首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Itoh JI  Kitano H  Matsuoka M  Nagato Y 《The Plant cell》2000,12(11):2161-2174
The mechanism regulating the pattern of leaf initiation was analyzed by using shoot organization (sho) mutants derived from three loci (SHO1, SHO2, and SHO3). In the early vegetative phase, sho mutants show an increased rate of leaf production with random phyllotaxy. The resulting leaves are malformed, threadlike, or short and narrow. Their shoot apical meristems are relatively low and wide, that is, flat shaped, although their shape and size are highly variable among plants of the same genotype. Statistical analysis reveals that the shape of the shoot meristem rather than its size is closely correlated with the variations of plastochron and phyllotaxy. Rapid and random leaf production in sho mutants is correlated with the frequent and disorganized cell divisions in the shoot meristem and with a reduction of expression domain of a rice homeobox gene, OSH1. These changes in the organization and behavior of the shoot apical meristems suggest that sho mutants have fewer indeterminate cells and more determinate cells than wild type, with many cells acting as leaf founder cells. Thus, the SHO genes have an important role in maintaining the proper organization of the shoot apical meristem, which is essential for the normal initiation pattern of leaf primordia.  相似文献   

3.
PLASTOCHRON2 regulates leaf initiation and maturation in rice   总被引:4,自引:0,他引:4       下载免费PDF全文
In higher plants, leaves initiate in constant spatial and temporal patterns. Although the pattern of leaf initiation is a key element of plant shoot architecture, little is known about how the time interval between initiation events, termed plastochron, is regulated. Here, we present a detailed analysis of plastochron2 (pla2), a rice (Oryza sativa) mutant that exhibits shortened plastochron and precocious maturation of leaves during the vegetative phase and ectopic shoot formation during the reproductive phase. The corresponding PLA2 gene is revealed to be an orthologue of terminal ear1, a maize (Zea mays) gene that encodes a MEI2-like RNA binding protein. PLA2 is expressed predominantly in young leaf primordia. We show that PLA2 normally acts to retard the rate of leaf maturation but does so independently of PLA1, which encodes a member of the P450 family. Based on these analyses, we propose a model in which plastochron is determined by signals from immature leaves that act non-cell-autonomously in the shoot apical meristem to inhibit the initiation of new leaves.  相似文献   

4.
The ontogeny of Epilobium hirsutum grown under natural summer photoperiod in a glasshouse was divided into vegetative, early transitional, transitional, and floral stages. Bijugate phyllotaxy, common to both the vegetative and early transitional stages, is transformed into spiral phyllotaxy during the transitional stage by an initial change in the divergence angle of a single primordium inserted at a unique level on the shoot. Leaf primordia subsequently are inserted in a spiral arrangement in the indeterminate floral shoot apex. The early transitional shoot apical meristem is about 1.5 times the volume of the vegetative meristem but expands at about two-thirds the relative plastochron rate of volume increment of the vegetative meristem. There are progressive decreases in the plastochron and relative plastochron rates of radial and vertical shoot growth through ontogeny. Relative chronological rates of shoot growth, however, are not altered during ontogeny. Spiral transformation results from changes in the relative points of insertion of leaf primordia on the shoot meristem. These changes are accompanied by an increased rate of primordia initiation on a more circular shoot meristem. The change in phyllotaxy during ontogeny is similar to that which was artificially induced by chemical modification of auxin concentration gradients in the shoot apex, with the additional feature that there is an initial increase in the volume of the shoot meristem prior to the natural spiral transformation. Size of the shoot apical meristem, however, appears to have little influence on Epilobium phyllotaxy; but the geometric shape of the meristem is well correlated with bijugate to spiral transformations. This suggests that geometric parameters of the shoot meristem should be considered in theoretical models of phyllotaxy.  相似文献   

5.
The cytochrome P450 CYP78A5/KLUH in Arabidopsis thaliana is predicted to be involved in the synthesis of a mobile signal molecule that has a pleiotropic function that is distinct from classical phytohormones. CYP78A5 has five close relatives in Arabidopsis. We first investigated their functions, focusing on the plastochron, leaf size, and leaf senescence. Our analyses revealed that CYP78A5 and CYP78A7 are involved in the plastochron and leaf size, and CYP78A6 and CYP78A9 are involved in leaf senescence. Complementation analyses using heterologous promoters and expression analyses suggested that CYP78A isoforms have a common biochemical function and are functionally differentiated via organ-specific expression. The altered meristem program1 (amp1) carboxypeptidase mutant shows a phenotype very similar to that of the cyp78a5 mutant. Complementation analyses using boundary and organizing center-specific promoters suggested that both CYP78A5 and AMP1 act in a non-cell-autonomous manner. Analyses of multiple cyp78a mutants and crosses between cyp78a and amp1 mutants revealed that AMP1/LIKE AMP1 (LAMP1) and CYP78A isoforms regulate plastochron length and leaf senescence in the same genetic pathway, whereas leaf size is independently regulated. Furthermore, we detected feedback regulation between CYP78A6/CYP78A9 and AMP1 at the gene expression level. These observations raise the possibility that AMP1 and CYP78A isoforms are involved in the synthesis of the same mobile signal molecule, and suggest that AMP1 and CYP78A signaling pathways have a very close, albeit complex, functional relationship.

ALTERED MERISTEM PROGRAM1 and isoforms of the cytochrome P450 CYP78A regulate plastochron and leaf senescence in non-cell-autonomous/organ-specific manners, and have a close, albeit complex, and functional relationship.  相似文献   

6.
7.
Hay A  Jackson D  Ori N  Hake S 《Plant physiology》2003,131(4):1671-1680
Expression of KNOX (KNOTTED1-like homeobox) genes in the shoot apical meristem of Arabidopsis is required for maintenance of a functional meristem, whereas exclusion of KNOX gene expression from leaf primordia is required for the elaboration of normal leaf morphology. We have constructed a steroid-inducible system to regulate both the amount and timing of KN1 (KNOTTED1) misexpression in Arabidopsis leaves. We demonstrate that lobed leaf morphology is produced in a dose-dependent manner, indicating that the amount of KN1 quantitatively affects the severity of lobing. The KN1-glucocorticoid receptor fusion protein is not detected in leaves in the absence of steroid induction, suggesting that it is only stable when associated with steroid in an active state. By using a second inducible fusion protein to mark exposure of leaf primordia to the steroid, we determined the stage of leaf development that produces lobed leaves in response to KN1. Primordia as old as plastochron 7 and as young as plastochron 2 were competent to respond to KN1.  相似文献   

8.
9.
植物SPL转录因子研究进展   总被引:4,自引:0,他引:4  
SPL(SQUAMOSA promoter-binding protein-like)是一类植物特有的转录因子, 在调控植物胚胎发育、间隔期长度、叶片发育、发育阶段转变、花和果实发育、育性、顶端优势、花青素积累、赤霉素响应、光信号转导及体内铜离子稳态平衡等方面发挥重要作用。SPL含有一个由80个氨基酸残基组成的高度保守的SBP结构域, 以此同下游靶基因启动子区域结合, 调控靶基因的表达。大多数SPL均具有miR156/157识别位点, miR156/157可以通过mRNA剪切或翻译抑制来调控SPL的表达。该文重点综述了植物SPL基因的结构、表达调控及生物学功能, 并对其研究前景进行了展望。  相似文献   

10.
Preliminary studies establishing relationships between leaf plastochron index and Epilobium hirsutum L. shoot growth provide a method for rigorous selection of plants utilized in experiments designed to test the working hypothesis that endogenous auxin gradient interactions are factors of phyllotactic control in this species. Application of N-1-naphthylphthalamic acid (NPA), an auxin transport inhibitor, to one of the youngest bijugate primordia on the shoot meristem results in increased growth of the treated primordium. Fasciation between the treated primordium and one of the next primordia to be initiated alters relative vertical spacing of primordia. Angular shifts between subsequent primordia result in spiral transformation of Epilobium bijugate phyllotaxy. Application of α-4-chlorophenoxyisobutyric acid (CPIB), an auxin antagonist, to one of the youngest bijugate primordia on the shoot meristem results in decreased growth of the treated primordium that alters both radial and vertical spacing of primordia. This is followed by angular shifts between subsequent primordia resulting in spiral transformation of the bijugate phyllotaxy. Changes in the growth parameters of NPA- and CPIB-treated shoots are similar. Relative plastochron rates of radial and vertical shoot growth of induced spiral shoots are about half those of lanolin paste control shoots, as are the plastochrons and relative plastochron rates of leaf elongation. Treated shoot meristems have eccentricities of 0.5 as compared to bijugate control meristem eccentricities of 0.7. No significant difference is apparent between basal transverse areas of treated and control shoot meristems. The relative chronological rates of growth of treated shoots are not significantly different from those rates of control shoots. Spiral transformation results from changes in relative positions of leaf primordia insertion on the shoot meristem, not from changes in growth of treated shoots. These changes are accompanied by an increased rate of leaf initiation on a more circular shoot meristem. Existing theoretical models of phyllotaxy are discussed in relation to these chemically induced changes of Epilobium leaf arrangement.  相似文献   

11.
The normal development of shoot structures depends on controlling the growth, proliferation and differentiation of cells derived from the shoot apical meristem. We have identified the CYP78A5 gene encoding a putative cytochrome P450 monooxygenase that is the first member of the CYP78 family from Arabidopsis. This gene is strongly expressed in the peripheral regions of the vegetative and reproductive shoot apical meristems, defining a boundary between the central meristematic zone and the developing organ primordia. In addition, CYP78A5 shows a dynamic pattern of expression during floral development. Overexpression of CYP78A5 affects multiple cell types, causing twisting and kinking of the stem and defects in floral development. To define the relationship of CYP78A5 to genes controlling meristem function, we examined CYP78A5 expression in plants mutant for SHOOT MERISTEMLESS, ZWILLE and ARGONAUTE, and have found that CYP78A5 expression is altered in these mutant backgrounds. We propose that CYP78A5 has a role in regulating directional growth in the peripheral region of the shoot apical meristem in response to cues established by genes regulating meristem function.  相似文献   

12.
The mutually exclusive relationship between ARP and KNOX1 genes in the shoot apical meristem and leaf primordia in simple leaved plants such as Arabidopsis has been well characterized. Overlapping expression domains of these genes in leaf primordia have been described for many compound leaved plants such as Solanum lycopersicum and Cardamine hirsuta and are regarded as a characteristic of compound leaved plants. Here, we present several datasets illustrating the co-expression of ARP and KNOX1 genes in the shoot apical meristem, leaf primordia, and developing leaves in plants with simple leaves and simple primordia. Streptocarpus plants produce unequal cotyledons due to the continued activity of a basal meristem and produce foliar leaves termed “phyllomorphs” from the groove meristem in the acaulescent species Streptocarpus rexii and leaves from a shoot apical meristem in the caulescent Streptocarpus glandulosissimus. We demonstrate that the simple leaves in both species possess a greatly extended basal meristematic activity that persists over most of the leaf’s growth. The area of basal meristem activity coincides with the co-expression domain of ARP and KNOX1 genes. We suggest that the co-expression of ARP and KNOX1 genes is not exclusive to compound leaved plants but is associated with foci of meristematic activity in leaves.  相似文献   

13.
The aim of the work was to report morphological changes whichoccur in the shoot apex during the morphogenetic switch to floweringin the model long day (LD) plant, Sinapis alba. During the floraltransition induced by 1 LD the growth rate of all componentsof the shoot apex is modified profoundly. The earliest changes,detected at 24 h after start of LD, include a decrease in plastochronduration and an increase of growth of leaf primordia. One daylater, the meristem dome starts to increase in volume, apicalinternodes have an increased height and there is a precociousoutgrowth of axillary meristems. All these changes precede initiationof flower primordia, which starts at about 60 h after the startof LD. Later changes include meristem doming, a decrease inthe plastochron ratio and a shift to a more complex phyllotaxis.All the changes, except the decreased plastochron ratio, arecharacteristics of an apex with an increased tempo of growth.The stimulation of longitudinal growth (height of apical intemodes)is more marked and occurs earlier than the reduction of radialgrowth (plastochron ratio). Key words: Axillary meristem, internode growth, leaf growth, plastochron ratio, plastochron duration  相似文献   

14.
Periclinal cell divisions in vegetative shoot apices of Pisumand Silene were recorded from serial thin sections by mappingall the periclinal cell walls formed less than one cell cyclepreviously. The distribution of periclinal divisions in theapical domes corresponded to the distributions subsequentlyoccurring in the apices when the young leaf primordia were forming.In Pisum, periclinal divisions were almost entirely absent fromthe I1 region of the apical dome for half a plastochron justafter the formation of a leaf primordium and appeared, simultaneouslyover the whole of the next potential leaf site, about half aplastochron before the primordium formed. In Silene periclinaldivisions seemed to always present in the apical dome at thepotential leaf sites and also round the sides of the dome wherethe ensheathing leaf bases were to form. Periclinal divisionstherefore anticipated the formation of leaf primordia by occuring,in Pisum about one cell cycle and in Silene two or more cellcycles, before the change in the direction of growth or deformationof the surface associated with primordial initiation. Pisum, Silene, planes of cell division, orientation of cell walls, leaf primordia, shoot apical meristem, plastochron  相似文献   

15.
The regular arrangement of leaves and flowers around a plant''s stem is a fascinating expression of biological pattern formation. Based on current models, the spacing of lateral shoot organs is determined by transient local auxin maxima generated by polar auxin transport, with existing primordia draining auxin from their vicinity to restrict organ formation close by. It is unclear whether this mechanism encodes not only spatial information but also temporal information about the plastochron (i.e., the interval between the formation of successive primordia). Here, we identify the Arabidopsis thaliana F-box protein SLOW MOTION (SLOMO) as being required for a normal plastochron. SLOMO interacts genetically with components of polar auxin transport, and mutant shoot apices contain less free auxin. However, this reduced auxin level at the shoot apex is not due to increased polar auxin transport down the stem, suggesting that it results from reduced synthesis. Independently reducing the free auxin level in plants causes a similar lengthening of the plastochron as seen in slomo mutants, suggesting that the reduced auxin level in slomo mutant shoot apices delays the establishment of the next auxin maximum. SLOMO acts independently of other plastochron regulators, such as ALTERED MERISTEM PROGRAM1 or KLUH/CYP78A5. We propose that SLOMO contributes to auxin homeostasis in the shoot meristem, thus ensuring a normal rate of the formation of auxin maxima and organ initiation.  相似文献   

16.
A comparative histogenetic investigation of the unifacial foliage leaves of Acorus calamus L. (Araceae; Pothoideae) was initiated for the purposes of: (1) re-evaluating the previous sympodial interpretation of unifacial leaf development; (2) comparing the mode of histogenesis with that of the phyllode of Acacia in a re-examination of the phyllode theory of monocotyledonous leaves; and (3) specifying the histogenetic mechanisms responsible for morphological divergence of the leaf of Acorus from dorsiventral leaves of other Araceae. Leaves in Acorus are initiated in an orthodistichous phyllotaxis from alternate positions on the bilaterally symmetrical apical meristem. During each plastochron the shoot apex proceeds through a regular rhythm of expansion and reduction related to leaf and axillary meristem initiation and regeneration. The shoot apex has a three- to four-layered tunica and subjacent corpus with a distinctive cytohistological zonation evident to varying degrees during all phases of the plastochron. Leaf initiation is by periclinal division in the second through fourth layers of the meristem. Following inception early growth of the leaf primordium is erect, involving apical and intercalary growth in length as well as marginal growth in circumference in the sheathing leaf base. Early maturation of the leaf apex into an attenuated tip marks the end of apical growth, and subsequent growth in length is largely basal and intercalary. Marked radial growth is evident early in development and initially is mediated by a very active adaxial meristem; the median flattening of this leaf is related to accentuated activity of this meristematic zone. Differentiation of the secondary midrib begins along the center of the leaf axis and proceeds in an acropetal direction. Correlated with this centralized zone of tissue specialization is the first appearance of procambium in the center of the leaf axis. Subsequent radial expansion of the flattened upper leaf zone is bidirectional, proceeding by intercalary meristematic activity at both sides of the central midrib. Procambial differentiation is continuous and acropetal, and provascular strands are initiated in pairs in both sides of the primordium from derivatives of intercalary meristems in the abaxial and adaxial wings of the leaf. Comparative investigation of foliar histogenesis in different populations of Acorus from Wisconsin and Iowa reveals different degrees of apical and adaxial meristematic activity in primordia of these two collections: leaves with marked adaxial growth exhibit delayed and reduced expression of apical growth, whereas primordia with marked apical growth show, correspondingly, reduced adaxial meristematic activity at equivalent stages of development. Such variations in leaf histogenesis are correlated with marked differences in adult leaf anatomy in the respective populations and explain the reasons for the sympodial interpretation of leaf morphogenesis in Acorus and unifacial organs of other genera by previous investigators. It is concluded that leaf development in Acorus resembles that of the Acacia phyllode, thereby confirming from a developmental viewpoint the homology of these organs. Comparison of development with leaves of other Araceae indicates that the modified form of the leaf of Acorus originates through the accentuation of adaxial and abaxial meristematic activity which is expressed only slightly in the more conventional dorsiventral leaf types in the family.  相似文献   

17.
Leaf initiation rate, leaf primordium growth rates, and apical volume growth rates were determined for seedlings of Triticum aestivum cv. Ramona 50 under controlled environmental conditions. Three leaf primordia are present in the caryopsis, and three more leaves are initiated within the first two weeks after germination with a mean plastochron length of 95.5 hr. Volume growth rates of the apical region were determined on six apices which had six primordia each. The mean radial expansion rate was 0.467/plastochron, and the vertical expansion rate was 0.457/plastochron. The volume expansion rate was 1.393/plastochron. The mean volume doubling time was 0.498 plastochrons or 47.1 hr.  相似文献   

18.
Vegetative development in the Arabidopsis shoot apex follows both sequential and repetitive steps. Early in development, the young vegetative meristem is flat and has a rectangular shape with bilateral symmetry. The first pair of leaf primordia is radially symmetrical and is initiated on opposite sides of the meristem. As development proceeds, the meristem changes first to a bilaterally symmetrical trapezoid and then to a radially symmetrical dome. Vegetative development from the domed meristem continues as leaves are initiated in a repetitive manner. Abnormal development of the vegetative shoot apex is described for a number of mutants. The mutants we describe fall into at least three classes: (1) lesions in the shoot apex that do not show an apparent alteration in the shoot apical meristem, (2) lesions in the apical meristem that also (directly or indirectly) alter leaf primordia, and (3) lesions in the apical meristem that alter meristem size and leaf number but not leaf morphology. These mutations provide tools both to genetically analyze vegetative development of the shoot apex and to learn how vegetative development influences floral development.  相似文献   

19.
Gibberellic acid (GA) treatment of vegetative shoots of Xanthium leads to a change in phyllotaxis as diagnosed in transverse sections of apical buds. A method of analysis is proposed for estimating the phyllotactic parameters, the plastochron ratio, a, and the divergence angle, α, from measurements of the angular and radial positions of leaf primordia in sections. GA treatment significantly decreases the plastochron ratio, a, from 1.35 in controls, to 1.19 in GA-treated plants, as shown by an analysis of variance, but has no significant effect on the divergence angle. The estimates of a and α are compared with the parameters of theoretical phyllotaxis models, leading to the designation (2, 3) for controls, and (3, 5) for GA-treated plants, where the integers 2, 3, and 5 designate sets of contact parastichies. The change in a is interpreted as indicating a change in the relative position at which leaf primordia are initiated in the apical meristem, and this effect is discussed in relation to theories of leaf initiation.  相似文献   

20.
JI Itoh  A Hasegawa  H Kitano    Y Nagato 《The Plant cell》1998,10(9):1511-1522
We describe two recessive alleles of a rice heterochronic gene, plastochron1-1 (pla1-1) and pla1-2, that reduce the length of the plastochron to approximately half that of the wild type. Because the onset of the reproductive phase in pla1 was not temporally affected, the number of leaves produced in the vegetative phase was nearly twice that produced in the wild type. Panicle development was severely disturbed in pla1 mutants. In pla1-1, many primordia of primary rachis branches were converted into vegetative shoots. These ectopic shoots repeated the initiation of panicle development and the conversion of primary rachis branches into shoots. In the weak allele pla1-2, however, only the basal one or two primordia developed as vegetative shoots, and the remaining primordia developed to produce a truncated panicle. These results indicate that both vegetative and reproductive programs are expressed simultaneously during the reproductive phase of pla1; however, the degree varied depending on the strength of the allele. Accordingly, pla1 is a heterochronic mutation that extends the vegetative period. The shoot apical meristem of pla1 was larger than that of the wild type, although the shape was not modified. An in situ hybridization experiment using the histone H4 gene as a probe revealed that cell divisions are accelerated in the pla1 meristem. The PLA1 gene is considered to regulate the duration of the vegetative phase by controlling the rate of leaf production in the meristem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号