首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mammalian cells scavenger receptor class B, type I (SR-BI), mediates the selective uptake of high density lipoprotein (HDL) cholesteryl ester into hepatic and steroidogenic cells. In addition, SR-BI has a variety of effects on plasma membrane properties including stimulation of the bidirectional flux of free cholesterol (FC) between cells and HDL and changes in the organization of plasma membrane FC as indicated by increased susceptibility to exogenous cholesterol oxidase. Recent studies in SR-BI-deficient mice and in SR-BI-expressing Sf9 insect cells showed that SR-BI has significant effects on plasma membrane ultrastructure. The present study was designed to test the range of SR-BI effects in Sf9 insect cells that typically have very low cholesterol content and a different phospholipid profile compared with mammalian cells. The results showed that, as in mammalian cells, SR-BI expression increased HDL cholesteryl ester selective uptake, cellular cholesterol mass, FC efflux to HDL, and the sensitivity of membrane FC to cholesterol oxidase. These activities were diminished or absent upon expression of the related scavenger receptor CD36. Thus, SR-BI has fundamental effects on cholesterol flux and membrane properties that occur in cells of evolutionarily divergent origins. Profiling of phospholipid species by electrospray ionization mass spectrometry showed that scavenger receptor expression led to the accumulation of phosphatidylcholine species with longer mono- or polyunsaturated acyl chains. These changes would be expected to decrease phosphatidylcholine/cholesterol interactions and thereby enhance cholesterol desorption from the membrane. Scavenger receptor-mediated changes in membrane phosphatidylcholine may contribute to the increased flux of cholesterol and other lipids elicited by these receptors.  相似文献   

2.
3.
Scavenger receptor BI (SR-BI) mediates the selective uptake of high-density lipoprotein (HDL) cholesteryl ester (CE), a process by which HDL CE is taken into the cell without degradation of the HDL particle. In addition, SR-BI stimulates the bi-directional flux of free cholesterol (FC) between cells and lipoproteins, an activity that may be responsible for net cholesterol efflux from peripheral cells as well as the rapid hepatic clearance of FC from plasma HDL. SR-BI also increases cellular cholesterol mass and alters cholesterol distribution in plasma membrane domains as judged by the enhanced sensitivity of membrane cholesterol to extracellular cholesterol oxidase. In contrast, CD36, a closely related class B scavenger receptor, has none of these activities despite binding HDL with high affinity. In the present study, analyses of chimeric SR-BI/CD36 receptors and domain-deleted SR-BI have been used to test the various domains of SR-BI for functional activities related to HDL CE selective uptake, bi-directional FC flux, and the alteration of membrane cholesterol mass and distribution. The results show that each of these activities localizes to the extracellular domain of SR-BI. The N-terminal cytoplasmic tail and transmembrane domains appear to play no role in these activities other than targeting the receptor to the plasma membrane. The C-terminal tail of SR-BI is dispensable for activity as well for targeting to the plasma membrane. Thus, multiple distinct functional activities are localized to the SR-BI extracellular domain.  相似文献   

4.
The clearance of free cholesterol from plasma lipoproteins by tissues is of major quantitative importance, but it is not known whether this is passive or receptor-mediated. Based on our finding that scavenger receptor BI (SR-BI) promotes free cholesterol (FC) exchange between high density lipoprotein (HDL) and cells, we tested whether SR-BI would effect FC movement in vivo using [(14)C]FC- and [(3)H]cholesteryl ester (CE)-labeled HDL in mice with increased (SR-BI transgenic (Tg)) or decreased (SR-BI attenuated (att)) hepatic SR-BI expression. The initial clearance of HDL FC was increased in SR-BI Tg mice by 72% and decreased in SR-BI att mice by 53%, but was unchanged in apoA-I knockout mice compared with wild-type mice. Transfer of FC to non-HDL and esterification of FC were minor and could not explain differences. The hepatic uptake of FC was increased in SR-BI Tg mice by 34% and decreased in SR-BI att mice by 22%. CE clearance and uptake gave similar results, but with much slower rates. The uptake of HDL FC and CE by SR-BI Tg primary hepatocytes was increased by 2.2- and 2.6-fold (1-h incubation), respectively, compared with control hepatocytes. In SR-BI Tg mice, the initial biliary secretion of [(14)C]FC was markedly increased, whereas increased [(3)H]FC appeared after a slight delay. Thus, in the mouse, a major portion of the clearance of HDL FC from plasma is mediated by SR-BI.  相似文献   

5.
This study compares the roles of ABCG1 and scavenger receptor class B type I (SR-BI) singly or together in promoting net cellular cholesterol efflux to plasma HDL containing active LCAT. In transfected cells, SR-BI promoted free cholesterol efflux to HDL, but this was offset by an increased uptake of HDL cholesteryl ester (CE) into cells, resulting in no net efflux. Coexpression of SR-BI with ABCG1 inhibited the ABCG1-mediated net cholesterol efflux to HDL, apparently by promoting the reuptake of CE from medium. However, ABCG1-mediated cholesterol efflux was not altered in cholesterol-loaded, SR-BI-deficient (SR-BI(-/-)) macrophages. Briefly cultured macrophages collected from SR-BI(-/-) mice loaded with acetylated LDL in the peritoneal cavity did exhibit reduced efflux to HDL. However, this was attributable to reduced expression of ABCG1 and ABCA1, likely reflecting increased macrophage cholesterol efflux to apolipoprotein E-enriched HDL during loading in SR-BI(-/-) mice. In conclusion, cellular SR-BI does not promote net cholesterol efflux from cells to plasma HDL containing active LCAT as a result of the reuptake of HDL-CE into cells. Previous findings of increased atherosclerosis in mice transplanted with SR-BI(-/-) bone marrow probably cannot be explained by a defect in macrophage cholesterol efflux.  相似文献   

6.
Free cholesterol (FC) has been reported to efflux from cells through caveolae, which are 50-100 nm plasma membrane pits. The 22 kDa protein caveolin-1 is concentrated in caveolae and is required for their formation. The HDL scavenger receptor BI (SR-BI), which stimulates both FC efflux and selective uptake of HDL-derived cholesteryl ester (CE), has been reported to be concentrated in caveolae, suggesting that this localization facilitates flux of FC and CE across the membrane. However, we found that overexpression of caveolin-1 in Fischer rat thyroid (FRT) cells, which lack caveolin-1 and caveolae, or HEK 293 cells, which normally express very low levels of caveolin-1, did not affect FC efflux to HDL or liposomes. Transient expression of SR-B1 did not affect this result. Similarly, caveolin-1 expression did not affect selective uptake of CE from labeled HDL particles in FRT or HEK 293 cells transfected with SR-BI. We conclude that basal and SR-BI-stimulated FC efflux to HDL and liposomes and SR-BI-mediated selective uptake of HDL CE are not affected by caveolin-1 expression in HEK 293 or FRT cells.  相似文献   

7.
In addition to its effect on high density lipoprotein (HDL) cholesteryl ester (CE) uptake, scavenger receptor BI (SR-BI) was recently reported to stimulate free cholesterol (FC) flux from Chinese hamster ovary (CHO) cells stably expressing mouse SR-BI, a novel function of SR-BI that may play a role in cholesterol removal from the vessel wall where the receptor can be found. It is possible that SR-BI stimulates flux simply by tethering acceptor HDL particles in close apposition to the cell surface thereby facilitating the movement of cholesterol between the plasma membrane and HDL. To test this, we used transiently transfected cells and compared the closely related class B scavenger receptors mouse SR-BI and rat CD36 for their ability to stimulate cholesterol efflux as both receptors bind HDL with high affinity. The results showed that, although acceptor binding to SR-BI may contribute to efflux to a modest extent, the major stimulation of FC efflux occurs independently of acceptor binding to cell surface receptors. Instead our data indicate that SR-BI mediates alterations to membrane FC domains which provoke enhanced bidirectional FC flux between cells and extracellular acceptors.  相似文献   

8.
Scavenger receptor (SR)-BI catalyzes the selective uptake of cholesteryl ester (CE) from high density lipoprotein (HDL) by a two-step process that involves the following: 1) binding of HDL to the receptor and 2) diffusion of the CE molecules into the cell plasma membrane. We examined the effects of the size of discoidal HDL particles containing wild-type (WT) apoA-I on selective uptake of CE and efflux of cellular free (unesterified) cholesterol (FC) from COS-7 cells expressing SR-BI to determine the following: 1) the influence of apoA-I conformation on the lipid transfer process, and 2) the contribution of receptor binding-dependent processes to the overall efflux of cellular FC. Large (10 nm diameter) reconstituted HDL bound to SR-BI better (B(max) approximately 420 versus 220 ng of apoA-I/mg cell protein), delivered more CE, and promoted more FC efflux than small ( approximately 8 nm) particles. When normalized to the number of reconstituted HDL particles bound to the receptor, the efficiencies of either CE uptake or FC efflux with these particles were the same indicating that altering the conformation of WT apoA-I modulates binding to the receptor (step 1) but does not change the efficiency of the subsequent lipid transfer (step 2); this implies that binding induces an optimal alignment of the WT apoA-I.SR-BI complex so that the efficiency of lipid transfer is always the same. FC efflux to HDL is affected both by binding of HDL to SR-BI and by the ability of the receptor to perturb the packing of FC molecules in the cell plasma membrane.  相似文献   

9.
Scavenger receptor class B, type I (SR-BI) shows a variety of effects on cellular cholesterol metabolism, including increased selective uptake of high density lipoprotein (HDL) cholesteryl ester, stimulation of free cholesterol (FC) efflux from cells to HDL and phospholipid vesicles, and changes in the distribution of plasma membrane FC as evidenced by increased susceptibility to exogenous cholesterol oxidase. Previous studies showed that these multiple effects require the extracellular domain of SR-BI, but not the transmembrane and cytoplasmic domains. To test whether 1) the extracellular domain of SR-BI mediates multiple activities by virtue of discrete functional subdomains, or 2) the multiple activities are, in fact, secondary to and driven by changes in cholesterol flux, the extracellular domain of SR-BI was subjected to insertional mutagenesis by strategically placing an epitope tag into nine sites. These experiments identified four classes of mutants with disruptions at different levels of function. Class 4 mutants showed a clear separation of function between HDL binding, HDL cholesteryl ester uptake, and HDL-dependent FC efflux on one hand and FC efflux to small unilamellar vesicles and an increased cholesterol oxidase-sensitive pool of membrane FC on the other. Selective disruption of the latter two functions provides evidence for multiple functional subdomains in the extracellular receptor domain. Furthermore, these findings uncover a difference in the SR-BI-mediated efflux pathways for FC transfer to HDL acceptors versus phospholipid vesicles. The loss of the cholesterol oxidase-sensitive FC pool and FC efflux to small unilamellar vesicle acceptors in Class 4 mutants suggests that these activities may be mechanistically related.  相似文献   

10.
The transport of HDL cholesteryl esters (CE) from plasma to the liver involves a direct uptake pathway, mediated by hepatic scavenger receptor B-I (SR-BI), and an indirect pathway, involving the exchange of HDL CE for triglycerides (TG) of TG-rich lipoproteins by cholesteryl ester transfer protein (CETP). We carried out HDL CE turnover studies in mice expressing human CETP and/or human lecithin:cholesterol acyltransferase (LCAT) transgenes on a background of human apoA-I expression. The fractional clearance of HDL CE by the liver was delayed by LCAT transgene, while the CETP transgene increased it. However, there was no incremental transfer of HDL CE radioactivity to the TG-rich lipoprotein fraction in mice expressing CETP, suggesting increased direct removal of HDL CE in the liver. To evaluate the possibility that this might be mediated by SR-BI, HDL isolated from plasma of the different groups of transgenic mice was incubated with SR-BI transfected or control CHO cells. HDL isolated from mice expressing CETP showed a 2- to 4-fold increase in SR-BI-mediated HDL CE uptake, compared to HDL from mice lacking CETP. The addition of pure CETP to HDL in cell culture did not lead to increased selective uptake of HDL CE by cells. However, when human HDL was enriched with TG by incubation with TG-rich lipoproteins in the presence of CETP, then treated with hepatic lipase, there was a significant enhancement of HDL CE uptake. Thus, the remodeling of human HDL by CETP, involving CE;-TG interchange, followed by the action of hepatic lipase (HL), leads to the enhanced uptake of HDL CE by cellular SR-BI.These observations suggest that in animals such as humans in which both the selective uptake and CETP pathways are active, the two pathways could operate in a synergistic fashion to enhance reverse cholesterol transport.  相似文献   

11.
Receptor-mediated trafficking of cholesterol between lipoproteins and cells is a fundamental biological process at the organismal and cellular levels. In contrast to the well-studied pathway of LDL receptor-mediated endocytosis, little is known about the trafficking of high-density lipoprotein (HDL) cholesterol by the HDL receptor, scavenger receptor BI (SR-BI). SR-BI mediates HDL cholesteryl ester uptake in a process in which HDL lipids are selectively transferred to the cell membrane without the uptake and degradation of the HDL particle. We report here the cell surface locale where the trafficking of HDL cholesterol occurs. Fluorescence confocal microscopy showed SR-BI in patches and small extensions of the cell surface that were distinct from sites of caveolin-1 expression. Electron microscopy showed SR-BI in patches or clusters primarily on microvillar extensions of the plasma membrane. The organization of SR-BI in this manner suggests that this microvillar domain is a way station for cholesterol trafficking between HDL and cells. The types of phospholipids in this domain are unknown, but SR-BI is not strongly associated with classical membrane rafts rich in detergent-resistant saturated phospholipids. We speculate that SR-BI is in a more fluid membrane domain that will favor rapid cholesterol flux between the membrane and HDL.  相似文献   

12.
Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high-density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM) that contains the cholesterol esters (CE) of up to ~400000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins, and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E-dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. The uptake of [(3)H]CE by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was 2.4 and 4.5 times faster, respectively, than from control HDL. CERM-[(3)H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[(3)H]CE uptake by both receptors. RAP and heparin inhibit CERM-[(3)H]CE but not HDL-[(3)H]CE uptake, thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases the rate of CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase the level of hepatic disposal of plasma cholesterol in a way that is therapeutically useful.  相似文献   

13.
Papale GA  Hanson PJ  Sahoo D 《Biochemistry》2011,50(28):6245-6254
Scavenger receptor class B type I (SR-BI) binds high-density lipoprotein (HDL) and mediates the selective uptake of cholesteryl esters (CE). Although the extracellular domain of SR-BI is critical for function, the structural characteristics of this region remain elusive. Using sulfhydryl labeling strategies, we report the novel finding that all six cysteine (Cys) residues in the extracellular domain of SR-BI are involved in disulfide bond formation that is intramolecular by nature. We hypothesized that an SR-BI conformation stabilized by extracellular disulfide bonds is a prerequisite for SR-BI-mediated cholesterol transport. Thus, single-Cys mutant SR-BI receptors (C251S-, C280S-, C321S-, C323S-, C334S-, and C384S-SR-BI), as well as Cys-less SR-BI, a mutant SR-BI receptor void of all Cys residues, were created, and plasma membrane localization was confirmed. Functional assays revealed that C280S-, C321S-, C323S-, and C334S-SR-BI and Cys-less SR-BI mutant receptors displayed weakened HDL binding and subsequent selective uptake of HDL-CE. However, only C323S-SR-BI and Cys-less SR-BI were unable to mediate wild-type levels of efflux of free cholesterol (FC) to HDL. None of the Cys mutations disrupted SR-BI's ability to redistribute plasma membrane FC. Taken together, the intramolecular disulfide bonds in the extracellular domain of SR-BI appear to maintain the receptor in a conformation integral to its cholesterol transport functions.  相似文献   

14.
Caveolae are specialized membrane microdomains formed as the result of local accumulation of cholesterol, glycosphingolipids, and the structural protein caveolin-1 (Cav-1). To further elucidate the role of Cav-1 in lipid homeostasis in-vivo, we analyzed fasting and post-prandial plasma from Cav-1 deficient mice on low or on high fat diet. In total plasma analysis, an increase in ceramide and hexosylceramide was observed. In cholesteryl ester (CE), we found an increased saturated + monounsaturated/polyunsaturated fatty acid ratio in fasting plasma of low fat fed Cav-1(−/−) mice with increased proportions of CE16:1, CE18:1, CE20:3, and decreased proportions of CE18:2 and CE22:6. Under high fat diet HDL-CE, free cholesterol and pre-β-HDL were increased accompanied by a shift from slow to fast migrating α-HDL and expansion of apoE containing HDL. Our results demonstrate a significant role of Cav-1 in HDL-cholesterol metabolism and may reflect a variety of Cav-1 functions including modulation of ACAT activity and SR-BI function.  相似文献   

15.
High-density lipoproteins are the putative vehicles for cholesterol removal from monocyte-derived macrophages, which are an important cell type in all stages of atherosclerosis. The role of HDL(2), an HDL subclass that accounts for most variation in plasma HDL-cholesterol concentration, in cholesterol metabolism in monocyte-derived macrophages is not known. In this study, the dose-dependent effects of HDL(2) on cellular cholesterol mass, efflux, and esterification, and on cellular cholesteryl ester (CE) hydrolysis using the mouse macrophage P388D1 cell line was investigated. HDL(2) at low concentrations (40 microg protein/ml) decreased CE content without affecting cellular free cholesterol content (FC), CE hydrolysis, or cholesterol biosynthesis. In addition, HDL(2) at low concentrations reduced cellular acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity and increased FC efflux from macrophages. Thus, HDL(2) has two potential roles in reverse cholesterol transport. In one, HDL(2) is an acceptor of macrophage FC. In the other, more novel role, HDL(2) increases the availability of macrophage FC through the inhibition of ACAT. Elucidation of the mechanism by which HDL(2) inhibits ACAT could identify new therapeutic targets that enhance the transfer of cholesterol from macrophages to the liver.  相似文献   

16.
17.
Scavenger receptor (SR)-BI is the first molecularly defined receptor for high density lipoprotein (HDL) and it can mediate the selective uptake of cholesteryl ester into cells. To elucidate the molecular mechanisms by which SR-BI facilitates lipid uptake, we examined the connection between lipid donor particle binding and lipid uptake using kidney COS-7 cells transiently transfected with SR-BI. We systematically compared the uptake of [(3)H]cholesteryl oleoyl ether (CE) and [(14)C]sphingomyelin (SM) from apolipoprotein (apo) A-I-containing reconstituted HDL (rHDL) particles and apo-free lipid donor particles. Although both types of lipid donor could bind to SR-BI, only apo-containing lipid donors exhibited preferential delivery of CE over SM (i.e. nonstoichiometric lipid uptake). In contrast, apo-free lipid donor particles (phospholipid unilamellar vesicles, lipid emulsion particles) gave rise to stoichiometric lipid uptake due to interaction with SR-BI. This apparent whole particle uptake was not due to endocytosis, but rather fusion of the lipid components of the lipid donor with the cell plasma membrane; this process is perhaps mediated by a fusogenic motif in the extracellular domain of SR-BI. The interaction of apoA-I with SR-BI not only prevents fusion of the lipid donor with the plasma membrane but also allows the optimal selective lipid uptake. A comparison of rHDL particles containing apoA-I and apoE-3 showed that while both particles bound equally well to SR-BI, the apoA-I particle gave approximately 2-fold greater CE selective uptake. Catabolism of all major HDL lipids can occur via SR-BI with the relative selective uptake rate constants for CE, free cholesterol, triglycerides (triolein), and phosphatidylcholine being 1, 1.6, 0.7, and 0.2, respectively. It follows that a putative nonpolar channel created by SR-BI between the bound HDL particle and the cell plasma membrane is better able to accommodate the uptake of neutral lipids (e.g. cholesterol) relative to polar phospholipids.  相似文献   

18.
Diets rich in polyunsaturated fatty acids lower plasma HDL cholesterol concentrations when compared to diets rich in saturated fatty acids. We investigated the mechanistic basis for this effect in the hamster and sought to determine whether reduced plasma HDL cholesterol concentrations resulting from a high polyunsaturated fat diet are associated with a decrease in reverse cholesterol transport. Animals were fed semisynthetic diets enriched with polyunsaturated or saturated fatty acids for 6 weeks. We then determined the effect of these diets on the following parameters: 1) hepatic scavenger receptor B1 (SR-BI) mRNA and protein levels, 2) the rate of hepatic HDL cholesteryl ester uptake, and 3) the rate of cholesterol acquisition by the extrahepatic tissues (from de novo synthesis, LDL and HDL) as a measure of the rate of reverse cholesterol transport. Compared to saturated fatty acids, dietary polyunsaturated fatty acids up-regulated hepatic SR-BI expression by approximately 50% and increased HDL cholesteryl ester transport to the liver; as a consequence, plasma HDL cholesteryl ester concentrations were reduced. Although dietary polyunsaturated fatty acids increased hepatic HDL cholesteryl ester uptake and lowered plasma HDL cholesterol concentrations, there was no change in the cholesterol content or in the rate of cholesterol acquisition (via de novo synthesis and lipoprotein uptake) by the extrahepatic tissues.These studies indicate that substitution of polyunsaturated for saturated fatty acids in the diet increases SR-BI expression and lowers plasma HDL cholesteryl ester concentrations but does not affect reverse cholesterol transport.  相似文献   

19.
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of HDL cholesteryl esters (CEs) and facilitates the efflux of unesterified cholesterol. SR-BI expression in macrophages presumably plays a role in atherosclerosis. The role of SR-BI for selective CE uptake and cholesterol efflux in macrophages was explored. Macrophages and HDL originated from wild-type (WT) or SR-BI knockout (KO; homozygous) mice. For uptake, macrophages were incubated in medium containing 125I-/3H-labeled HDL. For lipid removal, [3H]cholesterol efflux was analyzed using HDL as acceptor. Selective uptake of HDL CE ([3H]cholesteryl oleyl ether - 125I-tyramine cellobiose) was similar in WT and SR-BI KO macrophages. Radiolabeled SR-BI KO-HDL yielded a lower rate of selective uptake compared with WT-HDL in WT and SR-BI KO macrophages. Cholesterol efflux was similar in WT and SR-BI KO cells using HDL as acceptor. SR-BI KO-HDL more efficiently promoted cholesterol removal compared with WT-HDL from both types of macrophages. Macrophages selectively take up HDL CE independently of SR-BI. Additionally, in macrophages, there is substantial cholesterol efflux that is not mediated by SR-BI. Therefore, SR-BI-independent mechanisms mediate selective CE uptake and cholesterol removal. SR-BI KO-HDL is an inferior donor for selective CE uptake compared with WT-HDL, whereas SR-BI KO-HDL more efficiently promotes cholesterol efflux.  相似文献   

20.
Hypertriglyceridemic (HTG) very low density lipoproteins (VLDL) from subjects with type IV hyperlipoproteinemia induce both cholesteryl ester (CE) and triglyceride (TG) accumulation in cultured J774 macrophages. We examined whether the cytokine interferon-gamma (IFN-gamma), which is expressed by lymphocytes in atherosclerotic lesions, would modulate macrophage uptake of HTG -VLDL. Incubation of cells with HTG -VLDL alone significantly increased cellular CE and TG mass 17- and 4.3-fold, respectively, while cellular free cholesterol (FC) was unaffected. Pre-incubation of cells with IFN-gamma (50 U/ml) prior to incubation with HTG -VLDL caused a marked enhancement in cellular CE and TG 27- and 6-fold over no additions (controls), respectively, and a 1.5-fold increase in FC. IFN-gamma increased low density lipoprotein (LDL)-induced cellular CE 2-fold compared to LDL alone. IFN-gamma did not enhance the uptake of type III (apoE2/E2) HTG -VLDL or VLDL from apoE knock-out mice. Incubations in the presence of a lipoprotein lipase (LPL) inhibitor or an acylCoA:cholesterol acyltransferase (ACAT) inhibitor demonstrated that the IFN-gamma-enhanced HTG -VLDL uptake was dependent on LPL and ACAT activities. IFN-gamma significantly increased the binding and degradation of 125I-labeled LDL. Binding studies with 125I-labeled alpha2-macroglobulin, a known LDL receptor-related protein (LRP) ligand, and experiments with copper-oxidized LDL indicated that the IFN-gamma-enhanced uptake was not due to increased expression of the LRP or scavenger receptors. Thus, IFN-gamma may promote foam cell formation by accelerating macrophage uptake of native lipoproteins. IFN-gamma-stimulated CE accumulation in the presence of HTG -VLDL occurs via a process that requires receptor binding-competent apoE and active LPL. IFN-gamma-enhanced uptake of both HTG -VLDL and LDL is mediated by the LDL-receptor and requires ACAT-mediated cholesterol esterification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号