共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Maurício F.M. Machado Vanessa Rioli Emer S. Ferro Luiz Juliano 《Biochemical and biophysical research communications》2010,394(2):429-433
Thimet oligopeptidase (EC 3.4.24.15, TOP) is a metallo-oligopeptidase that participates in the intracellular metabolism of peptides. Predictions based on structurally analogous peptidases (Dcp and ACE-2) show that TOP can present a hinge-bend movement during substrate hydrolysis, what brings some residues closer to the substrate. One of these residues that in TOP crystallographic structure are far from the catalytic residues, but, moves toward the substrate considering this possible structural reorganization is His600. In the present work, the role of His600 of TOP was investigated by site-directed mutagenesis. TOP H600A mutant was characterized through analysis of S1 and S1′ specificity, pH-activity profile and inhibition by JA-2. Results showed that TOP His600 residue makes important interactions with the substrate, supporting the prediction that His600 moves toward the substrate due to a hinge movement similar to the Dcp and ACE-2. Furthermore, the mutation H600A affected both Km and kcat, showing the importance of His600 for both substrate binding and/or product release from active site. Changes in the pH-profile may indicate also the participation of His600 in TOP catalysis, transferring a proton to the newly generated NH2-terminus or helping Tyr605 and/or Tyr612 in the intermediate oxyanion stabilization. 相似文献
3.
Lim EJ Sampath S Coll-Rodriguez J Schmidt J Ray K Rodgers DW 《The Journal of biological chemistry》2007,282(13):9722-9732
Thimet oligopeptidase (EC 3.4.24.15) and neurolysin (EC 3.4.24.16) are closely related zinc-dependent metallopeptidases that metabolize small bioactive peptides. They cleave many substrates at the same sites, but they recognize different positions on others, including neurotensin, a 13-residue peptide involved in modulation of dopaminergic circuits, pain perception, and thermoregulation. On the basis of crystal structures and previous mapping studies, four sites (Glu-469/Arg-470, Met-490/Arg-491, His-495/Asn-496, and Arg-498/Thr-499; thimet oligopeptidase residues listed first) in their substrate-binding channels appear positioned to account for differences in specificity. Thimet oligopeptidase mutated so that neurolysin residues are at all four positions cleaves neurotensin at the neurolysin site, and the reverse mutations in neurolysin switch hydrolysis to the thimet oligopeptidase site. Using a series of constructs mutated at just three of the sites, it was determined that mutations at only two (Glu-469/Arg-470 and Arg-498/Thr-499) are required to swap specificity, a result that was confirmed by testing the two-mutant constructs. If only either one of the two sites is mutated in thimet oligopeptidase, then the enzyme cleaves almost equally at the two hydrolysis positions. Crystal structures of both two-mutant constructs show that the mutations do not perturb local structure, but side chain conformations at the Arg-498/Thr-499 position differ from those of the mimicked enzyme. A model for differential recognition of neurotensin based on differences in surface charge distribution in the substrate binding sites is proposed. The model is supported by the finding that reducing the positive charge on the peptide results in cleavage at both hydrolysis sites. 相似文献
4.
Dalio FM Visniauskas B Bicocchi ES Perry JC Freua R Gesteira TF Nader HB Machado MF Tufik S Ferro ES Andersen ML Toledo CA Chagas JR Oliveira V 《Biochemical and biophysical research communications》2012,419(4):724-727
Many studies indicate that thimet oligopeptidase (EC3.4.24.15; TOP) can be implicated in the metabolism of bioactive peptides, including dynorphin 1-8, α-neoendorphin, β-neoendorphin and GnRH. Furthermore, the higher levels of this peptidase are found in neuroendocrine tissue and testis. In the present study, we have evaluated the effect of acute cocaine administration in male rats on TOP specific activity and mRNA levels in prosencephalic brain areas related with the reward circuitry; ventral striatum, hippocampus, and frontal cortex. No significant differences on TOP specific activity were detected in the hippocampus and frontal cortex of cocaine treated animals compared to control vehicle group. However, a significant increase in activity was observed in the ventral striatum of cocaine treated-rats. The increase occurred in both, TOP specific activity and TOP relative mRNA amount determined by real time RT-PCR. As TOP can be implicated in the processing of many neuropeptides, and previous studies have shown that cocaine also alters the gene expression of proenkephalin and prodynorphin in the striatum, the present findings suggest that TOP changes in the brain could play important role in the balance of neuropeptide level correlated with cocaine effects. 相似文献
5.
6.
Sigman JA Sharky ML Walsh ST Pabon A Glucksman MJ Wolfson AJ 《Protein engineering》2003,16(8):623-628
Thimet oligopeptidase is a metalloenzyme involved in regulating neuropeptide processing. Three cysteine residues (246, 248, 253) are known to be involved in thiol activation of the enzyme. In contrast to the wild-type enzyme, the triple mutant (C246S/C248S/C253S) displays increased activity in the absence of dithiothreitol. Dimers, purportedly formed through cysteines 246, 248 and 253, have been thought to be inactive. However, analysis of the triple mutant by native gel electrophoresis reveals the existence of dimers and multimers, implying that oligomer formation is mediated by other cysteines, probably on the surface, and that some of these forms are enzymatically active. Isolation and characterization of iodoacetate-modified monomers and dimers of the triple mutant revealed that, indeed, certain dimeric forms of the enzyme are still fully active, whereas others show reduced activity. Cysteine residues potentially involved in dimerization were identified by modeling of thimet oliogopeptidase to its homolog, neurolysin. Five mutants were constructed; all contained the triple mutation C246S/C248S/C253S and additional substitutions. Substitutions at C46 or C682 and C687 prevented multimer formation and inhibited dimer formation. The C46S mutant had enzymatic activity comparable to the parent triple mutant, whereas that of C682S/C687S was reduced. Thus, the location of intermolecular disulfide bonds, rather than their existence per se, is relevant to activity. Dimerization close to the N-terminus is detrimental to activity, whereas dimerization near the C-terminus has little effect. Altering disulfide bond formation is a potential regulatory factor in the cell owing to the varying oxidation states in subcellular compartments and the different compartmental locations and functions of the enzyme. 相似文献
7.
Oliveira V Campos M Melo RL Ferro ES Camargo AC Juliano MA Juliano L 《Biochemistry》2001,40(14):4417-4425
We report a systematic and detailed analysis of recombinant neurolysin (EC 3.4.24.16) specificity in parallel with thimet oligopeptidase (TOP, EC 3.4.24.15) using Bk sequence and its C- and N-terminal extensions as in human kininogen as motif for synthesis of internally quenched fluorescent substrates. The influence of the substrate size was investigated, and the longest peptide susceptible to TOP and neurolysin contains 17 amino acids. The specificities of both oligopeptidases to substrate sites P(4) to P(3)' were also characterized in great detail using seven series of peptides based on Abz-GFSPFRQ-EDDnp taken as reference substrate. Most of the peptides were hydrolyzed at the bond corresponding to P(4)-F(5) in the reference substrate and some of them were hydrolyzed at this bond or at F(2)-S(3) bond. No restricted specificity was found for P(1)' as found in thermolysin as well for P(1) substrate position, however the modifications at this position (P(1)) showed to have large influence on the catalytic constant and the best substrates for TOP contained at P(1), Phe, Ala, or Arg and for neurolysin Asn or Arg. Some amino acid residues have large influence on the K(m) constants independently of its position. On the basis of these results, we are hypothesizing that some amino acids of the substrates can bind to different sub-sites of the enzyme fitting P-F or F-S bond, which requires rapid interchange for the different forms of interaction and convenient conformations of the substrate in order to expose and fit the cleavage bonds in correct position for an efficient hydrolysis. Finally, this plasticity of interaction with the substrates can be an essential property for a class of cytosolic oligopeptidases that are candidates to participate in the selection of the peptides to be presented by the MHC class I. 相似文献
8.
The activation of delipidated microsomal UDP-glucuronosyltransferase from pig liver (GT2P type of enzyme) was studied as a function of several structural modifications of 1-palmitoyl-sn-glycero-3-phosphocholine, which is known to be a good activator of the enzyme. The following types of compounds were tested: substitution of H for OH at position 2; substitution of an ether for an acyl link at position 1; variation of the phosphorus-nitrogen or acyl ester-phosphate ester distances; removal of the glycerol backbone; optical isomers; and substitution of phosphoethanolamine for phosphocholine. Although there were variations in the extent to which these compounds activated delipidated enzyme, all the above types of lipids were effective in this regard. By contrast, lipids with a net negative charge did not activate the enzyme. They inhibited it reversibly. Positively charged lipids, even those lacking a phosphate group, were effective activators. These results indicate that GT2P is unlikely to interact with specific chemical groups of its phospholipid milieu. Effective activation appears instead to depend on the physical properties of the lipid environment. 相似文献
9.
The regulatory mechanisms of neuropeptide-metabolizing enzymes often play a critical role in the pathogenesis of neuronal damage. A systemic administration of pentylenetetrazol (PTZ), an antagonist of GABA(A) receptor ion channel binding site, causes generalized epilepsy in an animal model. In the present study, we examined the involvement of prolyl oligopeptidase (POP), thimet oligopeptidase/neurolysin (EP 24.15/16) and glial proteins in PTZ-treated rat brain regions, and the suppressive effect of MK-801, a non-competitive NMDA receptor antagonist, pretreatment for their proteins. The activity of POP significantly decreased in the hippocampus at 30min and 3h, and in the frontal cortex at 3h after PTZ treatment, and pretreatment with MK-801 recovered the activity in the cortex at 3h. The activity of EP 24.15/16 significantly decreased in the hippocampus at 3h and 1 day, and in the cortex at 3h after the PTZ administration, whereas pretreatment with MK-801 recovered the change of the activity. The Western blot analysis of EP 24.15 showed significant decrease of the protein level in the hippocampus 3h after the PTZ treatment, whereas pretreatment with MK-801 recovered. The expression of GFAP and CD11b immunohistochemically increased in the hippocampus of the PTZ-treated rat as compared with controls. Pretreatment with MK-801 also recovered the GFAP and CD11b expression. These data suggest that PTZ-induced seizures of the rats cause indirect activation of glutamate NMDA receptors, then decrease POP and EP 24.15/16 enzyme activities and EP 24.15 immunoreactivity in the neuronal cells of the hippocampal formation. We speculate that changes of those peptidases in the brain may be related to the levels of the neuropeptides regulating PTZ-induced seizures. 相似文献
10.
Major histocompatibility complex class I-presented antigenic peptides are degraded in cytosolic extracts primarily by thimet oligopeptidase 总被引:7,自引:0,他引:7
Saric T Beninga J Graef CI Akopian TN Rock KL Goldberg AL 《The Journal of biological chemistry》2001,276(39):36474-36481
Nearly all peptides generated by proteasomes during protein degradation are digested rapidly to amino acids, but a few proteasomal products escape this fate and are presented to the immune system on cell surface major histocompatibility complex class I molecules. To test whether these antigenic peptides may be inherently resistant to cytosolic peptidases, six different antigenic peptides were incubated with HeLa cell extracts. All six were degraded rapidly by a process involving o-phenanthroline-sensitive metallopeptidases. One antigenic peptide, FAPGNYPAL, was rapidly destroyed in the extracts by a bestatin-sensitive exopeptidase, apparently by the puromycin-sensitive aminopeptidase. The disappearance of the other five was reduced 30-90% by a specific inhibitor of the cytosolic endopeptidase, thimet oligopeptidase (TOP) (EC ), whose physiological function(s) have been unclear and controversial. All these peptides were sensitive to pure recombinant TOP. Furthermore, upon fractionation of the extracts, the major peptidase peak that degraded the ovalbumin-derived epitope, SIINFEKL, co-purified with TOP. In the extracts, TOP also catalyzed rapid degradation of N-extended variants of SIINFEKL and of other antigenic peptides, which in vivo can serve as precursors of these major histocompatibility complex-presented epitopes. This enzyme (unlike cell proteins that promote production of antigenic peptides) is not regulated by interferon-gamma. TOP seems to be primarily responsible for the rapid breakdown of antigenic peptides in cytosolic extracts, and our related studies (A. X. Y. Mo, K. Lemerise, W. Zeng, Y. Shen, C. R. Abraham, A. L. Goldberg, and K. L. Rock, submitted for publication) indicate that TOP by destroying such peptides limits antigen presentation in vivo. 相似文献
11.
Vitor Oliveira Reynaldo Gatti Vanessa Rioli Emer S Ferro Alberto Spisni Antonio C M Camargo Maria A Juliano Luiz Juliano 《European journal of biochemistry》2002,269(17):4326-4334
We report the recombinant neurolysin and thimet oligopeptidase (TOP) hydrolytic activities towards internally quenched fluorescent peptides derived from the peptide Abz-GGFLRRXQ-EDDnp (Abz, ortho-aminobenzoicacid; EDDnp, N-(2,4-dinitrophenyl) ethylenediamine), in which X was substituted by 11 different natural amino acids. Neurolysin hydrolyzed these peptides at R-R or at R-X bonds, and TOP hydrolyzed at R-R or L-R bonds, showing a preference to cleave at three or four amino acids from the C-terminal end. The kinetic parameters of hydrolysis and the variations of the cleavage sites were evaluated under different conditions of temperature and salt concentration. The relative amount of cleavage varied with the nature of the substitution at the X position as well as with temperature and NaCl concentration. TOP was activated by all assayed salts in the range 0.05-0.2 m for NaCl, KCl, NH4Cl and NaI, and 0.025-0.1 m for Na2SO4. Concentration higher than 0.2 N NH4Cl and NaI reduced TOP activity, while 0.5 N or higher concentration of NaCl, KCl and Na2SO4 increased TOP activity. Neurolysin was strongly activated by NaCl, KCl and Na2SO4, while NH4Cl and NaI have very modest effect. High positive values of enthalpy (DeltaH*) and entropy (DeltaS*) of activation were found together with an unusual temperature dependence upon the hydrolysis of the substrates. The effects of low temperature and high NaCl concentration on the hydrolytic activities of neurolysin and TOP do not seem to be a consequence of large secondary structure variation of the proteins, as indicated by the far-UV CD spectra. However, the modulation of the activities of the two oligopeptidases could be related to variations of conformation, in limited regions of the peptidases, enough to modify their activities. 相似文献
12.
Mammalian cells have a large number of intracellular peptides that are generated by extralysosomal proteases. In this study, the enzymatic activity of thimet oligopeptidase (EP24.15) was inhibited in human embryonic kidney (HEK) 293 cells using a specific siRNA sequence. The semi-quantitative intracellular peptidome analyses of siRNA-transfected HEK293 cells shows that the levels of specific intracellular peptides are either increased or decreased upon EP24.15 inhibition. Decreased expression of EP24.15 was sufficient to potentiate luciferase gene reporter activation by isoproterenol (1-10 μM). The protein kinase A inhibitor KT5720 (1 μM) reduced the positive effect of the EP24.15 siRNA on isoproterenol signaling. Thus, EP24.15 inhibition by siRNA modulates the levels of specific intracellular peptides and isoproterenol signal transduction. 相似文献
13.
Structure/function relationships in nickel metallobiochemistry 总被引:3,自引:0,他引:3
Maroney MJ 《Current opinion in chemical biology》1999,3(2):188-199
Among the many highlights of nickel metallobiochemistry in 1998 were the discoveries that Escherichia coli glyoxalase I is the first example of a nickel isomerase, and that the superoxide dismutase isolated from Streptomyces seoulensis is a new structural class of superoxide dismutase that features thiolate ligation. 相似文献
14.
W Harder 《FEMS microbiology reviews》1990,7(3-4):191-199
This symposium marks the 15th anniversary of the discovery of microbodies in methylotrophic yeasts. In the intervening years much has been learned about the structure, function and biogenesis of these organelles and these advances are described. As our endeavours continued, unexpected results have confused commonly held views. This was for instance the case when microbody-minus mutants of yeasts became available which showed that some microbody matrix enzymes may be functional when present in the cytosol while others are not. At the molecular level, our understanding of structure/function relationships is also expanding. Examples are structural elements which relate to protein topogenesis and function of enzymes in different cell compartments. Other, perhaps more unusual, adaptations have also been encountered; some involve protein-protein interactions or even modified cofactors which possibly have helped methylotrophic yeasts to establish and/or maintain themselves in natural ecosystems. 相似文献
15.
W. Harder 《FEMS microbiology letters》1990,87(3-4):191-200
Abstract This symposium marks the 15th anniversary of the discovery of microbodies in methylotrophic yeasts. In the intervening years much has been learned about the structure, function and biogenesis of these organelles and these advances are described. As our endeavours continued, unexpected results have confused commonly held views. This was for instance the case when microbody-minus mutants of yeasts became available which showed that some microbody matrix enzymes may be functional when present in the cytosol while others are not. At the molecular level, our understanding of structure/function relationships is also expanding. Examples are structural elements which relate to protein topogenesis and function of enzymes in different cell compartments. Other, perhaps more unusual, adaptations have also been encountered; some involve protein-protein interactions or even modified cofactors which possibly have helped methylotrophic yeasts to establish and/or maintain themselves in natural ecosystems. 相似文献
16.
Jarkko I Ven?l?inen Risto O Juvonen Pekka T M?nnist? 《European journal of biochemistry》2004,271(13):2705-2715
The prolyl oligopeptidase (POP) family of serine proteases includes prolyl oligopeptidase, dipeptidyl peptidase IV, acylaminoacyl peptidase and oligopeptidase B. The enzymes of this family specifically hydrolyze oligopeptides with less than 30 amino acids. Many of the POP family enzymes have evoked pharmaceutical interest as they have roles in the regulation of peptide hormones and are involved in a variety of diseases such as dementia, trypanosomiasis and type 2 diabetes. In this study we have clarified the evolutionary relationships of these four POP family enzymes and analyzed POP sequences from different sources. The phylogenetic trees indicate that the four enzymes were present in the last common ancestor of all life forms and that the beta-propeller domain has been part of the family for billions of years. There are striking differences in the mutation rates between the enzymes and POP was found to be the most conserved enzyme of this family. However, the localization of this enzyme has changed throughout evolution, as three archaeal POPs seem to be membrane bound and one third of the bacterial as well as two eukaryotic POPs were found to be secreted out of the cell. There are also considerable distinctions between the mutation rates of the different substrate binding subsites of POP. This information may help in the development of species-specific POP inhibitors. 相似文献
17.
Mapping sequence differences between thimet oligopeptidase and neurolysin implicates key residues in substrate recognition 下载免费PDF全文
Ray K Hines CS Rodgers DW 《Protein science : a publication of the Protein Society》2002,11(9):2237-2246
The highly homologous endopeptidases thimet oligopeptidase and neurolysin are both restricted to short peptide substrates and share many of the same cleavage sites on bioactive and synthetic peptides. They sometimes target different sites on the same peptide, however, and defining the determinants of differential recognition will help us to understand how both enzymes specifically target a wide variety of cleavage site sequences. We have mapped the positions of the 224 surface residues that differ in sequence between the two enzymes onto the surface of the neurolysin crystal structure. Although the deep active site channel accounts for about one quarter of the total surface area, only 11% of the residue differences map to this region. Four isolated sequence changes (R470/E469, R491/M490, N496/H495, and T499/R498; neurolysin residues given first) are well positioned to affect recognition of substrate peptides, and differences in cleavage site specificity can be largely rationalized on the basis of these changes. We also mapped the positions of three cysteine residues believed to be responsible for multimerization of thimet oligopeptidase, a process that inactivates the enzyme. These residues are clustered on the outside of one channel wall, where multimerization via disulfide formation is unlikely to block the substrate-binding site. Finally, we mapped the regulatory phosphorylation site in thimet oligopeptidase to a location on the outside of the molecule well away from the active site, which indicates this modification has an indirect effect on activity. 相似文献
18.
Ozbek S Pertz O Schwager M Lustig A Holstein T Engel J 《The Journal of biological chemistry》2002,277(51):49200-49204
The minicollagens found in the inner layer of the Hydra nematocyst walls are the smallest collagens known with 12-16 Gly-X-Y repeats. Minicollagen-1, the best characterized member of this protein family so far, consists of a central collagen triple helix of 12 nm in length flanked at both ends by a polyproline stretch and a conserved cysteine-rich domain. The cysteine-rich tails are proposed to function in the assembly of soluble minicollagen trimers to high molecular structures by a switch of the disulfide linkage from intramolecular to intermolecular bonds. In this study, we investigate the trimeric nature of minicollagen-1 and its capacity to form disulfide-linked polymers in vitro. A fusion protein of minicollagen-1 with maltose-binding protein is secreted as a soluble trimer with only intrachain and no interchain disulfide bridges as confirmed by melting the collagen triple helix under reducing and non-reducing conditions. The conversion of minicollagen-1 trimers to monomers takes place between 40 and 55 degrees C with the melting point being approximately 45 degrees C. Oxidative reshuffling of the minicollagen-1 trimers leads to the formation of high molecular aggregates, which upon reduction show distinct polytrimeric states. Minicollagen trimers in isolated nematocyst capsules proved to be sensitive to SDS and were engaged in polymeric structures with additional cross-links that were resistant to reducing agent. 相似文献
19.
The degradation of cellular proteins by proteasomes generates peptides 2-24 residues long, which are hydrolyzed rapidly to amino acids. To define the final steps in this pathway and the responsible peptidases, we fractionated by size the peptides generated by proteasomes from beta-[14C]casein and studied in HeLa cell extracts the degradation of the 9-17 residue fraction and also of synthetic deca- and dodecapeptide libraries, because peptides of this size serve as precursors to MHC class I antigenic peptides. Their hydrolysis was followed by measuring the generation of smaller peptides or of new amino groups using fluorescamine. The 14C-labeled peptides released by 20 S proteasomes could not be degraded further by proteasomes. However, their degradation in the extracts and that of the peptide libraries was completely blocked by o-phenanthroline and thus required metallopeptidases. One such endopeptidase, thimet oligopeptidase (TOP), which was recently shown to degrade many antigenic precursors in the cytosol, was found to play a major role in degrading proteasome products. Inhibition or immunodepletion of TOP decreased their degradation and that of the peptide libraries by 30-50%. Pure TOP failed to degrade proteasome products 18-24 residues long but degraded the 9-17 residue fraction to peptides of 6-9 residues. When aminopeptidases in the cell extract were inhibited with bestatin, the 9-17 residue proteasome products were also converted to peptides of 6-9 residues, instead of smaller products. Accordingly, the cytosolic aminopeptidase, leucine aminopeptidase, could not degrade the 9-17 residue fraction but hydrolyzed the peptides generated by TOP to smaller products, recapitulating the process in cell extracts. Inactivation of both TOP and aminopeptidases blocked the degradation of proteasome products and peptide libraries nearly completely. Thus, degradation of most 9-17 residue proteasome products is initiated by endoproteolytic cleavages, primarily by TOP, and the resulting 6-9 residue fragments are further digested to amino acids by aminopeptidases. 相似文献
20.
Bruce LA Sigman JA Randall D Rodriguez S Song MM Dai Y Elmore DE Pabon A Glucksman MJ Wolfson AJ 《The FEBS journal》2008,275(22):5607-5617
Thimet oligopeptidase (EC 3.4.24.15) is a zinc(II) endopeptidase implicated in the processing of numerous physiological peptides. Although its role in selecting and processing peptides is not fully understood, it is believed that flexible loop regions lining the substrate-binding site allow the enzyme to conform to substrates of varying structure. This study describes mutant forms of thimet oligopeptidase in which Gly or Tyr residues in the 599-611 loop region were replaced, individually and in combination, to elucidate the mechanism of substrate selection by this enzyme. Decreases in k(cat) observed on mutation of Tyr605 and Tyr612 demonstrate that these residues contribute to the efficient cleavage of most substrates. Modeling studies showing that a hinge-bend movement brings both Tyr612 and Tyr605 within hydrogen bond distance of the cleaved peptide bond supports this role. Thus, molecular modeling studies support a key role in transition state stabilization of this enzyme by Tyr605. Interestingly, kinetic parameters show that a bradykinin derivative is processed distinctly from the other substrates tested, suggesting that an alternative catalytic mechanism may be employed for this particular substrate. The data demonstrate that neither Tyr605 nor Tyr612 is necessary for the hydrolysis of this substrate. Relative to other substrates, the bradykinin derivative is also unaffected by Gly mutations in the loop. This distinction suggests that the role of Gly residues in the loop is to properly orientate these Tyr residues in order to accommodate varying substrate structures. This also opens up the possibility that certain substrates may be cleaved by an open form of the enzyme. 相似文献