首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How do animals control the trajectory of ballistic motions like jumping? Targeted jumps by a locust, which are powered by a rapid extension of the tibiae of both hind legs, require control of the take-off angle and speed. To determine how the locust controls these parameters, we used high speed images of jumps and mechanical analysis to reach three conclusions: (1) the extensor tibiae muscle applies equal and opposite torques to the femur and tibia, which ensures that tibial extension accelerates the centre of mass of the body along a straight line; (2) this line is parallel to a line drawn from the distal end of the tibia through the proximal end of the femur; (3) the slope of this line (the angle of elevation) is not affected if the two hind legs extend asynchronously. The mechanics thus uncouple the control of elevation and speed, allowing simplified and independent control mechanisms. Jump elevation is controlled mechanically by the initial positions of the hind legs and jump speed is determined by the energy stored within their elastic processes, which allows us to then propose which proprioceptors are involved in controlling these quantities.  相似文献   

2.
Campaniform sensilla monitor the forces generated by the leg muscles during the co-contraction phase of locust (Schistocerca gregaria) kicking and jumping and re-excite the fast extensor (FETi) and flexor tibiae motor neurones, which innervate the leg muscles. Sensory signals from a campaniform sensillum on the proximal tibia were compared in newly moulted locusts, which do not kick and jump, and mature locusts which readily kick and jump. The activity pattern of FETi during co-contraction was mimicked by stimulating the extensor tibiae muscle. Less force was generated and the spike frequency of the sensory neurone from the sensillum was significantly lower in newly moulted compared to mature locusts. Depolarisation of both FETi and flexor motor neurones as a result of sensory feedback was consequently less in newly moulted than in mature locusts. The difference in the depolarisation was greater than the decrease in the afferent spike frequency suggesting that the central connections of the afferents are modulated. The depolarisation could generate spikes in FETi and maintain flexor spikes in mature but not in newly moulted locusts. This indicates that feedback from the anterior campaniform sensillum comprises a significant component of the drive to both FETi and flexor activity during co-contraction in mature animals and that the changes in this feedback contribute to the developmental change in behaviour.Abbreviations aCS anterior campaniform sensillum - ETi extensor tibiae - FETi fast extensor tibiae motor neurone - FlTi flexor tibiae - pCS posterior campaniform sensillum  相似文献   

3.
The locust jump consists of three distinct phases: Cocking: a rapid flexion of both hindleg tibia and locking of both tibia in full flexion. Co-contraction: simultaneous contractions in hindleg flexor and extensor muscles lasting about 0.5 s resulting in the storage of energy for the jump in elastic elements of the legs and muscles. Triggering: a sudden inhibition of flexor activity to allow the shortening of the contracted extensors and the release of the energy stored during the co-contraction phase. The neural circuitry controlling these three phases is now reasonably well understood. Some of its major features are: (1) pairs of large identifiable interneurons in the thoracic ganglia for evoking the cocking response (C-neurons) and for triggering the jump (M-neurons), (2) a central excitatory pathway from extensor to flexor tibiae motoneurons to ensure simultaneous activation of extensor and flexor motoneurons during the initial part of the co-contraction phase, (3) a positive feedback pathway from cuticular receptors to extensor motoneurons for maintaining extensor activity during the co-contraction phase, (4) proprioceptive feedback to the trigger interneurons for increasing their excitability during the co-contraction phase and thereby allowing a variety of external stimuli to activate the trigger neurons and evoke a jump, (5) presynaptic inhibition of visual pathways to the trigger neurons to ensure that the trigger neurons are not activated by the simultaneous occurrence of visual and auditory stimuli in the absence of proprioceptive input, and (6) a pair of multifunctional visual movement detecting neurons which can initiate cocking or trigger the jump depending on the animal's state.  相似文献   

4.
Strain acting on the exoskeleton of insects is monitored by campaniform sensilla. On the tibia of a mesothoracic leg of the locust (Schistocerca gregaria) there are three groups of campaniform sensilla on the proximo-dorsal surface. This study analyses the responses of the afferents from one group, their connections with central neurones and their actions during walking.The afferents of the campaniform sensilla make direct excitatory connections with flexor tibiae motor neurones. They also make direct connections with particular spiking local interneurones that make direct inhibitory output connections with the slow extensor tibiae motor neurone.During walking extension movements of the tibiae during stance produce longitudinal tensile forces on the dorsal tibia that peak during mid stance before returning to zero prior to swing. This decline in tension can activate the campaniform sensilla. In turn this would lead to an inhibition of the extensor tibiae motor neurone and an excitation of the flexor tibiae motor neurones. This, therefore, aids the transition from stance to swing. During turning movements, the tibia is flexed and the dorsal surface is put under compression. This can also activate some of campaniform sensilla whose effect on the flexor motor neurones will reinforce the flexion of the tibia.  相似文献   

5.
The extensor tibiae muscle (ETi) in the metathoracic leg of the grasshopper, which powers the jump, is among the most studied insect muscles. In contrast to many insect muscles which are simple (consisting of only a single bundle of muscle fibers), the ETi is a complex muscle which consists of an array of bundles of muscle fibers, each with a separate site of insertion on the body wall ectoderm and on the ETi apodeme ectoderm. Here we describe the embryonic development of this complex muscle. The ETi muscle develops from a single muscle pioneer (MP) which connects the initial invagination of the ETi apodeme to the wall of the femur. This MP then dramatically expands around the developing apodeme to form a large horseshoe-shaped, multinucleate cell, called the supramuscle pioneer (supra-MP); the number of nuclei in the supra-MP increases by cell fusion rather than by nuclear division. The arms of the supra-MP grow steadily longer and their outer edges begin to appear scalloped, certain areas remaining tightly apposed to the ectoderm of the wall of the leg while adjacent areas lose their adhesion and are pulled away. By about 50% of embryonic development the ETi supra-MP consists of a periodic series of bridges (cytoplasmic extensions) connecting the leg wall ectoderm with the apodeme, and linked into a giant syncytium near their inner, apodeme surface by a thin layer of cytoplasm containing hundreds of nuclei. Each bridge is surrounded by a cluster of many smaller mesoderm cells. Next the syncytium begins to divide such that by 60% the periodic bridges of the supra-MP have lost syncytial contact with each other and now themselves form an array of smaller, individual, multinucleate MPs connecting the body wall to the apodeme, each surrounded by a mass of undifferentiated mesoderm cells. This initial cycle of fusion and division is followed by a second similar cycle in which the individual mesoderm cells surrounding each MP fuse with the MP. At the same time, the MP divides into the initial bundle of smaller muscle fibers. Coincident with this division into muscle fibers is the further development of thick and thin filaments and the T-tubule system.  相似文献   

6.
Motor patterns during kicking movements in the locust   总被引:2,自引:2,他引:0  
Locusts (Schistocerca gregaria) use a distinctive motor pattern to extend the tibia of a hind leg rapidly in a kick. The necessary force is generated by an almost isometric contraction of the extensor tibiae muscle restrained by the co-contraction of the flexor tibiae (co-contraction phase) and aided by the mechanics of the femoro-tibial joint. The stored energy is delivered suddenly when the flexor muscle is inhibited. This paper analyses the activity of motor neurons to the major hind leg muscles during kicking, and relates it to tibial movements and the resultant forces.During the co-contraction phase flexor tibiae motor neurons are driven by apparently common sources of synaptic inputs to depolarized plateaus at which they spike. The two excitatory extensor motor neurons are also depolarized by similar patterns of synaptic inputs, but with the slow producing more spikes at higher frequencies than the fast. Trochanteral depressors spike at high frequency, the single levator tarsi at low frequency, and common inhibitors 2 and 3 spike sporadically. Trochanteral levators, depressor tarsi, and a retractor unguis motor neuron are hyperpolarized.Before the tibia extends all flexor motor neurons are hyperpolarized simultaneously, two common inhibitors, and the levator trochanter and depressor tarsi motor neurons are depolarized. Later, but still before the tibial movement starts, the extensor tibiae and levator tarsi motor neurons are hyperpolarized. After the movement has started, the extensor motor neurons are hyperpolarized further and the depressor trochanteris motor neurons are also hyperpolarized, indicating a contribution of both central and sensory feedback pathways.Variations in the duration of the co-contraction of almost twenty-fold, and in the number of spikes in the fast extensor tibiae motor neuron from 2–50 produce a spectrum of tibial extensions ranging from slow and weak, to rapid and powerful. Flexibility in the networks producing the motor pattern therefore results in a range of movements suited to the fluctuating requirements of the animal.  相似文献   

7.
There is a change in the synaptic connections between motor neurones that underlie locust kicking and jumping during maturation following the adult moult. The fast extensor tibiae (FETi) motor neurone makes monosynaptic excitatory connections with flexor tibiae motor neurones that have previously been implicated in maintaining flexor activity during the co-contraction phase of jumping, in which energy generated by the muscles of a hind leg is stored. The amplitude of the FETi spike decreases when repetitively activated, and this decrement is larger in locusts immediately following the adult moult than in mature locusts. The decrement in␣the FETi spike is correlated with a greater decrease in the amplitude of the flexor excitatory postsynaptic potential (EPSP) in newly moulted locusts and in turn with the failure of these locusts to kick or jump. The results presented here indicate that the developmental change in the connections between the motor neurones contributes to the change in behaviour following the moult. Accepted: 28 April 1997  相似文献   

8.
1.  Two campaniform sensilla (CS) on the proximal tibia of a hindleg monitor strains set up when a locust prepares to kick, or when a resistance is met during locomotion. The connections made by these afferents with interneurones and leg motor neurones have been investigated and correlated with their role in locomotion.
2.  When flexor and extensor tibiae muscles cocontract before a kick afferents from both campaniform sensilla spike at frequencies up to 650 Hz. They do not spike when the tibia is extended actively or passively unless it encounters a resistance. The fast extensor tibiae motor neurone (FETi) then produces a sequence of spikes in a thrusting response with feedback from the CS afferents maintaining the excitation. Destroying the two campaniform sensilla abolishes the re-excitation of FETi.
3.  Mechanical stimulation of a single sensillum excites extensor and flexor tibiae motor neurones. The single afferent from either CS evokes EPSPs in the fast extensor motor neurone and in certain fast flexor tibiae motor neurones which follow each sensory spike with a central latency of 1.6 ms that suggests direct connections. The input from one receptor is powerful enough to evoke spikes in FETi. The slow extensor motor neurone does not receive a direct input, although it is excited and slow flexor tibiae motor neurones are unaffected.
4.  Some nonspiking interneurones receive direct connections from both afferents in parallel with the motor neurones. One of these interneurones excites the slow and fast extensor tibiae motor neurones probably by disinhibition. Hyperpolarization of this interneurone abolishes the excitatory effect of the CS on the slow extensor motor neurone and reduces the excitation of the fast. The disinhibitory pathway may involve a second nonspiking interneurone with direct inhibitory connections to both extensor motor neurones. Other nonspiking interneurones distribute the effects of the CS afferents to motor neurones of other joints.
5.  The branches of the afferents from the campaniform sensilla and those of the motor neurones and interneurones in which they evoke EPSPs project to the same regions of neuropil in the metathoracic ganglion.
6.  The pathways described will ensure that more force is generated by the extensor muscle when the tibia is extended against a resistance. The excitatory feedback to the extensor and flexor motor neurones will also contribute to their co-contraction when generating the force necessary for a kick.
  相似文献   

9.
Twenty-one prothoracic and 17 mesothoracic motor neurons innervating leg muscles have been identified physiologically and subsequently injected with dye from a microelectrode. A tract containing the primary neurites of motor neurons innervating the retractor unquis, levator and depressor tarsus, flexor tibiae, and reductor femora is described. All motor neurons studied have regions in which their dendritic branches overlap with those of other leg motor neurons. Identified, serially homologous motor neurons in the three thoracic ganglia were found to have: (1) cell bodies at similar locations and morphologically similar primary neurites (e.g., flexor tibiae motor neurons), (2) cell bodies at different locations in each ganglion and morphologically different primary neurites in each ganglion (e.g., fast retractor unguis motor neurons), or (3) cell bodies at similar locations and morphologically similar primary neurites but with a functional switch in one ganglion relative to the function of the neurons in the other two ganglia. As an example of the latter, the morphology of the metathoracic slow extensor tibiae (SETi) motor neurons was similar to that of pro- and mesothoracic fast extensor tibiae (FETi) motor neurons. Similarly the metathoracic FETi bears a striking resemblance to the pro- and the mesothoracic SETi. It is proposed that in the metathoracic ganglion the two extensor tibiae motor neurons have switched functions while retaining similar morphologies relative to the structure and function of their pro- and mesothoracic serial homologues.  相似文献   

10.
We report on a newly discovered cockroach (Saltoblattella montistabularis) from South Africa, which jumps and therefore differs from all other extant cockroaches that have a scuttling locomotion. In its natural shrubland habitat, jumping and hopping accounted for 71 per cent of locomotory activity. Jumps are powered by rapid and synchronous extension of the hind legs that are twice the length of the other legs and make up 10 per cent of the body weight. In high-speed images of the best jumps the body was accelerated in 10 ms to a take-off velocity of 2.1 m s(-1) so that the cockroach experienced the equivalent of 23 times gravity while leaping a forward distance of 48 times its body length. Such jumps required 38 μJ of energy, a power output of 3.4 mW and exerted a ground reaction force through both hind legs of 4 mN. The large hind legs have grooved femora into which the tibiae engage fully in advance of a jump, and have resilin, an elastic protein, at the femoro-tibial joint. The extensor tibiae muscles contracted for 224 ms before the hind legs moved, indicating that energy must be stored and then released suddenly in a catapult action to propel a jump. Overall, the jumping mechanisms and anatomical features show remarkable convergence with those of grasshoppers with whom they share their habitat and which they rival in jumping performance.  相似文献   

11.
Venom from two species of spider has been tested on the locust glutamatergic nerve-muscle system. The neurally-evoked twitch contraction of locust metathoracic retractor unguis muscle was abolished in the presence of venom and only slowly recovered following its removal. The twitch inhibition onset rate was venom concentration and stimulation frequency dependent. The mechanical response of this muscle to L-glutamate was also inhibited by spider venom. Complete abolition of the potential evoked by ionophoresis of L-glutamate to excitatory junctions on locust metathoracic extensor tibiae muscle was obtained with low concentrations of venom and recovery on washing was either slow and incomplete or not evident. The ionophoretic studies and twitch contraction studies indicate that the venom acts only when the glutamate receptor channel complex is activated by agonist. This conclusion is supported by data of the effects of venom on the voltage clamped excitatory postsynaptic current recorded from locust extensor tibiae muscle. Preliminary attempts to identify and isolate the active principles in these spider venoms indicate that activity is restricted to a molecule(s) of low (less than 1000 dalton's) molecular weight.  相似文献   

12.
Summary Insect legs possess chordotonal organs which monitor leg angle, and the direction, velocity and acceleration of leg movements. The locust metathoracic femoral chordotonal organ (mtFCO) has previously been studied morphologically and physiologically, but no detailed analysis of the responses of individual neurones, and their location in the organ has so far been produced. By recording from, and staining mtFCO neurones I have been able to compile for the first time such a map. The distribution of neurone somata in the locust mtFCO is more complex than previously thought: receptors sensitive to both stretch and relaxation of the apodeme are distributed throughout the organ. Seventeen response types were encountered. Neurones with a particular response type have somata in comparable locations within the mtFCO. Comparisons are made between the response types found in the stick insect and those in the locust. The possible functions of some of the responses are discussed.Abbreviation (mt)FCO (metathoracic) femoral chordotonal organ - F-T femur-tibia  相似文献   

13.
The cuticle strain which develops in the hindleg tibiae when a locust prepares to kick, or when the tibia thrusts against an obstacle, is detected by two campaniform sensilla, which reflexly excite the fast extensor tibiae motoneuron, some of the flexor tibiae motoneurons and nonspiking interneurons. The reflex excitation is adaptive for the extensor motoneuron during both co-activation and thrusting, but is only adaptive for the flexor motoneurons during co-activation, and is maladaptive during thrusting. We show that the femoral chordotonal organ, which monitors tibial position, controls the efficacy of the strain feedback. The campaniform sensilla-induced depolarization in the extensor motoneuron is about twice as large when the tendon is in mid position (reflecting a tibial-femoral angle of 90°) than when fully stretched (reflecting tibial flexion), while in the flexors the reverse is true. The amplitudes of excitatory postsynaptic potentials evoked by single campaniform sensilla spikes, are, however, not affected. Our data suggests that the chordotonal organ modulates the gain of the strain feedback onto the motoneurons by exciting interneuronal circuits whose output sums with the former. Thrusting typically occurs with the tibia partially extended, therefore the actions of the chordotonal organ support the production of a maximal thrusting force. Accepted: 27 December 1996  相似文献   

14.
The effect of octopamine on the fast extensor and the flexor tibiae motor neurones in the locust (Schistocerca gregaria) metathoracic ganglion, and also on synaptic transmission from the fast extensor to the flexor motor neurones, was examined. Bath application or ionophoresis of octopamine depolarized and increased the excitability of the flexor tibiae motor neurones. 1 mM octopamine reduced the amplitude of the fast extensor-evoked EPSP in the slow but not the fast flexor motor neurones, whereas 10 mM octopamine could reduce the EPSP amplitude in both. Octopamine broadened the fast extensor action potential and reduced the amplitude of the afterhyperpolarization, the modulation requiring feedback resulting from movement of the tibia. Octopamine also increased the frequency of synaptic inputs onto the tibial motor neurones, and could cause rhythmic activity in the flexor motor neurones, and reciprocal activity in flexor and extensor motor neurones. Octopamine also increased the frequency of spontaneous spiking in the octopaminergic dorsal unpaired median neurones. Repetitive stimulation of unidentified dorsal unpaired median neurones could mimic some of the effects of octopamine. However, no synaptic connections were found between dorsal unpaired median neurones and the tibial motor neurones. The diverse effects of octopamine support its role in mediating arousal.  相似文献   

15.
The isometric force response of the locust hind leg extensor tibia muscle to stimulation of a slow extensor tibia motor neuron is experimentally investigated, and a mathematical model describing the response presented. The measured force response was modelled by considering the ability of an existing model, developed to describe the response to the stimulation of a fast extensor tibia motor neuron and to also model the response to slow motor neuron stimulation. It is found that despite large differences in the force response to slow and fast motor neuron stimulation, which could be accounted for by the differing physiology of the fibres they innervate, the model is able to describe the response to both fast and slow motor neuron stimulation. Thus, the presented model provides a potentially generally applicable, robust, simple model to describe the isometric force response of a range of muscles.  相似文献   

16.
Simultaneous intracellular recordings were made from pairs of motor neurons in the pro- or mesothoracic ganglion of the locust. Though central connections were sought between pairs of motor neurons, none were found. This is in sharp contrast to the findings that flexor and extensor tibiae neurons in the metathoracic ganglion make certain connections between themselves (Hoyle and Burrows, 1973; Heitler and Burrows, 1977a). As the previously mentioned authors believed that the metathoracic flexor-extensor connections were used as part of the motor program for jumping and kicking, the present results strongly support their hypothesis. Common PSPs have been found in a variety of pairs of motor neurons. Of note are common PSPs of the same sign to antagonists. Different innervation patterns have been found for the flexor and extensor muscles. It is proposed that serially homologous motor neurons serving similar functions are, to a first approximation, similar in the locust. Serially homologous motor neurons serving different functions will, in most cases, have altered structures and/or functions.  相似文献   

17.
It is generally believed that neural transmission in the central nervous systems of insects is cholinergic, on the basis of secondary evidence: the presence of cholinesterase, and sensitivity of a nonsynaptic region of the neuron, its cell body, to iontophoresed acetylcholine. In the present work a preparation has been developed which takes advantage of the availability of identified motor neurons in the locust metathoracic ganglion with known 3-dimensional geometry of dendritic fields. These neurons transmit at their peripheral neuromuscular junctions with glutamate. The fast extensor tibiae motor neuron also makes excitatory central connections onto its functional antagonists the flexor tibiae motor neurons. Unless Dale's principle is contravened, transmission at these central synapses should also be glutamatergic. This transmission onto flexor motor neurons was found to be attenuated 70% by a glutamatergic blocker. Glutamate iontophoresed into selected areas of neuropil into which the motor neurons have dendritic branches caused the neurons to be depolarized, in a dose-dependent manner. Individual motor neurons were directly excited to spike with suprathreshold iontophoretic current. With long durations of release they were desensitized, but recovered quickly with rest. The data provide evidence that central transmission onto motor neurons in the locust metathoracic ganglion is glutamatergic.  相似文献   

18.
A jumping mechanism can be an efficient mode of motion for small robots to overcome large obstacles on the ground and rough terrain.In this paper,we present a 7 g prototype of locust-inspired jumping mechanism that uses springs,wire,reduction gears,and a motor as the actuation components.The leg structure and muscles of a locust or grasshopper were mimicked using springs and wire,springs for passive extensor muscles,and a wire as a flexor muscle.A small motor was used to slowly charge the spring through a lever and gear system,and a cam with a special profile was used as a clicking mechanism for quick release of elastic energy stored in the springs to create a sudden kick for a quick jump.Performance analysis and experiments were conducted for comparison and performance estimation of the jumping mechanism prototype.Our prototype could produce standing jumps over obstacles that were about 14 times its own size (approximate to 71 cm) and a jumping distance of 20 times its own size (approximate to 100 cm).  相似文献   

19.
Changes in total mechanical work, its partitioning into different energy states, mechanical power, force-time characteristics, force impulses of body segments and mass center's pathway characteristics during long jump take-off were investigated on four national and six ordinary level athletes. Both cinematographic and force-platform techniques were used. The data showed that the national level jumpers had higher run-up and higher take-off (release) velocities in horizontal and vertical directions. In addition, they were able to utilize efficiently the elastic energy stored in the leg extensor muscles at take-off impact. This was seen in high support leg eccentric and concentric forces, which were produced in short contact times. The ordinary level athletes had greater variability in the investigated attributes, and they reached their maximum length of jumps in many different ways. Cinematically the greatest difference between the subject groups was observed in the timing of the various body segment movements. In better athletes all the body parts (arms, trunk, and legs) had decelerating horizontal impulses, but in all ordinary level athletes the horizontal impulse of the swing leg was accelerating during take-off.  相似文献   

20.
Differences in muscle dynamics between the preferred and nonpreferred jumping legs of subjects in maximal, explosive exercise were examined. Eight subjects performed nonfatiguing bouts of single-legged drop jumps and rebound jumps on a force sledge apparatus. Measures of flight time, reactive strength index, peak vertical force, and vertical leg-spring stiffness were obtained for 3 drop jumps and 3 rebound jumps on both legs. Subjects utilized a stiffer leg spring and a more explosive jumping action in the nonpreferred leg when performing a cyclical rebound jumping task in comparison to a single drop jump task (observed through differences in vertical leg-spring stiffness, peak vertical force, and reactive strength index, p < 0.05). The preferred leg performed equally well in both tasks. Between-leg analysis showed no differences in dependent variables between the preferred and the nonpreferred leg in the rebound jumping protocol. However, the drop jump protocol showed significant performance differences, with flight time and reactive strength index greater in the preferred leg than the nonpreferred leg (p < 0.05). We hypothesize that, throughout the lifespan, both legs are equally trained in cyclical rebound jumping tasks through running. However, because a preferred leg must be selected when performing any one-off, single-legged jump, imbalances in this specific task develop over time with consistent selection of a preferred jumping leg. The data demonstrate that the rebound jump protocol is representative of the symmetrical mechanics of forward running and that leg-spring stiffness is modulated depending on the demands of the specific task involved. Strength and conditioning practitioners should give careful consideration to appropriate jump protocol selection and should exercise caution when comparing laboratory results to data gathered in field testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号