首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meiotic recombination is initiated by controlled dsDNA breaks (DSBs). Rec12 (Spo11) protein of fission yeast is essential for the formation of meiotic DSBs in vivo, for meiotic recombination, and for segregation of chromosomes during meiosis I. Rec12 is orthologous to Top6A topoisomerase of Archaea and is likely the catalytic subunit of a meiotic recombinase that introduces recombinogenic DSBs. However, despite intensive effort, it has not been possible to produce Rec12 protein in a soluble form required to permit biochemical analyses of function. To obtain purified Rec12 protein for in vitro studies, a rec12(+) cDNA was generated, cloned into vector pET15b(+), and expressed in Escherichia coli. Rec12 protein was produced at moderate levels and it partitioned into insoluble fractions of whole-cell extracts. The protein was enriched based upon its differential solubility in two different denaturants and was further purified by column chromatography. A combinatorial, fractional, factorial approach was used to identify conditions under which Rec12 protein could be refolded. Four parameters were most important and, following optimization, soluble Rec12 protein was obtained. Gel filtration demonstrated that refolded Rec12 protein exists as a monomer in solution, suggesting that additional proteins may be required to assemble biologically-active Rec12 dimers, as inferred previously from genetic data [Cell Chromosome 1 (2002) 1]. The production of refolded Rec12 in a soluble form will allow for characterization in vitro of this key meiotic recombination enzyme.  相似文献   

2.
Human cytomegalovirus protease (CMV PR) is a target for the development of antiviral therapeutics. To obtain large amounts of native protease, a 268-amino-acid polypeptide with a hexahistidinyl tag at the C terminus was expressed inEscherichia coli.The first 262 amino acids of the recombinant protein were identical to the amino acid sequence of native CMV PR, except for mutations introduced at the internal cleavage site to eliminate autoproteolysis at that site. The hexahistidinyl tag was placed downstream of amino acid 262 of the native CMV PR sequence. In this design, the Ala-Ser bond at amino acids 256–257 constitutes a site naturally cleaved by the protease during capsid maturation. The 268-amino-acid polypeptide with the (His)6tag was expressed at high levels inE. colias inclusion bodies. After solubilization of the inclusion bodies, the protease was purified to homogeneity by a single step using Ni2+affinity chromatography. The protease was refolded to an active enzyme using dialysis which leads to effective autocleavage of the Ala-Ser bond at amino acids 256–257 to remove 12 amino acids including the (His)6tag from the C terminus of the protein. This strategy yielded large amounts of highly purified CMV PR with the native N terminus and C terminus. Approximately 40 mg of purified CMV PR was obtained per liter of cell culture using this strategy. The enzymatic activity of CMV PR purified from inclusion bodies and refolded to an active enzyme was similar to the enzymatic activity of CMV PR expressed as a soluble protein inE. coli.In addition, the refolded CMV PR could be crystallized for X-ray diffraction.  相似文献   

3.
A previously clonedpdxHgene fromEscherichia colicoding for pyridoxine 5′-phosphate oxidase was transferred to a pET22b vector and expressed inE. coliHMS174(DE3) cells. The soluble overexpressed enzyme was rapidly purified in high yield using two chromatography columns with an overall purification of about 2.8-fold. The purified enzyme contained tightly bound FMN. The enzyme exhibited the same spectral properties and similar kinetic constants to those previously reported by G. Zhao and M. E.Winkler (J. Bacteriol.177, 883, 1995), but differed from the properties reported by other investigators. A rapid procedure was developed for preparing apoPNP Ox in high yield. Both the holo- and apoenzymes were homodimers. The molar absorbtivity coefficient for the protein was determined for the fully active apoPNP Ox from is amino acid composition. Using this value and the spectral properties of the bound FMN it was shown by three different methods that the dimeric enzyme contains two molecules of bound FMN per dimer and not one FMN as previously reported.  相似文献   

4.
We have investigated the refolding and purification of the catalytic domain of human 3',5'-cyclic nucleotide phosphodiesterase 7A1 (PDE7A1) expressed in Escherichia coli. A cDNA encoding an N-terminal-truncated PDE7A1(147-482-His) was amplified by RT-PCR from human peripheral blood cells and inserted into the vector pET21-C for bacterial expression of the enzyme fused to a C-terminal His-tag. The PDE was found to be expressed in the form of inclusion bodies which could be refolded to an active enzyme in buffer containing high concentrations of arginine hydrochloride, ethylene glycol, and magnesium chloride at pH 8.5. The PDE7A1(147-482-His) construct could be purified after dialysis and concentration steps by either Zn2+-IDA-Sepharose chromatography or ResourceQ ion-exchange chromatography to homogeneity. In comparison to the metal-chelate column, the ResourceQ purification resulted in a distinctly better yield and enrichment of the protein. Both the Vmax (0.46 micromol. min(-1). mg(-1) ) and the K(m) (0.1 microM) of the purified enzyme were found to be comparable with published data for native or recombinant catalytically active expressed PDE7A1. Using SDS/PAGE, a molecular mass of 39 kDa was determined (theoretical value 38.783 kDa). As known from several other mammalian PDEs, size-exclusion chromatography using refolded PDE7A1(147-482-His) indicated the formation of dimers. The purified enzyme was soluble at concentrations up to 100 microg/ml. A further increase of protein concentration resulted, however, in precipitation of the enzyme.  相似文献   

5.
Recombinant prolactin (PRL) from water buffalo (Bubalus bubalis) has been cloned and expressed in a prokaryotic expression system. The hormone was also successfully refolded into a biologically active form. Total RNA was purified from buffalo pituitaries and the buPRL cDNA was synthesized using primers designed on bovine PRL sequence. This prolactin cDNA was cloned in a pET 28a vector and expressed in Escherichia coli strain BL21(DE3)pLysS. Most of the expressed protein was present as insoluble inclusion bodies. The inclusion bodies were solubilized and buPRL was purified by Ni-NTA column. The purified protein was refolded by gradually decreasing the concentration of denaturant during dialysis. Total yield of the refolded and soluble prolactin was 22?mg/L from 100?mL bacterial culture in LB medium. The recombinant prolactin was as active as native prolactin in stimulating growth of Nb2 lymphoma cells.  相似文献   

6.
Okai M  Kudo N  Lee WC  Kamo M  Nagata K  Tanokura M 《Biochemistry》2006,45(16):5103-5110
4-Hydroxyphenylacetate (4-HPA) is oxidized as an energy source by two component enzymes, the large component (HpaB) and the small component (HpaC). HpaB is a 4-HPA monooxygenase that utilizes FADH(2) supplied by a flavin reductase HpaC. We determined the crystal structure of HpaC (ST0723) from the aerobic thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7 in its three states [NAD(P)(+)-free, NAD(+)-bound, and NADP(+)-bound]. HpaC exists as a homodimer, and each monomer was found to contain an FMN. HpaC preferred FMN to FAD because there was not enough space to accommodate the AMP moiety of FAD in its flavin-binding site. The most striking difference between the NAD(P)(+)-free and the NAD(+)/NADP(+)-bound structures was observed in the N-terminal helix. The N-terminal helices in the NAD(+)/NADP(+)-bound structures rotated ca. 20 degrees relative to the NAD(P)(+)-free structure. The bound NAD(+) has a compact folded conformation with nearly parallel stacking rings of nicotinamide and adenine. The nicotinamide of NAD(+) stacked the isoalloxazine ring of FMN so that NADH could directly transfer hydride. The bound NADP(+) also had a compact conformation but was bound in a reverse direction, which was not suitable for hydride transfer.  相似文献   

7.
Penicillin-binding proteins (PBPs), targets of beta-lactam antibiotics, are membrane-bound enzymes essential for the biosynthesis of the bacterial cell wall. PBPs possess transpeptidase and transglycosylase activities responsible for the final steps of the bacterial cell wall cross-linking and polymerization, respectively. To facilitate our structural studies of PBPs, we constructed a 5'-truncated version (lacking bp from 1 to 231 encoding the N-terminal part of the protein including the transmembrane domain) of the pbp2a gene of Streptococcus pneumoniae and expressed the truncated gene product as a GST fusion protein in Escherichia coli. This GST fusion form of PBP2a, designated GST-PBP2a*, was expressed almost exclusively as inclusion bodies. Using a combination of high- and low-speed centrifugation, large amounts of purified inclusion bodies were obtained. These purified inclusion bodies were refolded into a soluble and enzymatically active enzyme using a single-step refolding method consisting of solubilization of the inclusion bodies with urea and direct dialysis of the solubilized preparations. Using these purification and refolding methods, approximately 37 mg of soluble GST-PBP2a* protein was obtained from 1 liter of culture. The identity of this refolded PBP2a* protein was confirmed by N-terminal sequencing. The refolded PBP2a*, with or without the GST-tag, was found to bind to BOCILLIN FL, a beta-lactam, and to hydrolyze S2d, an analog of the bacterial cell wall stem peptides. The S2d hydrolysis activity of PBP2a* was inhibited by penicillin G. In conclusion, using this expression system, and the purification and refolding methods, large amounts of the soluble GST-PBP2a* protein were obtained and shown to be enzymatically active.  相似文献   

8.
Recombinant prolactin (PRL) from water buffalo (Bubalus bubalis) has been cloned and expressed in a prokaryotic expression system. The hormone was also successfully refolded into a biologically active form. Total RNA was purified from buffalo pituitaries and the buPRL cDNA was synthesized using primers designed on bovine PRL sequence. This prolactin cDNA was cloned in a pET 28a vector and expressed in Escherichia coli strain BL21(DE3)pLysS. Most of the expressed protein was present as insoluble inclusion bodies. The inclusion bodies were solubilized and buPRL was purified by Ni-NTA column. The purified protein was refolded by gradually decreasing the concentration of denaturant during dialysis. Total yield of the refolded and soluble prolactin was 22 mg/L from 100 mL bacterial culture in LB medium. The recombinant prolactin was as active as native prolactin in stimulating growth of Nb2 lymphoma cells.  相似文献   

9.
Archaeoglobus fulgidus, a hyperthermophilic sulfate-reducing Archaeon, contains high Fe(3+)-EDTA reductase activity in its soluble protein fraction. The corresponding enzyme, which constitutes about 0.75% of the soluble protein, was purified 175-fold to homogeneity. Based on SDS-polyacrylamide gel electrophoresis, the ferric reductase consists of a single subunit with a M(r) of 18,000. The M(r) of the native enzyme was determined by size exclusion chromatography to be 40,000 suggesting that the native ferric reductase is a homodimer. The enzyme uses both NADH and NADPH as electron donors to reduce Fe(3+)-EDTA. Other Fe(3+) complexes and dichlorophenolindophenol serve as alternative electron acceptors, but uncomplexed Fe(3+) is not utilized. The purified enzyme strictly requires FMN or FAD as a catalytic intermediate for Fe(3+) reduction. Ferric reductase also reduces FMN and FAD, but not riboflavin, with NAD(P)H which classifies the enzyme as a NAD(P)H:flavin oxidoreductase. The enzyme exhibits a temperature optimum of 88 degrees C. When incubated at 85 degrees C, the enzyme activity half-life was 2 h. N-terminal sequence analysis of the purified ferric reductase resulted in the identification of the hypothetical gene, AF0830, of the A. fulgidus genomic sequence. The A. fulgidus ferric reductase shares amino acid sequence similarity with a family of NAD(P)H:FMN oxidoreductases but not with any ferric reductases suggesting that the A. fulgidus ferric reductase is a novel enzyme.  相似文献   

10.
Human paraoxonase (hPON3) is a high density lipoprotein-related glycoprotein with multi-enzymatic properties and antioxidant activity which is proposed to participate in the prevention of low density lipoprotein (LDL) oxidation. In this study, hPON3 gene was amplified from Human Fetal Liver Marathon-Ready cDNA and expressed in Escherichia coli. A majority of the expressed protein existed as inclusion bodies. The inclusion bodies were solubilized with Triton X-100 and refolded in vitro. The refolded rhPON3 was purified by DEAE-Sepharose Fast Flow and its purity was up to 90%. The Km and Vmax values of refolded rhPON3, in respect to phenylacetate hydrolysis were 7.47 +/- 2.14 mM and 66 +/- 17 U/min/mg (n = 3). The Km and Vmax values of refolded rhPON3, in respect to dihydrocoumarin hydrolysis were 0.83 +/- 0.21 mM and 621 +/- 66 U/min/mg (n = 3). The refolded rhPON3 exhibited similar antioxidant activity to that of rhPON3 purified from the soluble fraction of cell lysate and could effectively protect LDL from Cu2+ induced oxidation.  相似文献   

11.
A DNA encoding the 6-kDa early secretory antigenic target (ESAT-6) of Mycobacterium tuberculosis was inserted into a bacterial expression vector of pQE30 resulting in a 6x His-esat-6 fusion gene construction. This plasmid was transformed into Escherichia coli strain M15 and effectively expressed. The expressed fusion protein was found almost entirely in the insoluble form (inclusion bodies) in cell lysate. The inclusion bodies were solubilized with 8M urea or 6M guanidine-hydrochloride at pH 7.4, and the recombinant protein was purified by Ni-NTA column. The purified fusion protein was refolded by dialysis with a gradient of decreasing concentration of urea or guanidine hydrochloride or by the size exclusion protein refolding system. The yield of refolded protein obtained from urea dialysis was 20 times higher than that from guanidine-hydrochloride. Sixty-six percent of recombinant ESAT-6 was successfully refolded as monomer protein by urea gradient dialysis, while 69% of recombinant ESAT-6 was successfully refolded as monomer protein by using Sephadex G-200 size exclusion column. These results indicate that urea is more suitable than guanidine-hydrochloride in extracting and refolding the protein. Between the urea gradient dialysis and the size exclusion protein refolding system, the yield of the monomer protein was almost the same, but the size exclusion protein refolding system needs less time and reagents.  相似文献   

12.
Escherichia coli RNase HII is composed of 198 amino acid residues. The enzyme has been overproduced in an insoluble form, purified in a urea-denatured form, and refolded with poor yield [M. Itaya (1990) Proc. Natl. Acad. Sci. USA 87, 8587-8591]. To facilitate the preparation of the enzyme in an amount sufficient for physicochemical studies, we constructed an overproducing strain in which E. coli RNase HII is produced in a soluble form. The enzyme was purified from this strain and its biochemical and physicochemical properties were characterized. The good agreement in the molecular weights estimated from SDS-PAGE (23,000) and gel filtration (22,000) suggests that the enzyme acts as a monomer. From the far-UV circular dichroism spectrum, its helical content was calculated to be 23%. The enzyme showed Mn(2+)-dependent RNase H activity. Its specific activity determined using (3)H-labeled M13 RNA/DNA hybrid as a substrate was comparable to but slightly higher than that of the refolded enzyme, indicating that the enzyme overproduced and purified in a soluble form is more suitable for structural and functional analyses than the refolded enzyme.  相似文献   

13.
We previously identified the fni gene of Streptomyces sp. strain CL190 as type 2 isopentenyl diphosphate (IPP) isomerase, which needs both FMN and NADPH for enzyme activity. An fni gene homolog, ypgA, was detected in the database of the Bacillus subtilis genome. However, the ypgA product was about 140 amino acids shorter in the N-terminal than the Streptomyces fni gene product. A database search found three new putative start codons in 129, 225, and 411 bases upstream of the original start codon of the ypgA gene. The longest gene product, which was named ypgA3, showed the most significant homology to the Streptomyces fni gene product. The ypgA3 gene was expressed with an N-terminal His-tag in Escherichia coli and the purified soluble protein was characterized in detail. The ypgA3 protein converted IPP to its isomer dimethylallyl diphosphate in the presence of both FMN and NADPH. The enzyme also catalyzed the reverse reaction in the presence of both the cofactors. Disruption of the ypgA3 gene was not lethal to B. subtilis. These results indicate that Bacillus ypgA3 gene is fni, a nonessential gene encoding type 2 IPP isomerase.  相似文献   

14.
Some of the unusual molecular and catalytic properties of a high molecular weight dihydro-orotate dehydrogenase (DHOD) from Neurospora crassa have been determined. Comparison of the properties of this enzyme with the properties of the soluble biosynthetic enzyme of prokaryotes has revealed several important differences. The fungal enzyme is located in a mitochondrial membrane in a position consistent with linkage with the respiratory chain through ubiquinone (Miller, R. W.: Arch. Biochem, Biophys. 146, 256-270 (1971)). Release of the enzyme from the membrane results in a solubilized protein complex containing bound lipids and inactive hydrophobic proteins. Non-specific protein aggregation is minimized during purification by Triton-X-100 and phospholipase treatments. The catalytically active enzyme has an apparent molecular weight of 210 000. In contrast to soluble DHOD preparations the high molecular weight enzyme has no endogenous dihydro-orotate oxidase (EC 1.3.3.1) activity and is relatively insensitive to inactivation by sulfhydryl-reactive reagents in the presence of dihydro-orotate (DHO). The enzyme activity is highly sensitive to conditions causing oxidation of flavin mononucleotide (FMN). The activity cannot be restored by cysteine or other means. FMN is present in all purified preparations in a bound, non-fluorescent (reduced) form until dihydro-orotic acid is removed or oxidized. Catalytic efficiency of the purified enzyme was 12 000 mol DHO oxidized per minute per mole FMN. This high turnover rate is due in part to the small flavin content of the purified enzyme, equivalent to 1 mol FMN per 120 000 g of catalytically active protein. Iron was detected in the purified enzyme by atomic absorption spectroscopy but labile sulfide was absent. Thenoyltrifluoroacetone, an iron chelator, only partially inhibited DHO oxidation regardless of electron acceptor. Fatty acids interact with a hydrophobic site of the enzyme in non-competitive fashion but under certain conditions appear to significantly alter the Km for ubiquinone. Orotate, by comparison, is a purely competitive inhibitor. Both types of inhibitor may function to regulate the biosynthesis of orotate in vivo. Superoxide anion is not produced in significant quantities by the DHO-reduced enzyme unless both ubiquinone and a suitable single electron carrier such as phenazine methosulfate are present. DHOD has been proposed as a source of superoxide anion in mammalian mitochondria (Forman, H. J. & Kennedy, J. A.: J. Biol. Chem. 250, 4322-4326 (1975)).  相似文献   

15.
Psychrobacter, a micro-organism originally isolated from Antarctic sea water, expresses an extremely active hormone-sensitive lipase (HSL) which catalyzes the hydrolysis of fatty acid esters at very low temperature and is therefore of great potential industrial and pharmaceutical interest. An insoluble form of the entire enzyme has previously been cloned and expressed in Escherichia coli, subsequently refolded and shown to be active, whilst a shorter but completely inactive version, lacking the N-terminal 98 amino acids has been expressed in soluble form. In this study the entire enzyme has been expressed as a fully soluble protein in E. coli in the presence of either the osmolyte trehalose, plus high salt concentration, or the membrane fluidizer benzyl alcohol. Trehalose promotes protein mono-dispersion by increasing the viscosity of the growth medium for bacterial cells, thereby helping circumvent protein aggregation, whilst the heat-shock inducer benzyl alcohol stimulates the production of a network of endogenous chaperones which actively prevent protein misfolding, whilst also converting recombinant aggregates to native, correctly folded proteins. The resultant recombinant protein proved to be more stable than its previously expressed counterpart, as shown by CD and enzymatic activity data which proved the enzyme to be more active at a higher temperature than its refolded counterpart. By light scattering analysis it was shown that the newly expressed protein was monomeric. The stability of the full length native protein will help in understanding the structure of PsyHSL and the role of its regulatory N-terminal for eventual application in a myriad of biotechnological processes.  相似文献   

16.
Purification of the ferripyoverdine reductase from Pseudomonas aeruginosa, strain PAO1, lead to the isolation of a soluble protein of M(r) 27,000-28,000, as determined by HPLC sieving filtration and by denaturating gel electrophoresis. In the presence of NADH as the reductant, ferripyoverdine as the iron substrate, ferrozine as an iron(II)-trapping agent and FMN, this protein displayed an iron-reductase activity which resulted in the formation of ferrozine-iron(II) complex, providing that the enzymic assay was run under strict anaerobiosis. FMN was absolutely required for the activity to occur, but the lack of a visible spectrum and the lack of fluorescence for the protein in solution suggested that ferripyoverdine reductase is not a flavin-containing protein and that covalently bound FMN is not a prerequisite for the enzymatic reaction. A search of ferripyoverdine reductase by immunological detection amongst the different cellular compartments of P. aeruginosa lead to the conclusion that the soluble enzyme, which represented more than 95% of the total cellular enzyme, is not located in the periplasm but specifically in the cytoplasm. A strongly immunoreacting material, corresponding to a protein with identical M(r) as the ferripyoverdine reductase of P. aeruginosa PAO1, was detected in all the eighteen fluorescent pseudomonad strains belonging to the P. aeruginosa, P. fluorescens, P. putida and P. chlororaphis species, as well as in P. stutzeri, a non-fluorescent species, suggesting that the enzyme acting as a ferripyoverdine reductase in P. aeruginosa PAO1 is ubiquitous among the Pseudomonas.  相似文献   

17.
The gene yhdA from Bacillus subtilis encoding a putative flavin mononucleotide (FMN)-dependent oxidoreductase was cloned and heterologously expressed in Escherichia coli. The purified enzyme has a noncovalently bound FMN cofactor, which is preferentially reduced by NADPH, indicating that YhdA is a NADPH:FMN oxidoreductase. The rate of NADPH oxidation is enhanced by the addition of external FMN, and analysis of initial rate measurements reveals the occurrence of a ternary complex in a bi-bi reaction mechanism. YhdA has also been shown to reductively cleave the -N=N- bond in azo dyes at the expense of NADPH, and hence, it possesses azoreductase activity, however, at a rate 100 times slower than that found for FMN. Using Cibacron Marine as a model compound, we could demonstrate that the dye is a competitive inhibitor of NADPH and FMN. The utilization of NADPH and the absence of a flavin semiquinone radical distinguish YhdA from flavodoxins, which adopt the same structural fold, i.e., a five-stranded beta sheet sandwiched by five alpha helices. The native molecular-mass of YhdA was determined to be 76 kDa, suggesting that the protein occurs as a tetramer, whereas the YhdA homologue in Saccharomyces cerevisiae (YLR011wp) forms a dimer in solution. Interestingly, the different oligomerization of these homologous proteins correlates to their thermostability, with YhdA exhibiting a melting point of 86.5 degrees C, which is 26.3 degrees C higher than that for the yeast protein. This unusually high melting point is proposed to be the result of increased hydrophobic packing between dimers and the additional presence of four salt bridges stabilizing the dimer-dimer interface.  相似文献   

18.
High levels of conversion of 14C-labelled pristinamycin IIB (PIIB) to pristinamycin IIA (PIIA) were obtained in vivo in Streptomyces pristinaespiralis and in some other streptogramin A producers. This established that PIIB was an intermediate on the pathway to PIIA. In addition, in vitro studies with cell-free protein preparations demonstrated that the oxidation of PIIB to PIIA is a complex process requiring NADH, riboflavin 5'-phosphate (FMN), and molecular oxygen. Two enzymes were shown to be necessary to catalyze this reaction. Both were purified to homogeneity from S. pristinaespiralis by a coupled enzyme assay based on the formation of PIIA and by requiring addition of the complementing enzyme. One enzyme was purified about 3,000-fold by a procedure including a decisive affinity chromatography step on FMN-agarose. It was shown to be a NADH:FMN oxidoreductase (E.C. 1.6.8.1.) (hereafter called FMN reductase), providing reduced FMN (FMNH2) to the more abundant second enzyme. The latter was purified only 160-fold and was called PIIA synthase. Our data strongly suggest that this enzyme catalyzes a transient hydroxylation of PIIB by molecular oxygen immediately followed by a dehydration leading to PIIA. The native PIIA synthase consists of two different subunits with Mrs of around 50,000 and 35,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the FMN reductase seems to be a monomer with a Mr of around 28,000 and containing one molecule of tightly bound FMN. Stepwise Edman degradation of the entire polypeptides or some of their trypsin-digested fragments provided amino acid sequences for the two isolated proteins.  相似文献   

19.
A newly discovered human analogue of a bed bug apyrase, which we named hSCAN-1 for human soluble calcium-activated nucleotidase-1, was expressed in bacteria, refolded from inclusion bodies, purified, and characterized. This apyrase, which is distinct from the eNTPDases exemplified by the endothelial CD39 (NTPDase1) apyrase, is a 38 kDa monomeric enzyme capable of hydrolyzing a variety of nucleoside di- and triphosphates, but not monophosphates. Preferred substrates include GDP, UDP, and IDP, with a pH optimum for activity between 6 and 7. The specific activity and substrate preference of the bacterially expressed enzyme closely mimic those of the enzyme expressed in mammalian COS cells, as well as the enzyme synthesized in an in vitro bacterial expression system. This suggests that glycosylation and other posttranslational modifications that do not occur in bacteria are not necessary for nucleotidase activity or proper folding of this human apyrase. hSCAN-1 absolutely requires Ca(2+), but not Mg(2+) or other divalent cations analyzed, for enzymatic activity. Surprisingly, the activity does not increase in a quasi-linear fashion at sub-millimolar Ca(2+) concentrations, as would be expected if Ca(2+) were only used as a cosubstrate for the nucleotide substrate, but rather follows a sigmoidal curve. The intrinsic fluorescence and difference absorption studies of hSCAN-1 in the absence of nucleotides revealed Ca(2+)-induced changes in the environment of tryptophan and tyrosine residues with half-saturation at about 90 microM Ca(2+). NaCl increased the half-saturating Ca(2+) concentration needed for both structural changes detected by optical spectroscopy and enzymatic activation of hSCAN-1 detected by nucleotidase assay. These results suggest that Ca(2+) triggers a conformational change in hSCAN-1, converting the enzymatically inactive protein to the active enzyme, in addition to forming the metal-nucleotide substrate complex necessary for nucleotidase activity.  相似文献   

20.
FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. The human isoform 2 of FADS (hFADS2), which is the product of FLAD1 gene, was over-expressed in Escherichia coli as a T7-tagged protein and identified by MALDI-TOF MS analysis. Its molecular mass, calculated by SDS-PAGE, was approx. 55 kDa. The expressed protein accounted for more than 40% of the total protein extracted from the cell culture; 10% of it was recovered in a soluble and nearly pure form by Triton X-100 treatment of the insoluble cell fraction. hFADS2 possesses FADS activity and has a strict requirement for MgCl2, as demonstrated in a spectrophotometric assay. The purified recombinant isoform 2 showed a kcat of 3.6 x 10(-3)s(-1) and exhibited a KM value for FMN of about 0.4 microM. The expression of the hFADS2 isoform opens new perspectives in the structural studies of this enzyme and in the design of antibiotics based on the functional differences between the bacterial and the human enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号