首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of phospholipids across the two leaflets of the plasma membrane is important for many cellular processes including phagocytosis and hemostasis. In the present study we investigated the in vivo plasma membrane distribution of the aminophospholipid phosphatidylserine in mouse embryos with a novel technique employing Annexin V, a Ca2+ dependent phosphatidylserine binding protein, conjugated to fluorescein isothiocyanate and biotin. Annexin V directly applied to cryostat sections labeled the plasma membrane of all cells at the interface. In contrast, Annexin V injected intracardially into viable mouse embryos labeled almost exclusively apoptotic cells. These apoptotic cells were visible in all tissues and derived from all germ layers. Our experiments demonstrate that phosphatidylserine is asymmetrically distributed between the two leaflets of the plasma membrane in virtually all cell types in vivo and that this asymmetry is lost early during apoptosis.  相似文献   

2.
Exposure of the aminophospholipid phosphatidylserine at the outer leaflet of the plasma membrane by apoptotic cells can trigger phagocytic removal of these dying cells. This functionality of phosphatidylserine exposure in the process of phagocytosis is indicated by in vitro studies of mammalian and insect phagocytes. We have studied the in vivo distribution of cell-surface exposed phosphatidylserine by injecting biotinylated Annexin V, a Ca 2+ -dependent phosphatidyl-serine binding protein, into viable mouse and chick embryos and Drosophila pupae. The apparent binding of Annexin V to cells with a morphology which is characteristicof apoptosis and which was present in regions of developmental cell death indicates that phosphatidylserine exposure by apoptotic cells is a phylogenetically conserved mechanism.  相似文献   

3.
 Biochemical alterations occurring in many cell types during apoptosis include the loss of plasma membrane phospholipid asymmetry and nuclear DNA fragmentation. Annexin V staining detects phosphatidylserine translocation into the outer plasma membrane layer occurring during cell death, while the in situ tailing (IST or TUNEL) reaction labels the DNA strand breaks typical of apoptosis. To compare the time course of these processes we investigated methylprednisolone-induced apoptosis of rat thymocytes, topoisomerase inhibitor-induced apoptosis in the human histiocytic lymphoma cell line U937, and serum deprivation-induced apoptosis in the rat pheochromocytoma cell line, PC12. At all time points, FACS analysis and quantitative fluorescence light microscopy showed a higher proportion of annexin V-positive than IST-positive cells, with significantly different time courses in the apoptotic cell models investigated (Anova test). Results were confirmed by confocal microscopy. Our data indicate that the exposure of phosphatidylserine, a potential phagocyte recognition signal on the cell surface of apoptotic cells in vivo, precedes DNA strand breaks during apoptosis in different cell types. Accepted: 29 June 1998  相似文献   

4.
BACKGROUND: Several studies indicate that plasma membrane changes during apoptosis are a general phenomenon. Among the flow cytometric methods to measure apoptosis, the Annexin V assay that detects the membrane exposure of phosphatidylserine (PS) is one of the most commonly used. However, the various treatments used for the detachment of adherent cells generally interfere with the binding of Annexin V to membrane PS, making apoptosis measurement a technical problem. Materials and Methods Apoptosis of different cell lines was investigated by fluorescence microscopy and multiple flow assays designed to assess loss of membrane integrity, translocation of PS, DNA fragmentation, and light scatter changes. Results and Conclusions We show that supravital propidium iodide (PI) assay stains adherent apoptotic cells, allowing flow cytometric quantification. Moreover, supravital exposure to PI without prior permeabilization identifies apoptotic cells as well as Annexin V and permits the simultaneous surface staining by FITC- and PE-conjugated monoclonal antibodies. As in the case of necrotic or permeabilized cells, fluorescence microscopy has revealed that PI staining of apoptotic cells is localized in the nucleus. This suggests that the binding of PI to the DNA/RNA structures is stable enough to withstand the trypsinization and/or washing procedures necessary to detach adherent cells.  相似文献   

5.
Dramatic changes in the structure of cell membranes on apoptosis allow easy, sensitive and non-destructive analysis of this process with the application of fluorescence methods. The strong plasma membrane asymmetry is present in living cells, and its loss on apoptosis is commonly detected with the probes interacting strongly and specifically with phosphatidylserine (PS). This phospholipid becomes exposed to the cell surface, and the application of annexin V labeled with fluorescent dye is presently the most popular tool for its detection. Several methods have been suggested recently that offer important advantages over annexin V assay with the ability to study apoptosis by spectroscopy of cell suspensions, flow cytometry and confocal or two-photon microscopy. The PS exposure marks the integrated changes in the outer leaflet of cell membrane that involve electrostatic potential and hydration, and the attempts are being made to provide direct probing of these changes. This review describes the basic mechanisms underlying the loss of membrane asymmetry during apoptosis and discusses, in comparison with the annexin V-binding assay, the novel fluorescence techniques of detecting apoptosis on cellular membrane level. In more detail we describe the detection method based on smart fluorescent dye F2N12S incorporated into outer leaflet of cell membrane and reporting on apoptotic cell transformation by easily detectable change of the spectral distribution of fluorescent emission. It can be adapted to any assay format.  相似文献   

6.
New reagents for phosphatidylserine recognition and detection of apoptosis   总被引:5,自引:0,他引:5  
The phospholipid bilayer surrounding animal cells is made up of four principle phospholipid components, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and sphingomyelin (SM). These four phospholipids are distributed between the two monolayers of the membrane in an asymmetrical fashion, with PC and SM largely populating the extracellular leaflet and PE and PS restricted primarily to the inner leaflet. Breakdown in this transmembrane phospholipid asymmetry is a hallmark of the early to middle stages of apoptosis. The consequent appearance of PS on the extracellular membrane leaflet is commonly monitored using dye-labeled Annexin V, a 36 kDa, Ca2+-dependent PS binding protein. Substitutes for Annexin V are described, including small molecules, nanoparticles, cationic liposomes, and other proteins that can recognize PS in a membrane surface. Particular attention is given to the use of these reagents for detecting apoptosis.  相似文献   

7.
Phosphatidylserine exposure in the exoplasmic leaflet of the plasma membrane is one of the early hallmarks of cells undergoing apoptosis. The shedding of membrane particles carrying Ags testifying to their tissue origin is another characteristic feature. Annexin V, a protein of as yet unknown specific physiologic function, presents a high Ca2+-dependent affinity for phosphatidylserine and forms two-dimensional arrays at the membrane surface. In this study, we report the delaying action of annexin V on apoptosis in the CEM human T cell line expressing CD4 and the normal cellular prion protein (PrPc), two Ags of particular relevance to cell degeneration and with different attachments to the membrane. The effect of annexin V was additive to that of z-Val-Ala-Asp-fluoromethyl ketone, a potent caspase inhibitor. Annexin V significantly reduced the degree of proteolytic activation of caspase-3, and totally blocked the release of CD4+ and PrPc+ membrane particles. z-Val-Ala-Asp-fluoromethyl ketone was a more powerful antagonist of caspase-3 processing, but prevented the shedding of CD4+ vesicles only partially and had no effect on that of PrPc+ ones. These results suggest that an external membrane constraint, such as that exerted by annexin V, has important consequences on the course of programmed cell death and on the dissemination of particular Ags. In vivo, annexin V had a significant protective effect against spleen weight loss in mice treated by an alkylating agent previously shown to induce lymphocyte apoptosis.  相似文献   

8.
During apoptosis, one of the first membrane changes that can be detected is exposure of phosphatidylserine residues at the outer plasma membrane leaflet, while early apoptosis is also accompanied by changes in the cytoskeletal organization. In this study we investigated the relationship between these two phenomena during olomoucine- and roscovitin-induced apoptosis in human lung cancer and neuroblastoma cell lines. Loss of membrane asymmetry was detected by biotin-labeled or FITC-labeled annexin V binding to negatively charged phosphatidylserine, while cytoskeletal components were visualized by immunocytochemistry. The apoptotic, annexin V-positive, cells were analyzed by flow cytometry, confocal scanning laser microscopy, and Western blotting. We report that cytokeratin and vimentin aggregation in early apoptosis occurs simultaneously with phosphatidylserine exposure and chromatin condensation. In contrast to these intermediate filament proteins, which were disassembled and proteolytically cleaved in early apoptosis, microfilaments and microtubuli were not proteolytically degraded but were found to be present as aggregated filaments in the apoptotic bodies. We also show that loss of membrane asymmetry and cytokeratin aggregation are independent processes, sinceN-ethylmaleimide-induced phosphatidylserine exposure does not cause cytokeratin disassembly. Vice versa, phorbol 12-myristate 13-acetate-induced cytokeratin filament aggregation does not result in phosphatidylserine exposure.  相似文献   

9.
During normal tissue remodeling, macrophages remove unwanted cells, including those that have undergone programmed cell death, or apoptosis. This widespread process extends to the deletion of thymocytes (negative selection), in which cells expressing inappropriate Ag receptors undergo apoptosis, and are phagocytosed by thymic macrophages. Although phagocytosis of effete leukocytes by macrophages has been known since the time of Metchnikoff, only recently has it been recognized that apoptosis leads to surface changes that allow recognition and removal of these cells before they are lysed. Our data suggest that macrophages specifically recognize phosphatidylserine that is exposed on the surface of lymphocytes during the development of apoptosis. Macrophage phagocytosis of apoptotic lymphocytes was inhibited, in a dose-dependent manner, by liposomes containing phosphatidyl-L-serine, but not by liposomes containing other anionic phospholipids, including phosphatidyl-D-serine. Phagocytosis of apoptotic lymphocytes was also inhibited by the L isoforms of compounds structurally related to phosphatidylserine, including glycerophosphorylserine and phosphoserine. The membranes of apoptotic lymphocytes bound increased amounts of merocyanine 540 dye relative to those of normal cells, indicating that their membrane lipids were more loosely packed, consistent with a loss of membrane phospholipid asymmetry. Apoptotic lymphocytes were shown to express phosphatidylserine (PS) externally, because PS on their surfaces was accessible to derivatization by fluorescamine, and because apoptotic cells expressed procoagulant activity. These observations suggest that apoptotic lymphocytes lose membrane phospholipid asymmetry and expose phosphatidylserine on the outer leaflet of the plasma membrane. Macrophages then phagocytose apoptotic lymphocytes after specific recognition of the exposed PS.  相似文献   

10.
BACKGROUND: Following a lethal injury, two modes of cell death can be distinguished, apoptosis and primary necrosis. Cells pass through a prelethal stage characterized by a preservation of membrane integrity, in which they shrink (apoptosis) or swell (oncosis, the early phase of primary necrosis). During apoptosis, a loss of phospholipid asymmetry leads to exposure of phosphatidylserine (PS) residues on the outer leaflet of the plasma membrane. We examined whether the external PS exposure, initially supposed to be specific for apoptosis, was also observed in oncotic cells. METHODS: Human peripheral lymphocytes, Jurkat T cells, U937 cells, or HeLa cells were submitted to either apoptotic or oncotic stimuli. PS external exposure was assessed after binding of FITC-conjugated annexin V as was the loss of membrane integrity after propidium iodide (PI) uptake. Morphological examination was performed by optical or electron microscopy. RESULTS: Similarly to apoptotic cells, oncotic cells expose external PS residues while preserving membrane integrity. Consequently, oncotic cells exhibit the annexin V+ PI- phenotype, previously considered to be specific for apoptotic cells. CONCLUSIONS: This study concludes that the annexin V/PI assay does not discriminate between apoptosis and oncosis and that it can be a useful tool to study oncosis by flow cytometry.  相似文献   

11.
With the use of markers of sarcolemmal membrane permeability, cardiomyocyte models of ischemic injury have primarily addressed necrotic death during ischemia. In the present study, we used annexin V-propidium iodide staining to examine apoptosis and necrosis after simulated ischemia and simulated reperfusion in rat ventricular myocytes. Annexin V binds phosphatidylserine, a phosphoaminolipid thought to be externalized during apoptosis or programmed cell death. Propidium iodide is a marker of cell necrosis. Under baseline conditions, <1% of cardiomyocytes stained positive for annexin V. After 20 or 60 min of simulated ischemia, there was no increase in annexin V staining, although 60-min simulated ischemia resulted in significant propidium iodide staining. Twenty minutes of simulated ischemia, followed by 20 or 60 min of simulated reperfusion, resulted in 8-10% of myocytes staining positive for annexin V. Annexin V-positive cells retained both rod-shaped morphology and contractile function but exhibited the decreased cell width indicative of cell shrinkage. Baseline mitochondrial free Ca2+ (111 +/- 14 nM) was elevated in reperfused annexin V-negative cells (214 +/- 22 nM), and further elevated in annexin V-positive myocytes (382 +/- 9 nM). After 60 min of simulated reperfusion, caspase-3-like activity was observed in approximately 3% of myocytes, which had a rounded appearance and membrane blebs. These results suggest that the use of annexin V after simulated ischemia-reperfusion uncovers a population of cardiomyocytes whose characteristics appear to be consistent with cells undergoing apoptosis.  相似文献   

12.
An early event in apoptosis is exposure of phosphatidylserine, an aminophospholipid normally present in the inner leaflet of the plasma membranes, at the outer leaflet of the plasma membrane facing the extracellular space. Annexin V (Anx-V) is a 35-kDa protein with high affinity for phosphatidylserine, which can be applied to detect apoptosis. We injected biotin-labelled Anx-V intravenously in adult mice and examined the tissue distribution of Anx-V-labelled cells in dental and periodontal tissues using ABC-peroxidase histochemistry. In the continuously erupting incisors, strong and frequent immunostaining was observed in transitional stage and late maturation stage ameloblasts with less frequent staining in preameloblasts. Frequency of staining in odontoblasts and pulp cells was low but increased slightly at older stages of dentinogenesis. Labelling was also seen in phagocytic or phagocytic-like cells in the enamel organ and pulp. A positive staining was furthermore found in fibroblasts of the periodontal ligament in continuously erupting incisors and in fully erupted molar teeth. Staining intensity and the number of positive cells were enhanced by antigen retrieval using high-pressure cooking. We conclude that Anx-V-biotin labels dental cells in early stages of cell death and indirectly cells that have ingested labelled apoptotic cells during the course of the experiment. The data confirm that during amelogenesis most cell death occurs in transitional stage and late maturation stage ameloblasts. Thus, labelling with Anx-V is a useful marker for studying cell death and the dynamics of clearance of apoptotic cells during tooth development.  相似文献   

13.
BACKGROUND: We have previously characterized apoptotic cell death induced in a follicular lymphoma cell line, HF-1, after triggering via the B-cell receptor (BCR) or treatment with Ca(2+) Ionophore A23187. We analyzed the kinetics of apoptosis induced by these two treatments, as two alternative models of classical apoptosis, by flow cytometry using a novel combination of cytofluorometric stains. METHODS: Cells were stained with a combination of Annexin V-FITC, propidium iodide (PI), and SYTO 17 and analyzed by a two-laser flow cytometry system using 488-nm argon and 633-nm HeNe air-cooled lasers. RESULTS: In both apoptotic models, the first apoptotic cells were detected by SYTO 17 staining. The alteration in SYTO 17 staining intensity was followed by an increased uptake of PI. Finally, the apoptotic cells were labeled with Annexin V in BCR-induced apoptosis. On the contrary, on treatment with Ca(2+) Ionophore A23187, cells became positive for Annexin V earlier than for PI. CONCLUSIONS: The novel cytofluorometric dye, SYTO 17, discriminates apoptotic alterations before Annexin V and PI. PI also discriminates apoptotic alterations before the loss of plasma membrane asymmetry by BCR but not by Ca(2+) Ionophore A23187-induced apoptosis. Finally, the combination of these three cytofluorometric dyes allows effective detection of apoptotic subpopulations and ordering of apoptotic events by flow cytometry.  相似文献   

14.

Background  

Apoptotic cell death plays an essential part in embryogenesis, development and maintenance of tissue homeostasis in metazoan animals. The culmination of apoptosis in vivo is the phagocytosis of cellular corpses. One morphological characteristic of cells undergoing apoptosis is loss of plasma membrane phospholipid asymmetry and exposure of phosphatidylserine on the outer leaflet. Surface exposure of phosphatidylserine is recognised by a specific receptor (phosphatidylserine receptor, PSR) and is required for phagocytosis of apoptotic cells by macrophages and fibroblasts.  相似文献   

15.
Programmed cell death can be divided into apoptosis and autophagic cell death. We describe the biological activities of TMEM166 (transmembrane protein 166, also known as FLJ13391), which is a novel lysosome and endoplasmic reticulum-associated membrane protein containing a putative TM domain. Overexpression of TMEM166 markedly inhibited colony formation in HeLa cells. Simultaneously, typical morphological characteristics consistent with autophagy were observed by transmission electron microscopy, including extensive autophagic vacuolization and enclosure of cell organelles by double-membrane structures. Further experiments confirmed that the overexpression of TMEM166 increased the punctate distribution of MDC staining and GFP-LC3 in HeLa cells, as well as the LC3-II/LC3-I proportion. On the other hand, TMEM166-transfected HeLa and 293T cells succumbed to cell death with hallmarks of apoptosis including phosphatidylserine externalization, loss of mitochondrial transmembrane potential, caspase activation and chromatin condensation. Kinetic analysis revealed that the appearance of autophagy-related biochemical parameters preceded the nuclear changes typical of apoptosis in TMEM166-transfected HeLa cells. Suppression of TMEM166 expression by small interference RNA inhibited starvation-induced autophagy in HeLa cells. These findings show for the first time that TMEM166 is a novel regulator involved in both autophagy and apoptosis.  相似文献   

16.
Early during apoptosis, there is a reduction in mitochondrial transmembrane potential (MTP) and externalization of phosphatidylserine (PS) in cell membrane prior to eventual cell death. Flow cytometric detection techniques targeting these changes, reduction of DiOC(6)(3) uptake upon the collapse of MTP and annexin V binding to PS have been successfully used to detect apoptotic cells. These methods have given comparable results when cell lines were used. We compared the two different techniques, DiOC(6)(3) uptake and Annexin V-propidium iodide co-labeling in the quantification of cytarabine, vincristine and daunorubicin induced apoptosis on three leukemia cell lines (HL-60, CEM, U937), and bone marrow blasts from 26 children with acute myeloid leukemia, 14 with T cell acute lymphoblastic leukemia. Anti-Fas-induced apoptosis in culture-grown peripheral blood T lymphocytes on 18 samples from 9 children with non-malignant conditions were also studied by these techniques. Our results showed that there is a correlation (P < 0. 05) between the apoptosis rates measured by these two techniques for drug-induced apoptosis in myeloid and lymphoid blasts, and for anti-Fas mAb-induced apoptosis in T lymphocytes. This data suggests that reduction of the MTP and PS externalization may be common to many apoptotic pathways and techniques targeting either of these changes may be used in quantification of apoptosis in different clinical samples.  相似文献   

17.
When the chlorophyte alga Dunaliella tertiolecta Butcher is placed in darkness, a form of programmed cell death with many similarities to apoptosis is induced, including the induction of caspase‐like proteases. Many uncertainties about the regulation and mediators that participate in the process remain. To examine the relationship between caspase‐like activities and different apoptotic events (i.e., phosphatidylserine [PS] translocation), increases in membrane permeability and numbers of dead cells revealed by SYTOX‐green staining, and the generation of reactive oxygen species (ROS), we used the broad‐range caspase inhibitor Boc‐D‐FMK to block the activity of the whole class of caspase‐like proteins simultaneously. In the presence of the inhibitor, ROS were not produced, and cells did not die. Loss of membrane asymmetry, indicated by external labeling of PS by annexin V, was apparent at midstages of light deprivation, although it did not conform to the typical pattern for PS exposure observed in metazoans or vascular plants, which occurs at early stages of the apoptotic event. Thus, we have evidence for a link between ROS and cell death involving caspase‐like enzymes in an alga. The fact that caspase‐like inhibitors prevent not only cell death, but also ROS and loss of cell membrane integrity and asymmetry, suggests that caspase‐like proteases might have regulatory roles early in cell death, in addition to dismantling functions.  相似文献   

18.
During apoptosis, physical changes in the plasma membrane prepare the cell for clearance by phagocytes and hydrolysis by secretory phospholipase A2 (sPLA2). The relationships among these changes have not been adequately established, especially for hormone-stimulated apoptosis. This study addresses these issues for glucocorticoid-induced apoptosis in S49 lymphoma cells. Flow cytometry, microscopy, and fluorescence spectroscopy were used to assess merocyanine 540 emission, laurdan generalized polarization, phosphatidylserine exposure, caspase activation, and membrane permeability to propidium iodide in the absence and presence of sPLA2. The earliest event observed was activation of cellular caspases. Results with membrane probes suggest that interlipid spacing also increases early during apoptosis and precedes transbilayer migration of phosphatidylserine, DNA fragmentation, and a general increase in lipid order associated with blebbing and dissolution of the cells. The activity of sPLA2 appeared to be linked more to lipid spacing than to loss of membrane asymmetry. The early nature of some of these events and their ability to promote activity of a proinflammatory enzyme suggests the possibility of an inflammatory response during T-lymphocyte apoptosis.  相似文献   

19.
Apoptosis is an active form of cell death that plays a critical role in physiological and pathological conditions of multicellular organisms. These conditions include development, organogenesis, and elimination of infected, mutated, or damaged cells. Sipunculan cells may respond to changes in environmental exposure to oxidative stress by induction of apoptotic cell death. In coelomocytes of the sipunculan worm Themiste petricola, we evaluated morphological and biochemical changes that were induced by hydrogen peroxide (H2O2) and that could be compatible with an apoptotic-like phenotype. At an exposure of 100 mM H2O2, coelomocytes exhibited several morphological hallmarks of apoptosis such as chromatin condensation, nuclear segmentation, cell volume decrease, membrane blebbing, and formation of apoptotic bodies. Biochemical evidences of apoptotic-like cell death included exposure of phosphatidylserine (PS) in the outer leaflet of the plasma membrane and oligonucleosomal DNA fragmentation. In addition, exposure of coelomocytes to H2O2 induced a rapid massive loss of mitochondrial membrane potential and of the acidic pH of lysosomes. Overall, our results showed that, in sipunculan coelomocytes, H2O2 can induce changes compatible with an apoptotic-like phenotype. The finding of an oxidative-stress-induced apoptotic-like phenotype in a sipunculan worm may indicate that this kind of cell death process participates in regulation of cell number during physiological and pathological situations, including immune responses.  相似文献   

20.
Oxidation by copper/quinone-containing serum amine oxidases (SAO) is a well-known cause of polyamine cytotoxicity. Spermine oxidation exerts potent immunosuppressive effects in animal cells, but the cell death mechanism involved remains unclear. We compared biochemical and morphological parameters of SAO-mediated cell death in L1210 mouse leukemia cells with normal or amplified ornithine decarboxylase gene expression with those observed during apoptosis induced by deregulated polyamine uptake or by okadaic acid. None of the characteristic features of apoptotic cell death (e.g., chromatin condensation, nuclear fragmentation, internucleosomal DNA cleavage, poly(ADP-ribose) polymerase cleavage) were observed during spermine oxidation-mediated cell death, which was clearly necrotic by morphological criteria. Inhibition of a wide spectrum of caspases did not prevent SAO-dependent cell death, whereas N-acetylcysteine completely abolished the cytotoxic effects of spermine oxidation. Catalase only delayed spermine oxidation-induced cell death without affecting its modality or preventing depletion of intracellular glutathione, suggesting that both H(2)O(2) and aminoaldehydes generated by SAO-mediated spermine oxidation contribute to SAO-induced necrosis. Interestingly, redistribution of phosphatidylserine to the outer leaflet of the plasma membrane, usually a diagnostic feature of apoptosis, preceded necrotic cytolysis triggered by spermine oxidation. Thus, L1210 cell death caused by SAO-mediated spermine oxidation has all the attributes of primary necrosis, but is also accompanied by loss of phospholipid asymmetry, indicating that the latter phenomenon may not be unique to apoptosis. Phosphatidylserine exposure, a potent engulfment signal for phagocytes, might contribute to the immunosuppressive effects of plasma polyamines through a controlled and rapid necrotic process involving SAO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号