was taken into account. Muscle fascicle length in the medial gastrocnemius, which was assumed to represent muscle fascicle length in plantarflexors, was measured using ultrasonography during standing, walking initiation, and cyclical slow passive ankle joint motion. Total ankle joint moment during standing and walking initiation was calculated from ground reaction forces and joint kinematics. Passive ankle joint moment during the cyclical ankle joint motion was measured via a dynamometer. Passive ankle joint moment during standing and at the time (Tp) when the MG muscle-tendon complex length was longest in the stance phase during walking initiation were 2.3 and 5.4 Nm, respectively. The muscle fascicle shortened by 2.9 mm during standing compared with the length at rest, which decreased the contribution of passive joint moment from 19.9% to 17.4%. The muscle fascicle shortened by 4.3 mm at Tp compared with the length at rest, which decreased the contribution of passive joint moment from 8.0% to 5.8%. These findings suggest that (a) passive ankle joint moment plays an important role during standing and walking initiation even in view of the decrement of passive joint moment due to muscle fascicle shortening upon muscle contraction, and (b) muscle fascicle shortening upon muscle contraction must be taken into account when estimating passive joint moment during movements.  相似文献   

10.
The purpose of this study was to provide evidence on the fact that the observed decrease in EMG activity of the gastrocnemius medialis (GM) at pronounced knee flexed positions is not only due to GM insufficiency, by examining muscle fascicle lengths during maximal voluntary contractions at different positions. Twenty-two male long distance runners (body mass: 78.5+/-6.7 kg, height: 183+/-6 cm) participated in the study. The subjects performed isometric maximal voluntary plantar flexion contractions (MVC) of their left leg at six ankle-knee angle combinations. To examine the resultant ankle joint moments the kinematics of the left leg were recorded using a Vicon 624 system with 8 cameras operating at 120 Hz. The EMG activity of GM, gastrocnemius lateralis (GL), soleus (SOL) and tibialis anterior (TA) were measured using surface electromyography. Synchronously, fascicle length and pennation angle values of the GM were obtained at rest and at the plateau of the maximal plantar flexion using ultrasonography. The main findings were: (a) identifiable differences in fascicle length of the GM at rest do not necessarily imply that these differences would also exist during a maximal isometric plantar flexion contraction and (b) the EMG activity of the biarticular GM during the MVC decreased at a pronounced flexed knee-joint position (up to 110 degrees ) despite of no differences in GM fascicle length. It is suggested that the decrease in EMG activity of the GM at pronounced knee flexed positions is due to a critical force-length potential of all three muscles of the triceps surae.  相似文献   

11.
The purpose of this study was to measure isometric force-length properties of cat soleus, gastrocnemius and plantaris muscle-tendon units, and to relate these properties to the functional demands of these muscles during everyday locomotor activities. Isometric force-length properties were determined using an in situ preparation, where forces were measured using buckle-type tendon transducers, and muscle-tendon unit lengths were quantified through ankle and knee joint configurations. Functional demands of the muscles were assessed using direct muscle force measurements in freely moving animals. Force-length properties and functional demands were determined for soleus, gastrocnemius and plantaris muscles simultaneously in each animal. The results suggest that isometric force-length properties of cat soleus, gastrocnemius and plantaris muscles, as well as the region of the force-length relation that is used during everyday locomotor tasks, match the functional demands.  相似文献   

12.
The purpose of this study was to quantify the influence of inevitable ankle joint motion during an isometric contraction on the measured change of the gastrocnemius medialis muscle (GM) architecture in vivo during the loading and the unloading phase. Sitting on a dynamometer subjects performed isometric maximal voluntary contractions as well as contractions induced by electrostimulation. Synchronous joint angular motion, plantarflexion moment, foot’s centre of pressure and real-time ultrasonography of muscle architecture changes of the GM were obtained. During the contraction the ankle joint position altered and significantly affected the change in muscle architecture. At maximal tendon force (1094 ± 323 N), the measured fascicle length overestimated the change in fascicle length due to the tendon force by 1.53 cm, while the measured pennation angle overestimated the change in pennation angle due to the tendon force by 5.5°. At the same tendon force the measured fascicle length and pennation angle were significantly different between loading and unloading conditions. After correcting the values for the change in ankle joint angle no differences between the loading and the unloading phase at the same tendon force were found. Concerning the estimation of GM fascicle length–force and pennation angle–force curves during the loading and unloading phase of an isometric contraction, these findings indicate that not accounting for ankle joint motion will produce unreliable results.  相似文献   

13.
Relative force depression associated with muscle fatigue is reported to be greater when assessed at short vs. long muscle lengths. This appears to be due to a rightward shift in the force-length relationship. This rightward shift may be caused by stretch of in-series structures, making sarcomere lengths shorter at any given muscle length. Submaximal force-length relationships (twitch, double pulse, 50 Hz) were evaluated before and after repetitive contractions (50 Hz, 300 ms, 1/s) in an in situ preparation of the rat medial gastrocnemius muscle. In some experiments, fascicle lengths were measured with sonomicrometry. Before repetitive stimulation, fascicle lengths were 11.3 +/- 0.8, 12.8 +/- 0.9, and 14.4 +/- 1.2 mm at lengths corresponding to -3.6, 0, and 3.6 mm where 0 is a reference length that corresponds with maximal active force for double-pulse stimulation. After repetitive stimulation, there was no change in fascicle lengths; these lengths were 11.4 +/- 0.8, 12.6 +/- 0.9, and 14.2 +/- 1.2 mm. The length dependence of fatigue was, therefore, not due to a stretch of in-series structures. Interestingly, the rightward shift that was evident when active force was calculated in the traditional way (subtraction of the passive force measured before contraction) was not seen when active force was calculated by subtracting the passive force that was associated with the fascicle length reached at the peak of the contraction. This calculation is based on the assumption that passive force decreases as the fascicles shorten during a fixed-end contraction. This alternative calculation revealed similar postfatigue absolute active force depression at all lengths. In relative terms, a length dependence of fatigue was still evident, but this was greatly diminished compared with that observed when active force was calculated with the traditional method.  相似文献   

14.
The study of muscle growth and muscle length adaptations requires measurement of passive length-tension properties of individual muscles, but until now such measurements have only been made in animal muscles. We describe a new method for measuring passive length-tension properties of human gastrocnemius muscles in vivo. Passive ankle torque and ankle angle data were obtained as the ankle was rotated through its full range with the knee in a range of positions. To extract gastrocnemius passive length-tension curves from passive torque-angle data it was assumed that passive ankle torque was the sum of torque due to structures which crossed only the ankle joint (this torque was a 6-parameter function of ankle joint angle) and a torque due to the gastrocnemius muscle (a 3-parameter function of knee and ankle angle). Parameter values were estimated with non-linear regression and used to reconstruct passive length-tension curves of the gastrocnemius. The reliability of the method was examined in 11 subjects by comparing three sets of measurements: two on the same day and the other at least a week later. Length-tension curves were reproducible: the average root mean square error was 5.1+/-1.1 N for pairs of measurements taken within a day and 7.3+/-1.2 N for pairs of measurements taken at least a week apart (about 3% and 6% of maximal passive tension, respectively). Length-tension curves were sensitive to mis-specification of moment arms, but changes in length-tension curves were not. The new method enables reliable measurement of passive length-tension properties of human gastrocnemius in vivo, and is likely to be useful for investigation of changes in length-tension curves over time.  相似文献   

15.
The interaction between fascicle and tendinous tissues (TT) in short-contact drop jumps (DJ) with three different drop heights [low (Low), optimal (OP), and high (High)] was examined with 11 subjects. The ground reaction force (F(z)) and ankle and knee joint angles were measured together with real-time ultrasonography (fascicle length) and electromyographic activities of the medial gastrocnemius (MG) and vastus lateralis (VL) muscles during the movement. With increasing drop height, the braking force and flight time increased from Low to OP (P < 0.05). In High, the braking force increased but the flight time decreased compared with OP (P < 0.05). During contact of Low and OP conditions, the length of muscle-tendon unit and TT underwent lengthening before shortening in both MG and VL muscles. However, the two muscles differed in the fascicle behaviors. The MG fascicles behaved isometrically or shortened, and the VL fascicles underwent lengthening before shortening during contact. In High, the TT lengthening in both muscles decreased compared with OP (P < 0.05). The rapid stretch occurred in the MG fascicles but not in VL fascicles during the braking phase. The elastic recoil ratio decreased in both muscles with increasing the intensity during DJ. These findings demonstrated that TT underwent lengthening before shortening during DJ. However, the efficacy of elastic recoil decreased with increasing the drop intensity. The effective catapult action in TT can be limited by the drop intensity. In addition, the measured muscles behaved differently during DJ, providing evidence that each muscle may have a specific means of fascicle-TT interaction.  相似文献   

16.
Ultrasonography is a useful technique to study muscle contractions in vivo, however larger muscles like vastus lateralis may be difficult to visualise with smaller, commonly used transducers. Fascicle length is often estimated using linear trigonometry to extrapolate fascicle length to regions where the fascicle is not visible. However, this approach has not been compared to measurements made with a larger field of view for dynamic muscle contractions. Here we compared two different single-transducer extrapolation methods to measure VL muscle fascicle length to a direct measurement made using two synchronised, in-series transducers. The first method used pennation angle and muscle thickness to extrapolate fascicle length outside the image (extrapolate method). The second method determined fascicle length based on the extrapolated intercept between a fascicle and the aponeurosis (intercept method). Nine participants performed maximal effort, isometric, knee extension contractions on a dynamometer at 10° increments from 50 to 100° of knee flexion. Fascicle length and torque were simultaneously recorded for offline analysis. The dual transducer method showed similar patterns of fascicle length change (overall mean coefficient of multiple correlation was 0.76 and 0.71 compared to extrapolate and intercept methods respectively), but reached different absolute lengths during the contractions. This had the effect of producing force–length curves of the same shape, but each curve was shifted in terms of absolute length. We concluded that dual transducers are beneficial for studies that examine absolute fascicle lengths, whereas either of the single transducer methods may produce similar results for normalised length changes, and repeated measures experimental designs.  相似文献   

17.
There exists several numerical approaches to describe the active contractile behaviour of skeletal muscles. These models range from simple one-dimensional to more advanced three-dimensional ones; especially, three-dimensional models take up the cause of describing complex contraction modes in a realistic way. However, the validation of such concepts is challenging, as the combination of geometry, material and force characteristics is so far not available from the same muscle. To this end, we present in this study a comprehensive data set of the rabbit soleus muscle consisting of the muscles’ characteristic force responses (active and passive), its three-dimensional shape during isometric, isotonic and isokinetic contraction experiments including the spatial arrangement of muscle tissue and aponeurosis–tendon complex, and the fascicle orientation throughout the whole muscle at its optimal length. In this way, an extensive data set is available giving insight into the three-dimensional geometry of the rabbit soleus muscle and, further, allowing to validate three-dimensional numerical models.  相似文献   

18.
We recently found that force enhancement following active stretch in skeletal muscles is accompanied by an increase in passive force following deactivation (J. Exp. Biol. 205 (2002) 1275). However, it is not known if this increase in passive force contributes to the force enhancement observed in the active muscle, and if it is observed at all muscle lengths. The purposes of this study were to quantify the amount of passive force increase as a function of muscle lengths, and to determine if this passive force contributes to the force enhancement observed in the active muscle. Experiments were performed on cat soleus (n = 24) using techniques published previously (J. Biomech. 30(9) (1997) 865). Conceptually, tests involved comparisons of force enhancement and passive force increase for a variety of stretch tests in soleus. Furthermore, in one test, activation of the soleus was interrupted for 1s in the force-enhanced state, and soleus was then re-activated. We found that total force enhancement and passive force increase were positively correlated for all test conditions, that passive force increase following stretch of the active soleus only occurred at muscle lengths corresponding to the descending limb of the force-length relationship, that increases in passive force for a given stretch magnitude became greater at long muscle lengths, and that upon reactivation, there was a remnant passive force enhancement. We conclude from these results that the passive force enhancement following stretch of an active muscle contributes to the total force enhancement, that this passive contribution increases with increasing muscle length, and that there must be at least one other factor than passive force increase that contributes to the total force enhancement, as the passive force increase was always smaller than the total force enhancement. A by-product of this investigation was that we observed a shift in the passive force-length relationship that was dependent on muscle activation, stretch magnitude and muscle length. Therefore, the passive force-length relationship is not a constant property of skeletal muscle, but depends critically on the muscle's contractile history.  相似文献   

19.
Distinguishing gastrocnemius and soleus muscle function is relevant for treating gait disorders in which abnormal plantarflexor activity may contribute to pathological movement patterns. Our objective was to use experimental and computational analysis to determine the influence of gastrocnemius and soleus activity on lower limb movement, and determine if anatomical variability of the gastrocnemius affected its function. Our hypothesis was that these muscles exhibit distinct functions, with the gastrocnemius inducing limb flexion and the soleus inducing limb extension. To test this hypothesis, the gastrocnemius or soleus of 20 healthy participants was electrically stimulated for brief periods (90 ms) during mid- or terminal stance of a random gait cycle. Muscle function was characterized by the induced change in sagittal pelvis, hip, knee, and ankle angles occurring during the 200 ms after stimulation onset. Results were corroborated with computational forward dynamic gait models, by perturbing gastrocnemius or soleus activity during similar portions of the gait cycle. Mid- and terminal stance gastrocnemius stimulation induced posterior pelvic tilt, hip flexion and knee flexion. Mid-stance gastrocnemius stimulation also induced ankle dorsiflexion. In contrast mid-stance soleus stimulation induced anterior pelvic tilt, knee extension and plantarflexion, while late-stance soleus stimulation induced relatively little change in motion. Model predictions of induced hip, knee, and ankle motion were generally in the same direction as those of the experiments, though the gastrocnemius? results were shown to be quite sensitive to its knee-to-ankle moment arm ratio.  相似文献   

20.
Ultrasonography was used to directly measure in vivo fascicle behavior of the medial gastrocnemius (MG) and soleus (SOL) muscles while the subjects (n=6 men) performed maximal voluntary concentric and eccentric plantar flexions at 60, 120, 180 and 240 deg/s. Fascicle shortening and lengthening velocities of MG, obtained from fascicle length changes over time, were significantly higher than those of SOL at +/-120, +/-180 and +240 deg/s, possibly reflecting physiological and mechanical differences between these muscles. On the other hand, the effective fascicle shortening and lengthening velocities, defined as the velocities in the longitudinal direction of muscle belly, were not significantly different between MG and SOL. This could be due to difference in fascicle architecture and/or the existence of mechanical linkages between these muscles. Moreover, when the contribution of tendinous tissues to muscle-tendon complex length change was determined from fascicle length, pennation angle, moment arm and joint angle, it accounted for approximately 50% in both concentric and eccentric trials, but showed considerable intra-subject variations. This result quantifiably demonstrates the importance of tendinous tissues in isokinetically controlled joint movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号