首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the nineteenth century, researchers have noted that Neandertal and modern human adults differ in mental foramen position, although the ontogenetic changes in the position of this feature have only recently come under the scrutiny of paleoanthropologists. Research on mental foramen position has focused on whether this feature is inferior to a particular tooth. However, tooth position may not be a reliable indicator of mental foramen position because of variability in tooth size within and between taxa and during eruption events. As opposed to observing the mental foramen with respect to the postcanine teeth, we examined linear distances from the mental foramen to other mandibular landmarks. Modern human adults may appear truncated, or paedomorphic, in mental foramen position with respect to Neandertal adults. However, infants of the two taxa differ substantially in anterior mandibular form. The initial differences in the shape of the mental region may be related to the embryological position of the mental foramen in modern humans and its role in the development of the mental trigone. The shape changes that accrue thereafter, possibly from faster mandibular growth rates in Neandertals, further distinguish the adults from one another. Although mandibular shape differences exist from early infancy onwards, adults of the two taxa are broadly similar in bi-mental foramen breadth with respect to mandibular size. For this reason, qualitative assessments of mental foramen position may provide less taxonomic information than previously thought.  相似文献   

2.
Paleoanthropologists have long noted the unique "hyper-barrel-shaped" Neandertal thorax as inferred from fragmentary ribs, clavicles, and sterna. Yet scholars disagree whether the Neandertal thorax represents an adaptation to cold climates or elevated activity levels. Given the difficulties of reconstructing overall chest shape from isolated and fragmentary thoracic skeletal elements, it is worthwhile comparing Neandertals and contemporaneous early modern human fossils from the same geographic region to recent modern human skeletons that are known to have enlarged chests. This study compares thoracic skeletal morphology in two Near Eastern Neandertals (Tabūn C1 and Shanidar 3) and two early modern humans from the same region (Skhūl IV and V) with four samples of recent modern human skeletons from the Andes (n=347): two coastal groups and two groups from high altitudes. The two highland groups, similar to their living descendants, exhibit morphological evidence of anteroposteriorly deep and mediolaterally wide chests as part of respiratory adaptations to high-altitude hypoxia. I calculated the percentage of deviation of each Neandertal and early modern human fossil from the means of the four recent modern human samples for clavicle and rib lengths and curvatures. Shanidar 3 and Tabūn C1 exhibit ribs that are slightly larger and less curved than the Andean samples, indicating slightly larger thoracic skeletons than modern humans who are known to have enlarged chests in response to increased respiratory demands. Skhūl IV and V have significantly shorter ribs with greater curvature suggesting especially narrow thoracic skeletons. Comparisons with Andean populations suggest that the enlarged thoraces of Neandertals may reflect high activity levels, although results from this study do not exclude cold adaptation as an explanatory factor.  相似文献   

3.
The Middle Paleolithic levels of the Sima de las Palomas have yielded eight partial mandibles (Palomas 1, 6, 7, 23, 49, 59, 80, and 88). Palomas 7, 49, 80, and 88 are immature, and Palomas 49, 59, 80, and 88 are among the latest Neandertals (~40,000 cal BP). Palomas 1 is geologically older (~50,000–60,000 cal BP), and the other three were found ex situ. The mandibles exhibit a suite of characteristics that align them with the Neandertals among later Pleistocene humans, including symphyseal morphology, symphyseal orientation, corpus robusticity, distal mental foramen position, retromolar space presence, wide immature dental arcade, and high‐coronoid process with an asymmetrical mandibular notch. However, Palomas 6 lacks a retromolar space, Palomas 59 has a narrow lateral corpus, and Palomas 80 has a mesial mental foramen and open mandibular foramen. The Palomas mandibles therefore help to document that the late Middle Paleolithic of southern Iberia was the product of Neandertals. They also reinforce the presence of variability in both metric and discrete aspects of Neandertal mandibular morphology, both within and across samples, some of which may be temporal and/or geographic in nature. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
We present here the first cases in Neandertals of congenital clefts of the arch of the atlas. Two atlases from El Sidrón, northern Spain, present respectively a defect of the posterior (frequency in extant modern human populations ranging from 0.73% to 3.84%), and anterior (frequency in extant modern human populations ranging from 0.087% to 0.1%) arch, a condition in most cases not associated with any clinical manifestation. The fact that two out of three observable atlases present a low frequency congenital condition, together with previously reported evidence of retained deciduous mandibular canine in two out of ten dentitions from El Sidrón, supports the previous observation based on genetic evidence that these Neandertals constituted a group with close genetic relations. Some have proposed for humans and other species that the presence of skeletal congenital conditions, although without clinical significance, could be used as a signal of endogamy or inbreeding. In the present case this interpretation would fit the general scenario of high incidence of rare conditions among Pleistocene humans and the specific scenariothat emerges from Neandertal paleogenetics, which points to long-term small and decreasing population size with reduced and isolated groups. Adverse environmental factors affecting early pregnancies would constitute an alternative, non-exclusive, explanation for a high incidence of congenital conditions. Further support or rejection of these interpretations will come from new genetic and skeletal evidence from Neandertal remains.  相似文献   

5.
Implicit in much of the discussion of the cultural and population biological dynamics of modern human origins in Europe is the assumption that the Aurignacian, from its very start, was made by fully modern humans. The veracity of this assumption has been challenged in recent years by the association of Neandertal skeletal remains with a possibly Aurignacian assemblage at Vindija Cave (Croatia) and the association of Neandertals with distinctly Upper Paleolithic (but non-Aurignacian) assemblages at Arcy-sur-Cure and St. C?esaire (France). Ideally we need human fossil material that can be confidently assigned to the early Aurignacian to resolve this issue, yet in reality there is a paucity of well-provenanced human fossils from early Upper Paleolithic contexts. One specimen, a right humerus from the site of Vogelherd (Germany), has been argued, based on its size, robusticity, and muscularity, to possibly represent a Neandertal in an Aurignacian context. The morphological affinities of the Vogelherd humerus were explored by univariate and multivariate comparisons of humeral epiphyseal and diaphyseal shape and strength measures relative to humeri of Neandertals and Early Upper Paleolithic (later Aurignacian and Gravettian) modern humans. On the basis of diaphyseal cross-sectional geometry, deltoid tuberosity morphology, and distal epiphyseal morphology, the specimen falls clearly and consistently with European early modern humans and not with Neandertals. Along with the other Vogelherd human remains, the Vogelherd humerus represents an unequivocal association between the Aurignacian and modern human morphology in Europe.  相似文献   

6.
The ramus of Neandertal mandibles is said to show a suite of uniquely Neandertal character states that demonstrate the independent course of Neandertal evolution. This is the latest of numerous attempts to define cranial and mandibular autapomorphies for Neandertals. We examine variation in the four presumably autapomorphic ramal features and show they are neither monomorhic within Neandertals (to the contrary Neandertals are at least as variable as other human samples) nor unique to Neandertals, since they regularly appear in populations predating and postdating them. Neandertals differ from other human populations, both contemporary and recent, but the question of whether this fact reflects a divergent evolutionary trajectory must be addressed by the pattern of differences. In this case, as in the other attempts to establish Neandertal autapomorphies, rather than showing restricted variation and increased specialization, the Neandertal sample shows that the range of human variation in the recent past encompasses, and in some cases exceeds, human variation today, even in the very features claimed to be autapomorphic.  相似文献   

7.
Mechanical interpretations of Neandertal skeletal robusticity suggest extremely high activity levels compared to modern humans. Such activity patterns imply high energy requirements; yet it has been argued that Neandertals were also inefficient foragers. The present study addresses this apparent conflict by estimating energy needs in Neandertals and then evaluating those estimates in the context of energetic and foraging data compiled for contemporary human foragers and nonhuman primates. Energy demands for Neandertals were determined by first predicting basal metabolic rates (BMR) from body weight estimates using human standards developed by the World Health Organization [FAO/WHO/UNU (1985) Energy and Protein Requirements. Report of the Joint FAO/WHO/UNU Export Committee, Geneva: WHO]. Total daily energy expenditure (kcal/day) was then estimated assuming high levels of physical activity (i.e., 2--3 x BMR), comparable to those observed among subsistence-level populations today. These estimates of energy requirements (ranging from 3000--5500 kcal/day) were then used to determine Neandertal foraging efficiency assuming (1) minimal survival-level foraging returns, and (2) daily foraging times longer than those observed among any contemporary foraging group and comparable to a nonhuman primate. Even with these extremely conservative parameters, estimates of Neandertal foraging efficiency (approximately 800--1150 kcal/h foraged) were comparable to those observed among living hunter-gatherers. These results indicate that if Neandertals did have heavy activity levels, as implied by their skeletal robusticity, they would have required foraging efficiencies within the range observed among modern groups. Thus, Neandertals could have been either highly active or poor foragers, but they could not have been both.  相似文献   

8.
Previous studies comparing bony labyrinth morphology in geographically‐dispersed samples of Neandertals and modern Homo sapiens (H. sapiens) showed that Neandertals generally have smaller semicircular canals than modern H. sapiens (Hublin et al., 1996 ; Spoor et al., 2003 ; Glantz et al., 2008 ). Here we analyze the morphology of a single group of Neandertal specimens from one locale, the Krapina site, to determine the intraspecific variation in Neandertal semicircular canal sizes. Dimensions of the semicircular canals were collected from computed tomography scans of nine temporal bones. With the rare exception, the dimensions of the semicircular canals in the Krapina sample are similar to those previously reported across a geographically‐dispersed sample of Neandertals, further supporting previous studies that suggest low levels of variation in the semicircular canals for Neandertals. Am J Phys Anthropol 154:302–306, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
10.
Although the Neandertal locomotor system has been shown to differ from Homo sapiens, characteristics of Neandertal entheses, the skeletal attachments for muscles, tendons, ligaments and joint capsules, have never been specifically investigated. Here, we analyse lower limb entheses of the Krapina Neandertal bones (Croatia, 130,000 BP) with the aim of determining how they compare with modern humans, using a standard developed by our research group for describing modern human entheseal variability. The entheses examined are those of the gluteus maximus, iliopsoas and vastus medialis on the femur, the quadriceps tendon on the patella, and soleus on the tibia. For the entheses showing a different morphological pattern from H. sapiens, we discuss the possibility of recognising genetic versus environmental causes. Our results indicate that only the gluteus maximus enthesis (the gluteal tuberosity), falls out of the modern human range of variation. It displays morphological features that could imply histological differences from modern humans, in particular the presence of fibrocartilage. In both H. sapiens and the Krapina Neandertals, the morphological pattern of this enthesis is the same in adult and immature femurs. These results can be interpreted in light of genetic differences between the two hominins. The possibility of functional adaptations to higher levels of mechanical load during life in the Neandertals seems less likely. The particular morphology and large dimensions of the Krapina enthesis, and perhaps its fibrocartilaginous nature, could have been selected for in association with other pelvic and lower limb characteristics, even if genetic drift cannot be ruled out.  相似文献   

11.
The formation of lateral enamel in Neandertal anterior teeth has been the subject of recent studies. When compared to the anterior teeth of modern humans from diverse regions (Point Hope, Alaska; Newcastle upon Tyne, England; southern Africa), Neandertal anterior teeth appear to fall within the modern human range of variation for lateral enamel formation time. However, the lateral enamel growth curves of Neandertals are more linear than those of these modern human samples. Other researchers have found that the lateral enamel growth curves of Neandertals are more linear than those of Upper Paleolithic and Mesolithic modern humans as well. The statistical significance of this apparent difference between Neandertal and modern human lateral enamel growth curves is analyzed here. The more linear Neandertal enamel growth curves result from the smaller percentage of total perikymata located in the cervical halves of their teeth. The percentage of total perikymata in the cervical halves of teeth is therefore compared between the Neandertal sample (n=56 teeth) and each modern human population sample: Inuit (n=65 teeth), southern African (n=114 teeth), and northern European (n=115 teeth). There are 18 such comparisons (6 tooth types, Neandertals vs. each of the three modern human populations). Eighteen additional comparisons are made among the modern human population samples. Statistically significant differences are found for 16 of the 18 Neandertal vs. modern human comparisons but for only two of the 18 modern human comparisons. Statistical analyses repeated for subsamples of less worn teeth show a similar pattern. Because surface curvature is thought to affect perikymata spacing, we also conducted measurements to assess surface curvature in thirty teeth. Our analysis shows that surface curvature is not a factor in this lateral enamel growth difference between Neandertals and modern humans.  相似文献   

12.
Previous studies have suggested that Neandertals experienced greater physiological stress and/or were less capable of mitigating stress than most prehistoric modern human populations. The current study compares estimates of dental fluctuating asymmetry (DFA) for prehistoric Inupiat from Point Hope Alaska, the Late Archaic, and Protohistoric periods from Ohio and West Virginia, and a modern sample from Ohio to Neandertals from Europe and Southwest Asia. DFA results from developmental perturbation during crown formation and is thus an indicator of developmental stress, which previous studies have found to be higher in Neandertals than in several modern human populations. Here, we use recent methodological improvements in the analysis of fluctuating asymmetry suggested by Palmer and Strobeck (Annu Rev Ecol Syst 17 ( 1986 ) 391–421, Developmental instability: causes and consequences ( 2003a ) v.1–v.36, Developmental instability: causes and consequences ( 2003b ) 279–319) and compare the fit of Neandertal DFA Index values with those of modern humans. DFA estimates for each of the modern population samples exceeded measurement error, with the Inupiat exhibiting the highest levels of DFA for most tooth positions. All significant Neandertal z‐scores were positive, exceeding the estimates for each of the modern prehistoric groups. Neandertals exhibited the fewest significant differences from the Inupiat (9.2% of values are significant at P < 0.05), while for the other modern prehistoric groups more than 10% of the Neandertal z‐scores are significant at P < 0.05, more than 90% of these significant scores at P < 0.01. These results suggest that the Inupiat experienced greater developmental stress than the other prehistoric population samples, and that Neandertals were under greater developmental stress than all other prehistoric modern human samples. Am J Phys Anthropol 149:193–204, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Since its discovery in southeastern Uzbekistan in 1938, the Teshik-Tash child has been considered a Neandertal. Its affinity is important to studies of Late Pleistocene hominin growth and development as well as interpretations of the Central Asian Middle Paleolithic and the geographic distribution of Neandertals. A close examination of the original Russian monograph reveals the incompleteness of key morphologies associated with the cranial base and face and problems with the reconstruction of the Teshik-Tash cranium, making its Neandertal attribution less certain than previously assumed. This study reassesses the Neandertal status of Teshik-Tash 1 by comparing it to a sample of Neandertal, Middle and Upper Paleolithic modern humans, and recent human sub-adults. Separate examinations of the cranium and mandible are conducted using multinomial logistic regression and discriminant function analysis to assess group membership. Results of the cranial analysis group Teshik-Tash with Upper Paleolithic modern humans when variables are not size-standardized, while results of the mandibular analysis place the specimen with recent modern humans for both raw and size-standardized data. Although these results are influenced by limitations related to the incomplete nature of the comparative sample, they suggest that the morphology of Teshik-Tash 1 as expressed in craniometrics is equivocal. Although, further quantitative studies as well as additional sub-adult fossil finds from this region are needed to ascertain the morphological pattern of this specimen specifically, and Central Asian Middle Paleolithic hominins in general, these results challenge current characterizations of this territory as the eastern boundary of the Neandertal range during the Late Pleistocene.  相似文献   

14.
The late Neandertal sample from Vindija (Croatia) has been described as transitional between the earlier Central European Neandertals from Krapina (Croatia) and modern humans. However, the morphological differences indicating this transition may rather be the result of different sex and/or age compositions between the samples. This study tests the hypothesis that the metric differences between the Krapina and Vindija mandibular samples are due to sample bias. Mandibles are the focus of this paper because past studies have posited this region as particularly indicative of the Vindija sample's transitional nature. The results indicate that the metric differences between the Krapina and Vindija mandibular samples are not due to sample bias. This conclusion is consistent with an earlier analysis of sample bias for the Vindija supraorbital sample.  相似文献   

15.
As a dental indicator of generalized physiological stress, enamel hypoplasia has been the subject of several Neandertal studies. While previous studies generally have found high frequencies of enamel hypoplasia in Neandertals, the significance of this finding varies with frequencies of enamel hypoplasia in comparative samples. The present investigation was undertaken to ascertain if the enamel hypoplasia evidence in Neandertals suggests a high level of physiological stress relative to a modern human foraging group, represented here by an archaeological sample of Inuit from Point Hope, Alaska. Unlike previous studies, this study focused specifically on linear enamel hypoplasia (LEH), emphasizing systemic over localized causes of this defect by considering LEH to be present in an individual only if LEH defects occur on two anterior teeth with overlapping crown formation periods. Moreover, this study is the first to evaluate the average growth disruption duration represented by these defects in Neandertals and a comparative foraging group. In the prevalence analysis, 7/18 Neandertal individuals (from Krapina and southern France) and 21/56 Neandertal anterior teeth were affected by LEH, or 38.9% and 37.5% respectively. These values do not differ significantly from those of the Inuit sample in which 8/21, or 38.1% of individuals, and 32/111, or 28.8% of anterior teeth were affected. For the growth disruption duration analysis, 22 defects representing separate episodes of growth disruption in Neandertals were compared with 22 defects in the Inuit group using three indicators of duration: the number of perikymata (growth increments) in the occlusal walls of LEH defects, the total number of perikymata within them, and defect width. Only one indicator, the total number of perikymata within defects, differed significantly between the Inuit and Neandertal groups (an average of 13.4 vs. 7.3 perikymata), suggesting that if there is any difference between them, the Inuit defects may actually represent longer growth disruptions than the Neandertal defects. Thus, while stress indicators other than linear enamel hypoplasia may eventually show that Neandertal populations were more stressed than those of modern foragers, the evidence from linear enamel hypoplasia does not lend support to this idea.  相似文献   

16.
No evidence of Neandertal mtDNA contribution to early modern humans   总被引:2,自引:1,他引:1  
The retrieval of mitochondrial DNA (mtDNA) sequences from four Neandertal fossils from Germany, Russia, and Croatia has demonstrated that these individuals carried closely related mtDNAs that are not found among current humans. However, these results do not definitively resolve the question of a possible Neandertal contribution to the gene pool of modern humans since such a contribution might have been erased by genetic drift or by the continuous influx of modern human DNA into the Neandertal gene pool. A further concern is that if some Neandertals carried mtDNA sequences similar to contemporaneous humans, such sequences may be erroneously regarded as modern contaminations when retrieved from fossils. Here we address these issues by the analysis of 24 Neandertal and 40 early modern human remains. The biomolecular preservation of four Neandertals and of five early modern humans was good enough to suggest the preservation of DNA. All four Neandertals yielded mtDNA sequences similar to those previously determined from Neandertal individuals, whereas none of the five early modern humans contained such mtDNA sequences. In combination with current mtDNA data, this excludes any large genetic contribution by Neandertals to early modern humans, but does not rule out the possibility of a smaller contribution.  相似文献   

17.
The Mezmaiskaya cave mtDNA is similar in many ways to the Feldhofer cave Neandertal sequence and the more recently obtained Vindija cave sequence. If we accept the contention that the Mezmaiskaya cave specimen is a Neandertal infant, its mtDNA provides no new information about the fate of the European Neandertals. However, there is reason to believe that the Mezmaiskaya cave infant is not a Neandertal, and this places its importance in another light, because it delimits the possible hypotheses of Neandertal and recent human genetic relationships. One possibility is a that the pattern found in ancient mtDNA results from the replacement of an isolated gene pool (Neandertals) by one of its contemporaries (modern humans). A second possibility is natural selection expressed as the substitution of an advantageous mtDNA variant within a single large species, including both Neandertals and modern humans. The geologic, archaeological, and dating evidence shows the Mezmaiskaya cave infant to be a burial from a level even more recent than the Upper Paleolithic preserved at the site, and its anatomy does not contradict the assessment that the Mezmaiskaya cave infant is not a Neandertal. Therefore, the second pattern can be favored over the first.  相似文献   

18.
Most evolutionary explanations for cranial differences between Neandertals and modern humans emphasize adaptation by natural selection. Features of the crania of Neandertals could be adaptations to the glacial climate of Pleistocene Europe or to the high mechanical strains produced by habitually using the front teeth as tools, while those of modern humans could be adaptations for articulate speech production. A few researchers have proposed non-adaptive explanations. These stress that isolation between Neandertal and modern human populations would have lead to cranial diversification by genetic drift (chance changes in the frequencies of alleles at genetic loci contributing to variation in cranial morphology). Here we use a variety of statistical tests founded on explicit predictions from quantitative- and population-genetic theory to show that genetic drift can explain cranial differences between Neandertals and modern humans. These tests are based on thirty-seven standard cranial measurements from a sample of 2524 modern humans from 30 populations and 20 Neandertal fossils. As a further test, we compare our results for modern human cranial measurements with those for a genetic dataset consisting of 377 microsatellites typed for a sample of 1056 modern humans from 52 populations. We conclude that rather than requiring special adaptive accounts, Neandertal and modern human crania may simply represent two outcomes from a vast space of random evolutionary possibilities.  相似文献   

19.
20.
Two hypotheses, based on previous work on Neandertal anterior and premolar teeth, are investigated here: (1) that estimated molar lateral enamel formation times in Neandertals are likely to fall within the range of modern human population variation, and (2) that perikymata (lateral enamel growth increments) are distributed across cervical and occlusal halves of the crown differently in Neandertals than they are in modern humans. To investigate these hypotheses, total perikymata numbers and the distribution of perikymata across deciles of crown height were compared for Neandertal, northern European, and southern African upper molar mesiobuccal (mb) cusps, lower molar mesiobuccal cusps, and the lower first molar distobuccal (db) cusp. Sample sizes range from five (Neandertal M(1)db) to 29 (southern African M(1)mb). Neandertal mean perikymata numbers were found to differ significantly from those of both modern human samples (with the Neandertal mean higher) only for the M(2)mb. Regression analysis suggests that, with the exception of the M(2)mb, the hypothesis of equivalence between Neandertal and modern human lateral enamel formation time cannot be rejected. For the M(2)mb, regression analysis strongly suggests that this cusp took longer to form in the Neandertal sample than it did in the southern African sample. Plots of perikymata numbers across deciles of crown height demonstrate that Neandertal perikymata are distributed more evenly across the cervical and occlusal halves of molar crowns than they are in the modern human samples. These results are integrated into a discussion of Neandertal and modern human lateral enamel formation across the dentition, with reference to issues of life history and enamel growth processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号