首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
To permit conditional gene targeting of floxed alleles in steroidogenic cell-types we have generated a transgenic mouse line that expresses Cre Recombinase under the regulation of the endogenous Cytochrome P450 side chain cleavage enzyme (Cyp11a1) promoter. Mice Carrying the Cyp11a1-GC (GFP-Cre) allele express Cre Recombinase in fetal adrenal and testis, and adrenal cortex, testicular Leydig cells (and a small proportion of Sertoli cells), theca cells of the ovary, and the hindbrain in postnatal life. Circulating testosterone concentration is unchanged in Cyp11+/GC males, suggesting steroidogenesis is unaffected by loss of one allele of Cyp11a1, mice are grossly normal, and Cre Recombinase functions to recombine floxed alleles of both a YFP reporter gene and the Androgen Receptor (AR) in steroidogenic cells of the testis, ovary, adrenal and hindbrain. Additionally, when bred to homozygosity (Cyp11a1GC/GC), knock-in of GFP-Cre to the endogenous Cyp11a1 locus results in a novel mouse model lacking endogenous Cyp11a1 (P450-SCC) function. This unique dual-purpose model has utility both for those wishing to conditionally target genes within steroidogenic cell types and for studies requiring mice lacking endogenous steroid hormone production.  相似文献   

3.
To determine the role of each estrogen receptor (ER) form (ERalpha, ERbeta) in mediating the estrogen actions necessary to maintain proper function of the hypothalamic-pituitary-gonadal axis, we have characterized the hypothalamic-pituitary-gonadal axis in female ER knockout (ERKO) mice. Evaluation of pituitary function included gene expression assays for Gnrhr, Cga, Lhb, Fshb, and Prl. Evaluation of ovarian steroidogenic capacity included gene expression assays for the components necessary for estradiol synthesis: i.e. Star, Cyp11a, Cyp17, Cyp19, Hsd3b1, and Hsd17b1. These data were corroborated by assessing plasma levels of the respective peptide and steroid hormones. alphaERKO and alphabetaERKO females exhibited increased pituitary Cga and Lhb expression and increased plasma LH levels, whereas both were normal in betaERKO. Pituitary Fshb expression and plasma FSH were normal in all three ERKOs. In the ovary, all three ERKOs exhibited normal expression of Star, Cyp11a, and Hsd3b1. In contrast, Cyp17 and Cyp19 expression were elevated in alphaERKO but normal in betaERKO and alphabetaERKO. Plasma steroid levels in each ERKO mirrored the steroidogenic enzyme expression, with only the alphaERKO exhibiting elevated androstenedione and estradiol. Elevated plasma testosterone in alphaERKO and alphabetaERKO females was attributable to aberrant expression of Hsd17b3 in the ovary, representing a form of endocrine sex reversal, as this enzyme is unique to the testes. Enhanced steroidogenic capacity in alphaERKO ovaries was erased by treatment with a GnRH antagonist, indicating these phenotypes to be the indirect result of excess LH stimulation that follows the loss of ERalpha in the hypothalamic-pituitary axis. Overall, these findings indicate that ERalpha, but not ERbeta, is indispensable to the negative-feedback effects of estradiol that maintain proper LH secretion from the pituitary. The subsequent hypergonadism is illustrated as increased Cyp17, Cyp19, Hsd17b1, and ectopic Hsd17b3 expression in the ovary.  相似文献   

4.
Vitamin K (K) is an essential factor for the posttranslational modification of blood coagulation factors as well as proteins in the bone matrix (Gla proteins). It is known that K is not only distributed in the liver and bones but also abundantly distributed in the brain, kidney, and gonadal tissues. However, the role of K in these tissues is not well clarified. In this study, we used DNA microarray and identified the genes whose expression was affected in the testis under the K-deficient (K-def) state. The expression of genes involved in the biosynthesis of cholesterol and steroid hormones was decreased in the K-def group. The mRNA levels of Cyp11a - a rate-limiting enzyme in testosterone synthesis - positively correlated with the menaquinone-4 (MK-4) concentration in the testis. Moreover, as compared to the control (Cont) and K-supplemented (K-sup) groups, the K-def group had decreased testosterone concentrations in the plasma and testis. These results suggested that K is involved in steroid production in the testis through the regulation of Cyp11a.  相似文献   

5.
Steroidogenic cells of the adrenal and gonad are thought to be derived from a common primordium that divides into separate tissues during embryogenesis. In this paper, we show that cells with mixed adrenal and Leydig cell properties are found dispersed in the insterstitium of the embryonic and adult mouse testis. They express the adrenal markers Cyp11b1 and Cyp21 and respond to ACTH. Consistent with these properties, we show that the embryonic testis produces the adrenal steroid corticosterone. These cells also express Cyp17 and respond to hCG stimulation but do not express the Leydig specific marker Insl3 showing that they are a population of steroidogenic cells distinct from Leydig cells. Based on their properties, we refer to these cells as adrenal-like cells of the testis and propose that they are the mouse equivalent of the precursors of human adrenal rests, tumors found primarily in male patients with congenital adrenal hyperplasia. Organ culture studies show that ACTH-responsive cells are present at the gonad/mesonephros border and seem to migrate into the XY but not the XX gonad during development. Consistent with this, using transgenic Cyp11a1 reporter mice, we definitively show that steroidogenic cells can migrate from the mesonephros into the XY gonad. We also show that the region between the mesonephros and the gonad harbors steroidogenic cell precursors that are repressed by the presence of the mesonephros. We propose that this region is the source of the adrenal-like cells that migrate into the testis as it develops and are activated when Leydig cells differentiate. These studies reveal the complex nature of steroidogenic cell differentiation during urogenital development.  相似文献   

6.
Hormone-sensitive lipase (HSL) hydrolyse acylglycerols, cholesteryl and retinyl esters. HSL is a key lipase in mice testis, as HSL deficiency results in male sterility. The present work study the effects of the deficiency and lack of HSL on the localization and expression of SR-BI, LDLr, and ABCA1 receptors/transporters involved in uptake and efflux of cholesterol in mice testis, to determine the impact of HSL gene dosage on testis morphology, lipid homeostasis and fertility. The results of this work show that the lack of HSL in mice alters testis morphology and spermatogenesis, decreasing sperm counts, sperm motility and increasing the amount of Leydig cells and lipid droplets. They also show that there are differences in the localization of HSL, SR-BI, LDLr and ABCA1 in HSL+/+, HSL+/− and HSL−/− mice. The deficiency or lack of HSL has effects on protein and mRNA expression of genes involved in lipid metabolisms in mouse testis. HSL−/− testis have augmented expression of SR-BI, LDLr, ABCA1 and LXRβ, a critical sterol sensor that regulate multiple genes involved in lipid metabolism; whereas LDLr expression decreased in HSL+/− mice. Plin2, Abca1 and Ldlr mRNA levels increased; and LXRα (Nr1h3) and LXRβ (Nr1h2) decreased in testis from HSL−/− compared with HSL+/+; with no differences in Scarb1. Together these data suggest that HSL deficiency or lack in mice testis induces lipid homeostasis alterations that affect the cellular localization and expression of key receptors/transporter involved in cellular cholesterol uptake and efflux (SR-BI, LDRr, ABCA1); alters normal cellular function and impact fertility.  相似文献   

7.
The mechanism(s) by which vitamin D(3) regulates female reproduction is minimally understood. We tested the hypothesis that peripubertal vitamin D(3) deficiency disrupts hypothalamic-pituitary-ovarian physiology. To test this hypothesis, we used wild-type mice and Cyp27b1 (the rate-limiting enzyme in the synthesis of 1,25-dihydroxyvitamin D(3)) null mice to study the effect of vitamin D(3) deficiency on puberty and reproductive physiology. At the time of weaning, mice were randomized to a vitamin D(3)-replete or -deficient diet supplemented with calcium. We assessed the age of vaginal opening and first estrus (puberty markers), gonadotropin levels, ovarian histology, ovarian responsiveness to exogenous gonadotropins, and estrous cyclicity. Peripubertal vitamin D(3) deficiency significantly delayed vaginal opening without affecting the number of GnRH-immunopositive neurons or estradiol-negative feedback on gonadotropin levels during diestrus. Young adult females maintained on a vitamin D(3)-deficient diet after puberty had arrested follicular development and prolonged estrous cycles characterized by extended periods of diestrus. Ovaries of vitamin D(3)-deficient Cyp27b1 null mice responded to exogenous gonadotropins and deposited significantly more oocytes into the oviducts than mice maintained on a vitamin D(3)-replete diet. Estrous cycles were restored when vitamin D(3)-deficient Cyp27b1 null young adult females were transferred to a vitamin D(3)-replete diet. This study is the first to demonstrate that peripubertal vitamin D(3) sufficiency is important for an appropriately timed pubertal transition and maintenance of normal female reproductive physiology. These data suggest vitamin D(3) is a key regulator of neuroendocrine and ovarian physiology.  相似文献   

8.
Although important factors governing the meiosis have been reported in the embryonic ovary, meiosis in postnatal testis remains poorly understood. Herein, we first report that SRY‐box 30 (Sox30) is an age‐related and essential regulator of meiosis in the postnatal testis. Sox30‐null mice exhibited uniquely impaired testis, presenting the abnormal arrest of germ‐cell differentiation and irregular Leydig cell proliferation. In aged Sox30‐null mice, the observed testicular impairments were more severe. Furthermore, the germ‐cell arrest occurred at the stage of meiotic zygotene spermatocytes, which is strongly associated with critical regulators of meiosis (such as Cyp26b1, Stra8 and Rec8) and sex differentiation (such as Rspo1, Foxl2, Sox9, Wnt4 and Ctnnb1). Mechanistically, Sox30 can activate Stra8 and Rec8, and inhibit Cyp26b1 and Ctnnb1 by direct binding to their promoters. A different Sox30 domain required for regulating the activity of these gene promoters, providing a “fail‐safe” mechanism for Sox30 to facilitate germ‐cell differentiation. Indeed, retinoic acid levels were reduced owing to increased degradation following the elevation of Cyp26b1 in Sox30‐null testes. Re‐expression of Sox30 in Sox30‐null mice successfully restored germ‐cell meiosis, differentiation and Leydig cell proliferation. Moreover, the restoration of actual fertility appeared to improve over time. Consistently, Rec8 and Stra8 were reactivated, and Cyp26b1 and Ctnnb1 were reinhibited in the restored testes. In summary, Sox30 is necessary, sufficient and age‐associated for germ‐cell meiosis and differentiation in testes by direct regulating critical regulators. This study advances our understanding of the regulation of germ‐cell meiosis and differentiation in the postnatal testis.  相似文献   

9.
Berberine, an isoquinoline alkaloid isolated from medicinal plants such as Berberis aristata, Coptis chinesis, Coptis japonica, Coscinium fenestatun, and Hydrastis Canadensis, is widely used in Asian countries for the treatment of diabetes, hypertension, and hypercholesterolemia. Interaction between berberine and the cytochrome P450 enzymes (CYPs) has been extensively reported, but there are only a few reports of this interaction in the diabetic state. In this study, the effect of berberine on the mRNA of the CYPs in primary mouse hepatocytes and in streptozotocin (STZ)-induced diabetic mice was investigated. In primary mouse hepatocytes, berberine suppressed the induction of Cyp1a1, Cyp1a2, Cyp2e1, Cyp3a11, Cyp4a10, and Cyp4a14 mRNA expression by their prototypical inducers in a concentration-dependent fashion. However, berberine treatment alone increased the expression of Cyp2b9 and Cyp2b10 mRNA. In vivo, berberine showed the same hypoglycemic activity as metformin, an established hypoglycemic drug. The hepatic mRNA levels of Cyp1a1, Cyp2b9, Cyp2b10, Cyp3a11, Cyp4a10, and Cyp4a14 were increased in STZ-induced diabetic mice. Interestingly, berberine itself suppressed the expression of Cyp2e1, an adverse hepatic event-associated enzyme, while the expression of Cyp3a11, Cyp4a10, and Cyp4a14 were restored to normal levels by berberine. In conclusion, berberine has the potential to modify the expression of CYPs by either suppression or enhancement of CYPs' levels. Consumption of berberine as an anti-hyperglycemic compound by diabetic patients might provide an extra benefit due to its potential to restore the expression of Cyp2e1, Cyp3a, and Cyp4a to normal levels. However, an herb-drug interaction might be of concern since any berberine-containing product would definitely cause pronounced interactions based on CYP3A4 inhibition.  相似文献   

10.
11.
Crad3 (cis-retinol/androgen dehydrogenase 3), a short-chain dehydrogenase/reductase, converts 9-cis-retinol into 9-cis-retinal and 3alpha-androstanediol into dihydrotestosterone. Crad3 may serve in biosynthesis of 9-cis-retinoic acid, a putative RXR ligand, and/or regeneration of potent androgens. RT-PCR showed that expression of the gene that encodes Crad3, rdh9, begins in liver by e11.5, and in kidney, testis, brain and intestine during e15.5-e16.5. In situ hybridization showed rdh9 expression in embryonic liver, ganglia, small intestine, lung, skin and vertebral cartilage. In adult, in situ hybridization revealed rdh9 expression intensely in hepatocytes, weakly in kidney glomerulus, and intensely in collecting tubules. In intestine, undifferentiated epithelia had greater expression than differentiated epithelia at the distal villus end. Testes expressed rdh9 in spermatogonia, and weakly in Leydig cells. Adult brain expressed rdh9 in the dentate gyrus and CA regions of the hippocampus, the cerebellum Purkinje cells, and the glomerular and mitral cell layers of the olfactory bulb. Rdh9-null mice, backcrossed against C57BL/6J mice, were born in Mendelian frequency, were healthy and fertile, and had normal tissue retinoid and serum dihydrotestosterone levels. Expression of rdh1, a gene that encodes an efficient retinol dehydrogenase, decreased 3- to 8-fold in rdh9-null mice, depending on dietary vitamin A. Microarray analysis and quantitative PCR revealed 2- to 4-fold increases in mRNA of enzymes that catalyze xenobiotic and steroid metabolism, including Cyp2, Cyp3, 11beta-hydroxysteroid dehydrogenase type 2, and 17beta-hydroxsteroid dehydrogenases types 4 and 5. These data indicate widespread Crad3 function(s) in steroid and/or retinoid metabolism starting mid embryogenesis.  相似文献   

12.
The bile salt export pump (BSEP/Bsep; gene symbol ABCB11/Abcb11) translocates bile salts across the hepatocyte canalicular membrane into bile in humans and mice. In humans, mutations in the ABCB11 gene cause a severe childhood liver disease known as progressive familial intrahepatic cholestasis type 2. Targeted inactivation of mouse Bsep produces milder persistent cholestasis due to detoxification of bile acids through hydroxylation and alternative transport pathways. The purpose of the present study was to determine whether functional expression of hepatic cytochrome P450 (CYP) and microsomal epoxide hydrolase (mEH) is altered by Bsep inactivation in mice and whether bile acids regulate CYP and mEH expression in Bsep ?/? mice. CYP expression was determined by measuring protein levels of Cyp2b, Cyp2c and Cyp3a enzymes and CYP-mediated activities including lithocholic acid hydroxylation, testosterone hydroxylation and alkoxyresorufin O-dealkylation in hepatic microsomes prepared from female and male Bsep ?/? mice fed a normal or cholic acid (CA)-enriched diet. The results indicated that hepatic lithocholic acid hydroxylation was catalyzed by Cyp3a/Cyp3a11 enzymes in Bsep ?/? mice and that 3-ketocholanoic acid and murideoxycholic acid were major metabolites. CA feeding of Bsep ?/? mice increased hepatic Cyp3a11 protein levels and Cyp3a11-mediated testosterone 2β-, 6β-, and 15β-hydroxylation activities, increased Cyp2b10 protein levels and Cyp2b10-mediated benzyloxyresorufin O-debenzylation activity, and elevated Cyp2c29 and mEH protein levels. We propose that bile acids upregulate expression of hepatic Cyp3a11, Cyp2b10, Cyp2c29 and mEH in Bsep ?/? mice and that Cyp3a11 and multidrug resistance-1 P-glycoproteins (Mdr1a/1b) are vital components of two distinct pathways utilized by mouse hepatocytes to expel bile acids.  相似文献   

13.
The cytochrome P450 (CYP) genes Cyp51, Cyp11a1, Cyp17a1, Cyb11b1, Cyp11b2 and Cyp21a1 are involved in the adrenal production of corticosteroids, whose circulating levels are circadian. cAMP signaling plays an important role in adrenal steroidogenesis. By using cAMP responsive element modulator (Crem) knockout mice, we show that CREM isoforms contribute to circadian expression of steroidogenic CYPs in the mouse adrenal gland. Most striking was the CREM-dependent hypomethylation of the Cyp17a1 promoter at zeitgeber time 12, which resulted in higher Cyp17a1 mRNA and protein expression in the knockout adrenal glands. The data indicate that products of the Crem gene control the epigenetic repression of Cyp17 in mouse adrenal glands.  相似文献   

14.
15.
16.
17.
18.
19.
Farnesoid X receptor knockout (Fxr(-/-)) mice cannot upregulate the bile salt export pump in bile acid loading or cholestatic conditions. To investigate whether Fxr(-/-) mice differ in bile acid detoxification compared with wild-type mice, we performed a comprehensive analysis of bile acids extracted from liver, bile, serum, and urine of naive and common bile duct-ligated wild-type and Fxr(-/-) mice using electrospray and gas chromatography mass spectrometry. In addition, hepatic and renal gene expression levels of Cyp2b10 and Cyp3a11, and protein expression levels of putative renal bile acid-transporting proteins, were investigated. We found significantly enhanced hepatic bile acid hydroxylation in Fxr(-/-) mice, in particular hydroxylations of cholic acid in the 1beta, 2beta, 4beta, 6alpha, 6beta, 22, or 23 position and a significantly enhanced excretion of these metabolites in urine. The gene expression level of Cyp3a11 was increased in the liver of Fxr(-/-) mice, whereas the protein expression levels of multidrug resistance-related protein 4 (Mrp4) were increased in kidneys of both genotypes during common bile duct ligation. In conclusion, Fxr(-/-) mice detoxify accumulating bile acids in the liver by enhanced hydroxylation reactions probably catalyzed by Cyp3a11. The metabolites formed were excreted into urine, most likely with the participation of Mrp4.  相似文献   

20.
In mutant mice, reduced levels of Klotho promoted high levels of active vitamin D in the serum. Genetic or dietary manipulations that diminished active vitamin D alleviated aging‐related phenotypes caused by Klotho down‐regulation. The hypomorphic Klotho [kl/kl] allele that decreases Klotho expression in C3H, BALB/c, 129, and C57BL/6 genetic backgrounds substantially increases 1,25(OH)2D3 levels in the sera of susceptible C3H, BALB/c, and 129, but not C57BL/6 mice. This may be attributed to increased basal expression of Cyp24a1 in C57BL/6 mice, which promotes inactivation of 1,25(OH)2D3. Decreased expression of Cyp24a1 in susceptible strains was associated with genetic alterations in noncoding regions of Cyp24a1 gene, which were strongly reminiscent of super‐enhancers that regulate gene expression. These observations suggest that higher basal expression of an enzyme required for catabolizing vitamin D renders B6‐kl/kl mice less susceptible to changes in Klotho expression, providing a plausible explanation for the lack of aging phenotypes on C57BL/6 strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号