首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chromosome numbers are reported for 156 collections representing 100 taxa of Umbelliferae. Approximately two thirds of the collections are from Mexico, Central and South America and indicate a high percentage of polyploid species in certain genera found in this area. Chromosome numbers for plants belonging to 78 taxa are published here for the first time, previously published chromosome numbers are verified for 18 taxa and chromosome numbers differing from those previously published are reported in seven instances. No chromosome counts have been previously published for nine of the genera included here. Further aneuploidy and polyploidy were found in Eryngium, and Lomatium columbianum has been found to be a high polyploid with 2n = 14x. Every chromosome count is referable to a cited herbarium specimen.  相似文献   

2.
3.
Ornduff , Robert (Duke U., Durham, N. C), Peter H. Raven , Donald W. Kyhos , and A. R. Kruckeberg . Chromosome numbers in Compositae. III. Senecioneae. Amer. Jour. Bot. 50(2): 131–139. Illus. 1963.—Chromosome counts are reported for 75 taxa of tribe Senecioneae (Compcsitae) and are listed with a generic summary of previous counts in the tribe. First counts are reported for Bedfordia, Crocidium, Dimeresia, Gamolepis, Lepidospartum, Luina, Peucephyllum, Telradymia, and the first definite count recorded for Euryops. New numbers are added to those previously known in Arnica and Psathyrotes. Intraspecific differences in ploidy-level are reported in 4 North American species of Senecio. Although chromosome numbers are useful as an aid in delimiting some genera of Senecioneae, they are of little use in circumscribing genera peripheral to Senecio, primarily because of the great range of chromosome numbers of that genus. Chromosome numbers support suggestions based on morphological considerations that genera such as Crocidium and Dimeresia do not belong in Senecioneae, whereas chromosome number and morphology of the plants virtually prohibit the removal of such genera as Peucephyllum, Lepidospartum, and Telradymia from Senecioneae, despite the suggestions of several recent authors. It is proposed that the base number for the tribe is 10 and that the tribe originated in the Old World, with subsequent widespread migration and diversification.  相似文献   

4.
5.
6.
Reports of 129 new chromosome counts are made for the tribe Astereae of Compositae. They are mostly based on determinations of meiotic material, including first counts for one genus and 43 species or subspecies. Counts are now available for more than 63 of the 100-120 genera and 564 of the approximately 2,000 species in the tribe. Three of every four genera with more than one species counted show more than one chromosome number; 15 genera have species with populations with different numbers. Such variation is very high and indicates the need for more detailed cytotaxonomical study in the group.  相似文献   

7.
8.
Tension outputs were measured in skinned crayfish muscle fibers exposed to solutions variously buffered for both Mg-adenosine triphosphate (ATP) and Ca. Two types of data are shown, relating tension and substrate concentration with different levels of Ca present, or tension and calcium concentration at different levels of substrate. The data are fitted by curves calculated from a general equation for substrate inhibition. The equation is based on the schema that both tension and relaxation are induced by the substrate and that the relaxing effect of excess substrate is repressed by calcium. The physiological findings of the present work are similar to data obtained by others on biochemical model systems of the contractile proteins.  相似文献   

9.
10.
11.
In mitotic vertebrate tissue cells, chromosome congression to the spindle equator in prometaphase and segregation to the poles in anaphase depend on the movements of kinetochores at their kinetochore microtubule attachment sites. To test if kinetochores sense tension to control their states of movement poleward (P) and away from the pole (AP), we applied an external force to the spindle in preanaphase newt epithelial cells by stretching chromosome arms with microneedles. For monooriented chromosomes (only one kinetochore fiber), an abrupt stretch of an arm away from the attached pole induced the single attached kinetochore to persist in AP movement at about 2 μm/min velocity, resulting in chromosome movement away from the pole. When the stretch was reduced or the needle removed, the kinetochore switched to P movement at about 2 μm/min and pulled the chromosome back to near the premanipulation position within the spindle. For bioriented chromosomes (sister kinetochores attached to opposite poles) near the spindle equator, stretching one arm toward a pole placed the kinetochore facing away from the direction of stretch under tension and the sister facing toward the stretch under reduced tension or compression. Kinetochores under increased tension exhibited prolonged AP movement while kinetochores under reduced tension or compression exhibited prolonged P movement, moving the centromeres at about 2 μm/min velocities off the metaphase plate in the direction of stretch. Removing the needle resulted in centromere movement back to near the spindle equator at similar velocities. These results show that tension controls the direction of kinetochore movement and associated kinetochore microtubule assembly/disassembly to position centromeres within the spindle of vertebrate tissue cells. High tension induces persistent AP movement while low tension induces persistent P movement. The velocity of P and AP movement appears to be load independent and governed by the molecular mechanisms which attach kinetochores to the dynamic ends of kinetochore microtubules.  相似文献   

12.
13.
14.
A new technique has been devised for staining the mitotic spindle in mammalian cells while preserving spindle structure and chromosome number. The cells are trypsinized and fixed with a 3:1 methanobacetic acid solution containing 4 mM MgCl2 and 1.5 mM CaCl2 at room temperature. The cells are then placed on slides and treated with 5% perchloric acid before staining with a 10% acetic acid solution containing safranin O and brilliant blue R. The preserved spindles appear dark blue against a light cytoplasmic background with chromosomes stained bright red. Individual chromosomes and chromatids are clearly visible. Positioning of the chromosomes relative to the spindle apparatus is readily ascertained allowing easy study of mitotic spindle and chromosome behavior.  相似文献   

15.
Chromosome numbers are now known for 153 species in 21 genera of Lobelioideae (Campanulaceae); this represents almost 13% of the species and 70% of the genera in the subfamily. Numbers reported are n = 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 21, 35, 70. The subfamily as a whole has x = 7; the best documented exception is Downingia and its allies with x = 11. Only four genera show interspecific variation in chromosome number: Downingia (n = 6, 8, 9, 10, 11, 12); Lobelia (n = 6, 7, 9, 12, 13, 14, 19, 21); Pralia (n = 6, 7, 13, 14, 21, 35, 70); and Solenopsis (n = 11, 14). Intraspecific variation occurs in 13 species, with as many as four different cytotypes in one species. The herbaceous members of the subfamily as a group are quite variable, showing the entire range of chromosome numbers, including numerous dysploids, but are predominantly diploid. The woody species, by contrast, are much less variable; nearly all of the species are tetraploid, with only a few diploids and hexaploids and no dysploid numbers known. These data support the hypothesis that woodiness is apomorphic within the subfamily. A general trend of higher chromosome numbers at higher latitudes and higher elevations is evident within the subfamily. The chromosome number of Apetahia raiateensis (n = 14) is reported here for the first time, on the basis of a count made about 30 years ago by Peter Raven.  相似文献   

16.
17.
18.
Turner, B. L., and Olin S. Fearing. (U. Texas, Austin.) Chromosome numbers in the Leguminosae. III. Species of the Southwestern United States and Mexico. Amer. Jour. Bot. 47(7) : 603–608. Illus. 1960.—Chromosome counts for 43 species of the Leguminosae from the southwestern United States and Mexico have been reported. These include first reports for 42 taxa of which 16 are for the subfamily Mimosoideae. Olneya tesota (2n = 18) is the only new generic count listed. Chromosome reports of particular significance include a single polyploid count for a North American species of Acacia, as well as diploid and tetraploid counts for closely related taxa in this genus. Four species of the genus Schrankia were found to be diploid with In = 26, indicating a base of x = 13 instead of the x = 8 reported by some previous workers. Leucaena pulverulenta was found to have a diploid count of 2n = 56 indicating a base of x = 14.  相似文献   

19.
20.
Pollen size statistics are presented for 10 closely related species of Bouteloua and relationships between pollen size and chromosome numbers are presented for 13 populations of 5 species and 3 varieties. With 1 exception, all populations of all taxa conformed to a general pattern of pollen size dependent upon chromosome number. Chromosome numbers varied from 2n = 20 to 2n = ca. 103, with several independent aneuploid series. Statistical analyses were made of pollen size as related to chromosome number in the 3 varieties of B. curtipendula. These data showed that tetraploids (2n = 40) of var. tenuis had significantly greater pollen size and coefficient of variation than diploids (2n = 20) of the same variety. Similarly, aneuploids of var. curtipendula with 2n = 45 to 2n = 64 chromosomes had significantly larger and more variable pollen than tetraploids (2n = 40) of the same variety. Highly significant positive regression coefficients were obtained from analyses of chromosome numbers and mean pollen size, and chromosome numbers and coefficient of variation, for var. curtipendula. Regression coefficients for var. caespitosa populations with chromosome numbers over the hexaploid (2n = 60) level were not significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号