首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A model for initiation at origins of DNA replication   总被引:95,自引:0,他引:95  
D Bramhill  A Kornberg 《Cell》1988,54(7):915-918
  相似文献   

2.
Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC.  相似文献   

3.
Replication origins are ‘licensed' for a single initiation event before entry into S phase; however, many licensed replication origins are not used, but instead remain dormant. The use of these dormant origins helps cells to survive replication stresses that block replication fork movement. Here, we present a computer model of the replication of a typical metazoan origin cluster in which origins are assigned a certain initiation probability per unit time and are then activated stochastically during S phase. The output of this model is in good agreement with experimental data and shows how inefficient dormant origins can be activated when replication forks are inhibited. The model also shows how dormant origins can allow replication to complete even if some forks stall irreversibly. This provides a simple explanation for how replication origin firing is regulated, which simultaneously provides protection against replicative stress while minimizing the cost of using large numbers of replication forks.  相似文献   

4.
5.
Drosophila melanogaster follicle cells over-replicate the chromosomal domain containing the third chromosome chorion gene cluster. Multiple regions of this cluster are needed in cis for attainment of high levels of amplification. We have confirmed the importance of the proposed amplification control element (ACE3) and demonstrated that it can support low levels of follicular amplification in the absence of other elements, but that it lacks detectable activity as a DNA replication origin. We have also demonstrated the existence of additional amplification-enhancing regions (AERs), by analyzing the amplification levels of a series of in situ induced, nested deletions of the chorion cluster. These deletions were induced by P-transposase perturbation of a chorion transposon in a highly amplifying transformed line, and were not accompanied by re-transposition, making possible a quantitative analysis of amplification levels in the absence of chromosomal position effects. Analysis of endogenous replication intermediates in wild-type follicular DNA suggested that at least one of the AERs may be an origin of replication and that amplification uses at least one additional replication origin.  相似文献   

6.
The S-phase checkpoint activated at replication forks coordinates DNA replication when forks stall because of DNA damage or low deoxyribonucleotide triphosphate pools. We explore the involvement of replication forks in coordinating the S-phase checkpoint using dun1Delta cells that have a defect in the number of stalled forks formed from early origins and are dependent on the DNA damage Chk1p pathway for survival when replication is stalled. We show that providing additional origins activated in early S phase and establishing a paused fork at a replication fork pause site restores S-phase checkpoint signaling to chk1Delta dun1Delta cells and relieves the reliance on the DNA damage checkpoint pathway. Origin licensing and activation are controlled by the cyclin-Cdk complexes. Thus, oncogene-mediated deregulation of cyclins in the early stages of cancer development could contribute to genomic instability through a deficiency in the forks required to establish the S-phase checkpoint.  相似文献   

7.
Autorepressor model for control of DNA replication   总被引:25,自引:0,他引:25  
  相似文献   

8.
Garesse R  Kaguni LS 《IUBMB life》2005,57(8):555-561
Mitochondrial biogenesis is a critical process in animal development, cellular homeostasis and aging. Mitochondrial DNA replication is an essential part of this process, and both nuclear and mitochondrial DNA mutations are found to result in mitochondrial dysfunction that leads to developmental defects and delays, aging and disease. Drosophila provides an amenable model system to study mitochondrial biogenesis in normal and disease states. This review provides an overview of current approaches to study the proteins involved in mitochondrial DNA replication, the genes that encode them and their regulation. It also presents a survey of cell and animal models under development to mimic the pathophysiology of human mitochondrial disorders.  相似文献   

9.
Duplication of the eukaryotic genome initiates from multiple origins of DNA replication whose activity is coordinated with the cell cycle. We have been studying the origins of DNA replication that control amplification of eggshell (chorion) genes during Drosophila oogenesis. Mutation of genes required for amplification results in a thin eggshell phenotype, allowing a genetic dissection of origin regulation. Herein, we show that one mutation corresponds to a subunit of the minichromosome maintenance (MCM) complex of proteins, MCM6. The binding of the MCM complex to origins in G1 as part of a prereplicative complex is critical for the cell cycle regulation of origin licensing. We find that MCM6 associates with other MCM subunits during amplification. These results suggest that chorion origins are bound by an amplification complex that contains MCM proteins and therefore resembles the prereplicative complex. Lethal alleles of MCM6 reveal it is essential for mitotic cycles and endocycles, and suggest that its function is mediated by ATP. We discuss the implications of these findings for the role of MCMs in the coordination of DNA replication during the cell cycle.  相似文献   

10.
T R Magee  T Asai  D Malka    T Kogoma 《The EMBO journal》1992,11(11):4219-4225
  相似文献   

11.
Conserved DNA structures in origins of replication.   总被引:8,自引:7,他引:8       下载免费PDF全文
According to the model of Bramhill and Kornberg, initiation of DNA replication in prokaryotes involves binding of an initiator protein to origin DNA and subsequent duplex opening of adjacent direct repeat sequences. In this report, we have used computer analysis to examine the higher-order DNA structure of a variety of origins of replication from plasmids, phages, and bacteria in order to determine whether these sequences are localized in domains of altered structure. The results demonstrate that the primary sites of initiator protein binding lie in discrete domains of DNA bending, while the direct repeats lie within well-defined boundaries of an unusual anti-bent domain. The anti-bent structures arise from a periodicity of A3 and T3 tracts which avoids the 10-11 bp bending periodicity. Since DNA fragments which serve as replicators in yeast also contain these two conserved structural elements, the results provide new insight into the universal role of conserved DNA structures in DNA replication.  相似文献   

12.
13.
Localization of replication origins in pea chloroplast DNA.   总被引:7,自引:0,他引:7       下载免费PDF全文
The locations of the two replication origins in pea chloroplast DNA (ctDNA) have been mapped by electron microscopic analysis of restriction digests of supercoiled ctDNA cross-linked with trioxalen. Both origins of replication, identified as displacement loops (D-loops), were present in the 44-kilobase-pair (kbp) SalI A fragment. The first D-loop was located at 9.0 kbp from the closest SalI restriction site. The average size of this D-loop was about 0.7 kbp. The second D-loop started 14.2 kbp in from the same restriction site and ended at about 15.5 kbp, giving it a size of about 1.3 kbp. The orientation of these two D-loops on the restriction map of pea ctDNA was determined by analyzing SmaI, PstI, and SalI-SmaI restriction digests of pea ctDNA. One D-loop has been mapped in the spacer region between the 16S and 23S rRNA genes. The second D-loop was located downstream of the 23S rRNA gene. Denaturation mapping of recombinants pCP 12-7 and pCB 1-12, which contain both D-loops, confirmed the location of the D-loops in the restriction map of pea ctDNA. Denaturation-mapping studies also showed that the two D-loops had different base compositions; the one closest to a SalI restriction site denatured readily compared with the other D-loop. The recombinants pCP 12-7 and pCB 1-12 were found to be highly active in DNA synthesis when used as templates in a partially purified replication system from pea chloroplasts. Analysis of in vitro-synthesized DNA with either of these recombinants showed that full-length template DNA was synthesized. Recombinants from other regions of the pea chloroplast genome showed no significant DNA synthesis activity in vitro.  相似文献   

14.
15.
16.
17.
A selection procedure was devised to study the role of cis -acting sequences at origins of DNA replication. Two regions in Herpes simplex virus oriS were examined: an AT-rich spacer sequence and a putative binding site, box III, for the origin binding protein. Plasmid libraries were generated using oligonucleotides with locally random sequences. The library, amplified in Escherichia coli , was used to transfect BHK cells followed by superinfection with HSV-1. Replicated plasmids resistant to Dpn I cleavage were amplified in E. coli. The selection scheme was repeated. Plasmids were isolated at different stages of the procedure and their replication efficiency was determined. Efficiently replicating plasmids had a high AT content in the spacer sequence as well as a low helical stability of this region. In contrast, this was not seen using the box III library. We also noted that the wild type sequence invariably dominated the library after five rounds of selection. These plasmids arose from recombination between plasmids and viral DNA. Our results imply that a large group of sequences can mechanistically serve as origins of DNA replication. In a viral system, however, where the initiation process might be rate-limiting, this potentially large group of sequences would always converge towards the most efficient replicator.  相似文献   

18.
19.
We showed previously that DNA replication initiates at multiple sites in the 5-kb histone gene repeating unit in early embryos of Drosophila melanogaster. The present report shows evidence that replication in the same chromosomal region initiates at multiple sites in tissue culture cells as well. First, we analyzed replication intermediates by the two-dimensional gel electrophoretic replicon mapping method and detected bubble-form replication intermediates for all fragments restricted at different sites in the repeating unit. Second, we analyzed bromodeoxyuridine-labeled nascent strands amplified by the polymerase chain reaction method and detected little differences in the size distribution of nascent strands specific to six short segments located at different sites in the repeating unit. These results strongly suggest that DNA replication initiates at multiple sites located within the repeating unit. We also found several replication pause sites located at 5' upstream regions of some histone genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号