首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The environmental distribution of encrusting bryozoans settling on disarticulated and living bivalve shells has been recorded from five stations in Japan and New Zealand. Some insight into the observed distribution patterns emerges from information on the interaction of bryozoans with microbial mats. Advancing existing classifications, we have subdivided the encrusting bryozoan morphotypes into seven different growth types that largely reflect the biological potentials of bryozoans in competition for space on substrate surfaces. The frequency distribution of these types (s-/c-/m-/z-laminae, runners, spots, bryostromatolites) reveals the influence of microbial mats as a control factor of bryozoan substrate coverage. Microbial mats in turn are correlated with latitudinal gradients in Japan and New Zealand from cool-temperate to subtropical and tropical waters. Unlike erect bryozoans, laminar ones are probably underrated as facies fossils. Accordingly, laminar bryozoan growth types are reconsidered as a tool for paleoecological interpretation of marine hard substrate communities.  相似文献   

2.
Microbial communities of stratified phototrophic bacteria in laminated intertidal sediments north of Estuary El Puente, near San Carlos, Baja California Sur, Mexico,‐were studied. This study describes the macroscopic and microscopic characteristics of the mats, including their annual growth. The mats were located in and along meandering mangrove‐lined tidal channels. Their thickness ranged from 0.5 to 25 cm. Square‐meter areas of polygonal mats were detected in several ponds infiltrated by sea water. The principal microbial community of the upper surface of various morphotypes of microbial mats was identified as cyanobacteria belonging to the genera Microcoleus, Lyngbya, Phormidium, and Oscillatoria. Other cyanobacte‐rial genera such as Pseudanabaena, Spirulina, Synechococcus, and Gloeocapsa, as well as many unidentified diatoms, were also present but at lower population densities. The second inward reddish layers of the microbial mats contained similar cyano‐bacterial genera plus anoxygenic phototrophic bacteria belonging to the genera Chloroflexus, Thiocapsa, Chromatium, Prosthecochloris, Rhodopseudomonas, and Chlorobium, as well as several unidentified bacteria. In situ measurements on the growth of the mats, from intermittent tide sites, showed an annual buildup of two layers: green and reddish. These layers corresponded to a vertical growth of 1.4 ± 0.27 mm/year. Permanently submerged mats did not show vertical growth during the same period of time.  相似文献   

3.
Dr. Joachim Scholz 《Facies》1993,29(1):107-118
Summary A correlation between skeletal growth of recent bryozoans and external environmental factors (e.g. abrasion, suspended sediment load) exists in ahermatypic tropical shallow water associations of the Philippines. Yet, the spatial zonation pattern of bryozoan species in a modern Philippine reef exhibits an amazingly high level of stability and order which cannot be readily correlated with external environmental factors. This is due to the observation that zonation correlates with the bryozoan taxa but not with their growth form categories (e.g. flexible-erect). Bryozoans are closely linked with their reef (micro)environment and reef microbiota by feedback control: Interacting biofilms, microbial mats, bryozoans and bryozoan larvae illustrate how such internal functions in a Philippine reef may stabilize the biotope structure as a whole  相似文献   

4.
Summary In this paper, a preliminary concept on the interplay of local, regional and global control factors of bryozoan diversity and distribution pattern is introduced. Recent bryozoans from the Philippines, New Zealand and the Gulf of Aqaba are compared to the selected fossil specimens from the Oxfordian and Santonian. Reef bryozoan skeletons are studied in order to separate local control within the substrate-water interface from regional control. The latter originate mainly from the transport function of the water column (e.g. sediment load, wave energy, vagile predators). This is true especially for erect (tree-like) and massive (multilaminar) bryozoans which are subjected to the dynamics of the water body in the littoral area. This regional control, affects simultaneously several structural and substrate zones of a reef. Early life history of vertically growing reef bryozoans reflect local control, while older zoarial structures reflect the signals of regional influence. Three types of multiserial nodular bryozoans are cited: self-overgrowing sheets (‘S-Nodule’, derived from ‘S-Sheet’), circumlaterally budding colonies (‘C-Nodules’), and fungiform bryozoans. Bryozoan growth form selection allows the separation of two types of regional controls, long range control which favours the selection of specialized sheets, and slow rate control documented in the growth form modification of sheets changing into nodules. In the domain of local control epibiontic microorganisms, microbial mats and biofilms on hard substrata represent probably the most important elements, aside from the limited substrate space. Symbiotic and/or competitive bryozoan-microorganism interrelationships result in the distinct adaptations of bryozoan growth. It is apparent that bryozoan modifications of substrate micro-topography influence the character of epibiontic microbial settlement. The peak occurrence of microbial settlement on prominent external bryozoan skeleton parts is discussed as an effect of feeding currents. In contrast, smooth and unelevated exoskeletons are less favourable for micro-epibiontic colonization. Due to the high level of order in the spatial zonation patterns of epibionts on calcifying bryozoans, the term ‘bryozoan-microreef’ is introduced. Bryozoan-microreefs are locally controlled reefs. They are e.g. characterized by higher competitive abilities than bryozoans without ‘reefdwellers’. Local control has a fast rate of change and is reflected in morphologies of individual zooids and/or single zooid generations. Regional control has a slower rate but a higher range. It is important for growth modifications of the whole zoaria. The very slow rate of global control cannot be recorded within the life span of bryozoan zoaria unless it is expressed through regional control (such as monsoons). Nevertheless, global control is paleoecologically important because it is traceable in bryozoan (paleo-)biogeography. For practical purpose, we suggest to define those control factors of bryozoans as global which affect simultaneously at least one tropical and one non-tropical bryozoan community. This reportis dedicated to the memory of our friend and research colleague Mr. Joselito G. Santiago of the University of San Carlos, Marine Biology Section. Tiago (as we fondly call him) has started within the scope of the Philippine Bryozoan Project an applied research on fish abundance and productivity around a new artificial reef model. This prototype model was conceptualized with him. His promising study remained unfinished; he died May 13, 1993, while sampling inside the reef cave off Marigondon.  相似文献   

5.
Summary Lower Devonian mud mounds and stromatactis fabrics are exceptionally well exposed in quarry walls and industrially sawed blocks in the Montagne Noire in southern France. Interlayered red biomicrites and white to grey sparitic calcites form mounds up to 70 m high. The red biomicrites contain predominantly bryozoans, sponges and echinoderms. The sparitic layers show typical features of stromatactis fabrics, as outlined byBathurst (1982). We recognize two types of stromatactis fabrics: (1) Stromatactis type A: exentsive cavity systems filled by multiple cement generations, which are interpreted to be related to microbial mats, and (2) Stromatactis type B: smaller patches of blocky spar which are mainly diagenetic in origin, but show characteristic features of stromatactis. Type A is far more important in terms of rock volume. The cyclic interlayering of red biomicrites and sparitic layers is supposed to result from frequent changes in the composition of the mound biota. The bryozoan/sponge community was displaced by short term propagations of microbial mats during times of extremely low sedimentation. Sedimentation and thus the biotic community was probably determined by high frequency (6th order) sea level changes. Despite these changes, mound growth continued, because once established the ecological advantage over the surroundings was maintained by both communities alternating with each other. The microbial mats and the cavities they left after their decay were important for the stabilization of the mounds, the latter allowing for enormous quantities of dissolved carbonate to be transported and precipitated. We anticipate a close interrelation between mound formation and stromatactis formation, and we believe that it is not incidential that both, mud mounds and stromatactis, are mainly restricted to the same interval, namely the Paleozoic.  相似文献   

6.
We have examined the biosynthesis and accumulation of cyanobacterial sunscreening pigment scytonemin within intertidal microbial mat communities using a combination of chemical, molecular, and phylogenetic approaches. Both laminated (layered) and nonlaminated mats contained scytonemin, with morphologically distinct mats having different cyanobacterial community compositions. Within laminated microbial mats, regions with and without scytonemin had different dominant oxygenic phototrophs, with scytonemin-producing areas consisting primarily of Lyngbya aestuarii and scytonemin-deficient areas dominated by a eukaryotic alga. The nonlaminated mat was populated by a diverse group of cyanobacteria and did not contain algae. The amplification and phylogenetic assignment of scytonemin biosynthetic gene scyC from laminated mat samples confirmed that the dominant cyanobacterium in these areas, L. aestuarii, is likely responsible for sunscreen production. This study is the first to utilize an understanding of the molecular basis of scytonemin assembly to explore its synthesis and function within natural microbial communities.  相似文献   

7.
Thrombolites are unlaminated carbonate build‐ups that are formed via the metabolic activities of complex microbial mat communities. The thrombolitic mats of Highborne Cay, Bahamas develop in close proximity (1–2 m) to accreting laminated stromatolites, providing an ideal opportunity for biogeochemical and molecular comparisons of these two distinctive microbialite ecosystems. In this study, we provide the first comprehensive characterization of the biogeochemical activities and microbial diversity of the Highborne Cay thrombolitic mats. Morphological and molecular analyses reveal two dominant mat types associated with the thrombolite deposits, both of which are dominated by bacteria from the taxa Cyanobacteria and Alphaproteobacteria. Diel cycling of dissolved oxygen (DO) and dissolved inorganic carbon (DIC) were measured in all thrombolitic mat types. DO production varied between thrombolitic types and one morphotype, referred to in this study as ‘button mats’, produced the highest levels among all mat types, including the adjacent stromatolites. Characterization of thrombolite bacterial communities revealed a high bacterial diversity, roughly equivalent to that of the nearby stromatolites, and a low eukaryotic diversity. Extensive phylogenetic overlap between thrombolitic and stromatolitic microbial communities was observed, although thrombolite‐specific cyanobacterial populations were detected. In particular, the button mats were dominated by a calcified, filamentous cyanobacterium identified via morphology and 16S rRNA gene sequencing as Dichothrix sp. The distinctive microbial communities and chemical cycling patterns within the thrombolitic mats provide novel insight into the biogeochemical processes related to the lithifying mats in this system, and provide data relevant to understanding microbially induced carbonate biomineralization.  相似文献   

8.
Palaeozoic bryozoan colonies display a large variety of skeletal elements. Various types of rod-like styles are mainly built by laminated and non-laminated (hyaline) skeleton. Typical styles consist of hyaline cores and surrounding laminated sheaths. They usually protrude on the colony surface as spines. In a new bryozoan genus from the Middle Devonian of the Western Sahara described here, styles do not protrude on the colony surface and are embedded within the laminated skeleton. They consist of fibrous material. This new type of styles, unknown from other bryozoans, is here called a “cryptostyle”. A special characteristic of these structures is their intensive reddish-brown colouration. This colouration is apparently caused by the presence of ferric iron between the individual fibres. The function of cryptostyles was apparently weight reduction and stabilising the skeleton. The general morphology of the new bryozoan, Cryptostyloecia hexapuncta gen. et n. sp., implies its systematic position within ptilodictyine cryptostomes, specifically the Family Ptilodictyidae Zittel, 1880.  相似文献   

9.
We recently published a new method based on determining cyanobacterial biomass by confocal laser scanning microscopy image analysis (CLSM-IA) (Solé et al., Ultramicrosc 107:669–673, 2007). CLSM-IA allows biomass calculation for microorganisms of a small size, since the limit of the technique’s resolution is that generated by a voxel, the smallest unit of a three-dimensional digital image, equivalent to 1.183 × 10−3 mgC/cm3 of sediment. This method is especially suitable for the quantitative analysis of a large number of CLSM images generated from benthic sediments in which complex populations of cyanobacteria are abundant, such as microbial mats. In order to validate the new CLSM approach, mats with varying structural characteristics were studied. We have grouped them into three types: Microcoleus mats (laminated), sandy mats (nonlaminated and composed of well-sorted quartz sands), and oil-polluted mats. In this work, we applied CLSM-IA in natural [the Ebro delta and Sant Jordi colony (Spain), Salins-de-Giraud and Etang de Berre (France), and Orkney Islands (Scotland)] and artificial [mesocosms (Israel)] microbial mats. A total of 4,103 confocal images were obtained in order to determine total and individual cyanobacteria biomass profiles, at microscale level. The data presented in this paper show the efficacy of the method, as it can be applied to highly diverse mat samples.  相似文献   

10.
Summary Reduced salintiy and a temperate climate prevailed during the Sarmatian in the Styrian Basin, the westernmost embayment of the Central Paratethys. At its northern margin (in the study area) tectonic processes initiated a transgression causing the incision of a cliff into the metamorphic basement and the formation of a carbonate buildup in the latest Sarmatian. The buildup consists of two serpulid-bryozoan-foraminiferal biostromes separated by a microbialite. Serpulids, bryozoa and the encrusting foraminifer Sinzowella caespitosa (Steinmann) as well as microbial mats formed a rigid framework, in which biogenic debris and siliciclastics were baffled. The different biota show complex growth relationships. Stromatolitic crusts and laminated micritic microbial crusts with birdseyes grew in a small sheltered lagoon. The upper biostrome is truncated by a ravinement surface of eustatic orgin and is overlain by ooid grainstone. The buildup drowned during maximum sea-level rise.  相似文献   

11.
Summary A unique small bioherm, 0.7 m in diameter and 0.25 m high, is described from the Lower Keuper in South Germany. Its core consists of the attached right valves of the tiny oyster-like lamellibranchPlacunopsis ostracina (Pectinacea). It is overgrown by a cm-thick laminated stromatolitic crust formed by microbial mats and sponges. The bioherm was dolomitized during early diagenesis and represents the temporary transition from restricted marine to more saline depositional environments. It is one of the stratigraphically youngestPlacunopsis bioherms found so far in the Germanic Triassic.  相似文献   

12.
When cyanobacteria originated and diversified, and what their ancient traits were, remain critical unresolved problems. Here, we used a phylogenomic approach to construct a well‐resolved ‘core’ cyanobacterial tree. The branching positions of four lineages (Thermosynechococcus elongatus, Synechococcus elongatus, Synechococcus PCC 7335 and Acaryochloris marina) were problematic, probably due to long branch attraction artifacts. A consensus genomic tree was used to study trait evolution using ancestral state reconstruction (ASR). The early cyanobacteria were probably unicellular, freshwater, had small cell diameters, and lacked the traits to form thick microbial mats. Relaxed molecular clock analyses suggested that early cyanobacterial lineages were restricted to freshwater ecosystems until at least 2.4 Ga, before diversifying into coastal brackish and marine environments. The resultant increases in niche space and nutrient availability, and consequent sedimentation of organic carbon into the deep oceans, would have generated large pulses of oxygen into the biosphere, possibly explaining why oxygen rose so rapidly. Rapid atmospheric oxidation could have destroyed the methane‐driven greenhouse with simultaneous drawdown in pCO2, precipitating ‘Snowball Earth’ conditions. The traits associated with the formation of thick, laminated microbial mats (large cell diameters, filamentous growth, sheaths, motility and nitrogen fixation) were not seen until after diversification of the LPP, SPM and PNT clades, after 2.32 Ga. The appearance of these traits overlaps with a global carbon isotopic excursion between 2.2 and 2.1 Ga. Thus, a massive re‐ordering of biogeochemical cycles caused by the appearance of complex laminated microbial communities in marine environments may have caused this excursion. Finally, we show that ASR may provide an explanation for why cyanobacterial microfossils have not been observed until after 2.0 Ga, and make suggestions for how future paleobiological searches for early cyanobacteria might proceed. In summary, key evolutionary events in the microbial world may have triggered some of the key geologic upheavals on the Paleoproterozoic Earth.  相似文献   

13.
Summary Constructed microbial mats, used for studies on the removal and transformation of metals and metalloids, are made by combining cyanobacteria inoculum with a sediment inoculum from a metal-contaminated site. These mats are a heterotrophic and autotrophic community dominated by cyanobacteria and held together by slimy secretions produced by various microbial groups. When contaminated water containing high concentrations of metals is passed over microbial mats immobilized on glass wool, there is rapid removal of the metals from the water. The mats are tolerant of high concentrations of toxic metals and metalloids, such as cadmium, lead, chromium, selenium and arsenic (up to 350 mg L–1). This tolerance may be due to a number of mechanisms at the molecular, cellular and community levels. Management of toxic metals by the mats is related to deposition of metal compounds outside the cell surfaces as well as chemical modification of the aqueous environment surrounding the mats. The location of metal deposition is determined by factors such as redox gradients, cell surface micro-environments and secretion of extra-cellular bioflocculents. Metal-binding flocculents (polyanionic polysaccharides) are produced in large quantities by the cyanobacterial component of the mat. Steep gradients of redox and oxygen exist from the surface through the laminated strata of microbes. These are produced by photosynthetic oxygen production at the surface and heterotrophic consumption in the deeper regions. Additionally, sulfur-reducing bacteria colonize the lower strata, removing and utilizing the reducing H2S, rather than water, for photosynthesis. Thus, depending on the chemical character of the microzone of the mat, the sequestered metals or metalloids can be oxidized, reduced and precipitated as sulfides or oxides. For example precipitates of red amorphous elemental selenium were identified in mats exposed to selenate (Se-VI) and insoluble precipitates of manganese, chromium, cadmium, cobalt, and lead were found in mats exposed to soluble salts of these metals. Constructed microbial mats offer several advantages for use in the bioremediation of metal-contaminated sites. These include low cost, durability, ability to function in both fresh and salt water, tolerance to high concentrations of metals and metalloids and the unique capacity of mats to form associations with new microbial species. Thus one or several desired microbial species might be integrated into mats in order to design the community for specific bioremediation applications.  相似文献   

14.
1. Lakes and ponds in the Larsemann Hills and Bølingen Islands (East‐Antarctica) were characterised by cyanobacteria‐dominated, benthic microbial mats. A 56‐lake dataset representing the limnological diversity among the more than 150 lakes and ponds in the region was developed to identify and quantify the abiotic conditions associated with cyanobacterial and diatom communities. 2. Limnological diversity in the lakes of the Larsemann Hills and Bølingen Islands was associated primarily with conductivity and conductivity‐related variables (concentrations of major ions and alkalinity), and variation in lake morphometry (depth, catchment and lake area). Low concentrations of pigments, phosphate, nitrogen, DOC and TOC in the water column of most lakes suggest extremely low water column productivity and hence high water clarity, and may thus contribute to the ecological success of benthic microbial mats in this region. 3. Benthic communities consisted of prostrate and sometimes finely laminated mats, flake mats, epilithic and interstitial microbial mats. Mat physiognomy and carotenoid/chlorophyll ratios were strongly related to lake depth, but not to conductivity. 4. Morphological‐taxonomic analyses revealed the presence of 26 diatom morphospecies and 33 cyanobacterial morphotypes. Mats of shallow lakes (interstitial and flake mats) and those of deeper lakes (prostrate mats) were characterised by different dominant cyanobacterial morphotypes. No relationship was found between the distribution of these morphotypes and conductivity. In contrast, variation in diatom species composition was strongly related to both lake depth and conductivity. Shallow ponds were mainly characterised by aerial diatoms (e.g. Diadesmis cf. perpusilla and Hantzschia spp.). In deep lakes, communities were dominated by Psammothidium abundans and Stauroforma inermis. Lakes with conductivities higher than ±1.5 mS cm?1 became susceptible to freezing out of salts and hence pronounced conductivity fluctuations. In these lakes P. abundans and S. inermis were replaced by Amphora veneta. Stomatocysts were important only in shallow freshwater lakes. 5. Ice cover influenced microbial mat structure and composition both directly by physical disturbance in shallow lakes and by influencing light availability in deeper lakes, as well as indirectly by generating conductivity increases and promoting the development of seasonal anoxia. 6. The relationships between diatom species composition and conductivity, and diatom species composition and depth, were statistically significant. Transfer functions based on these data can therefore be used in paleolimnological reconstruction to infer changes in the precipitation–evaporation balance in continental Antarctic lakes.  相似文献   

15.
Summary In Southern Germany, two examples of travertines of different age and depositional morphology were examined in detail. Travertines are laminated carbonate rocks formed by precipitation from mineral and/or thermal waters. They include characteristic facies types, such as bushy layers (‘shrubs’) referred to calcification of branching microbes (‘Dichothrix’-morphotype), laminar microbial mats, peloidal layers, and gas bubble layers formed within the sediment. In travertines, microbial activity is the most important factor for carbonate precipitation. Tufas differ from travertines by their abundance of molds of higher plants (leaves, reed, moss, green algae). They may be associated with travertines, but do not exhibit strict travertine facies types. Tufas are common in normal fresh water environments. Contrary to travertines and tufas, calcareous sinters usually occur in restricted areas like spring fissures, caves, or in pores, where microbial activity is not totally absent, but not of paramount importance for precipitation. Pedogenetic processes, which can alter travertine deposits, are responsible for large-scale features such as tepee-structures, and some intraclastic layers, and microscopic structures like endolithic borings andMicrocodium. Travertines may also grade into lacustrine limestones with Characeae, ostracods, and aquatic gastropods.  相似文献   

16.
The dominant purple sulfur bacterium of laminated sediment ecosystems in temperate environments, Thiocapsa roseopersicina, was cultivated in sulfide-limited continuous cultures (D=0.03 h-1) subjected to various combined diel regimen of aeration and illumination in order to simulate environmental conditions in microbial mats. For comparison, cultures were grown under similar illumination regimens but continuously anoxic conditions.Bacteriochlorophyll a (BChla) and carotenoid synthesis was restricted to anoxic-dark periods and did not occur during oxic-light periods. An increase in the length of the oxic-light periods resulted in decreased pigment contents. However, phototrophic growth remained possible even at 20 h oxic-light/4 h anoxic-dark regimens. When anoxic conditions were maintained throughtout, BChla synthesis occurred both during light and dark periods.Glycogen was synthesized in the light and degraded in the dark. Calculations showed that degradation of 1/4–1/5 of the glycogen is sufficient to account for the BChla and carotenoid synthesis in the dark.The data showed that T. roseopersicina is very well adapted to cope with the combined oxygen and light regimes as they occur in microbial mats, which may explain the dominance of this bacterium in the purple layer of these sediment ecosystems.Non-standard abbreviations BChl bacteriochlorophyll - specific growth rate - D dilution rate - SR concentration of limiting substrate in reservoir bottle  相似文献   

17.
Summary Colonies of the bryozoan speciesHippodiplosia insculpta collected from Grandmother’s Cove (American Camp, San Juan Island, Washington, USA) were analyzed in view of pathologic growth patterns. The species produced giant buds that were filled with extracellular polymeric substances and a dense microbial biofilm consisting of bacteria and fungal hyphae. Fungi were isolated from the colonies and were identified asPenicillium expansum, Peniillium brevicompactum, Sclerotinia sclerotiorum, Acremonium breve, andCladosporium sphaerospermum. The results of this study indicate that the formation of giant buds in the bryozoan is a defense mechanism against fungal infection.  相似文献   

18.
The mesothermal outflow zones (50-65°C) of geothermal springs often support an extensive zone of green and orange laminated microbial mats. In order to identify and compare the microbial inhabitants of morphologically similar green-orange mats from chemically and geographically distinct springs, we generated and analyzed small-subunit ribosomal RNA (rRNA) gene amplicons from six mesothermal mats (four previously unexamined) in Yellowstone National Park. Between three and six bacterial phyla dominated each mat. While many sequences bear the highest identity to previously isolated phototrophic genera belonging to the Cyanobacteria, Chloroflexi, and Chlorobi phyla, there is also frequent representation of uncultured, unclassified members of these groups. Some genus-level representatives of these dominant phyla were found in all mats, while others were unique to a single mat. Other groups detected at high frequencies include candidate divisions (such as the OP candidate clades) with no cultured representatives or complete genomes available. In addition, rRNA genes related to the recently isolated and characterized photosynthetic acidobacterium "Candidatus Chloracidobacterium thermophilum" were detected in most mats. In contrast to microbial mats from well-studied hypersaline environments, the mesothermal mats in this study accrue less biomass and are substantially less diverse, but have a higher proportion of known phototrophic organisms. This study provides sequences appropriate for accurate phylogenetic classification and expands the molecular phylogenetic survey of Yellowstone microbial mats.  相似文献   

19.
In the euxinic waters of the NW’ Black Sea shelf, tower-like carbonate build-ups up to several metres in height grow at sites of cold methane seepage. These structures are part of an unique microbial ecosystem that shows a considerable biodiversity and a remarkable degree of organization. The accretion of the build-ups is promoted by the growth of centimetre-sized, methane-filled spheres constructed by calcifying microbial mats. Progressive mineralization of these spheres involves the early precipitation of strongly luminescent high-Mg-calcite rich in iron sulphides, and closely interfingered aragonite phases that finally create the stable (mega-) thrombolithic fabric of the towers. Within the microbial mats, microorganisms occur in distinctive spatial arrangements. Major players among the microbial consortia are the archaea groups ANME-1 and ANME-2, Crenarchaeota, and sulphate-reducing bacteria (SRB) of the Desulfosarcina/Desulfobacterium group. The intracellular precipitation of iron sulphides (greigite) by some of these bacteria, growing in close association with ANME-2, suggests iron cycling as an additional biogeochemical pathway involved in the anaerobic oxidation of methane (AOM).  相似文献   

20.
Desert wadis are widespread in the Arabian Peninsula and play a vital role in the ecology of the region; nevertheless, these ecosystems are among the least studied. Various types of microbial mats are predominant in wadis, but information on their bacterial diversity and spatial distribution is very scarce. We investigated bacterial diversity, pigments and lipid composition of ten mats located at the down-, mid- and upstream of a desert wadi in Oman. Direct microscopy revealed the existence of different unicellular and filamentous cyanobacteria, with the dominance of the heterocystous genera Calothrix and Scytonema. The majority of MiSeq 16S rRNA sequences (44-76%) were affiliated to Cyanobacteria and Proteobacteria. While Alphaproteobacteria was the most dominant proteobacterial class (10 to 48% of total sequences), Gamma- and Deltaproteobacteria were subdominant. Cluster analysis showed that the mats’ bacterial communities at the different locations along the wadi were different and shared less than 60% of their operational taxonomic units (OTUs). Chlorophyll a and scytonemin were the most predominant pigments in all mats. Different saturated, branched and mono- and poly-unsaturated fatty acids were detected in all mats, with C16 and C18 compounds as most dominant. The detected pigments and fatty acids indicate a major role of cyanobacteria in the wadi mats and the adaptation of microorganisms therein to the harsh wadi environment. Detection of diadinoxanthin and fucoxanthin confirmed the presence of diatoms. We conclude that microbial mats are important elements in wadi ecosystems and exist in a great variety of structure and community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号