首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The gram-positive bacterium Corynebacterium glutamicum is used for the industrial production of amino acids, e.g. of L-glutamate and L-lysine. During the last 15 years, genetic engineering and amplification of genes have become fascinating methods for studying metabolic pathways in greater detail and for the construction of strains with the desired genotypes. In order to obtain a better understanding of the central metabolism and to quantify the in vivo fluxes in C. glutamicum, the [13C]-labelling technique was combined with metabolite balancing to achieve a unifying comprehensive pathway analysis. These methods can determine the flux distribution at the branch point between glycolysis and the pentose phosphate pathway. The in vivo fluxes in the oxidative part of the pentose phosphate pathway calculated on the basis of intracellular metabolite concentrations and the kinetic constants of the purified glucose-6-phosphate and 6-phosphogluconate dehydrogenases determined in vitro were in full accordance with the fluxes measured by the [13C]-labelling technique. These data indicate that the oxidative pentose phosphate pathway in C. glutamicum is mainly regulated by the ratio of NADPH/NADP concentrations and the specific activity of glucose-6-phosphate dehydrogenase. The carbon flux via the oxidative pentose phosphate pathway correlated with the NADPH demand for L-lysine synthesis. Although it has generally been accepted that phosphoenolpyruvate carboxylase fulfills a main anaplerotic function in C. glutamicum, we recently detected that a biotin-dependent pyruvate carboxylase exists as a further anaplerotic enzyme in this bacterium. In addition to the activities of these two carboxylases three enzymes catalysing the decarboxylation of the C4 metabolites oxaloacetate or malate are also present in this bacterium. The individual flux rates at this complex anaplerotic node were investigated by using [13C]-labelled substrates. The results indicate that both carboxylation and decarboxylation occur simultaneously in C. glutamicum so that a high cyclic flux of oxaloacetate via phosphoenolpyruvate to pyruvate was found. Furthermore, we detected that in C. glutamicum two biosynthetic pathways exist for the synthesis of DL-diaminopimelate and L-lysine. As shown by NMR spectroscopy the relative use of both pathways in vivo is dependent on the ammonium concentration in the culture medium. Mutants defective in one pathway are still able to synthesise enough L-lysine for growth, but the L-lysine yields with overproducers were reduced. The luxury of having these two pathways gives C. glutamicum an increased flexibility in response to changing environmental conditions and is also related to the essential need for DL-diaminopimelate as a building block for the synthesis of the murein sacculus.  相似文献   

2.
Corynebacterium glutamicum is an important organism for the industrial production of amino acids such as lysine. In the present study time-dependent changes in the oxidative pentose phosphate pathway activity, an important site of NADPH regeneration in C. glutamicum, are investigated, whereby intracellular metabolite concentrations and specific enzyme activities in two isogenic leucine auxotrophic strains differing only in the regulation of their aspartate kinases were compared. After leucine limitation only the strain with a feedback-resistant aspartate kinase began to excrete lysine into the culture medium. Concomitantly, the intracellular NADPH to NADP concentration ratio increased from 2 to 4 in the non-producing strain, whereas it remained constant at about 1.2 in the lysine-producing strain. From these data the in'vivo flux through the pentose phosphate pathway was calculated. These results were used to approximate the total NADPH regeneration by glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and isocitrate dehydrogenase, which agreed fairly well with the calculated demands for biomass formation and lysine biosynthesis. The analysis allowed to conclude that NADPH regeneration in the pentose phosphate pathway is essential for lysine biosynthesis in C. glutamicum.  相似文献   

3.
In Escherichia coli, the pentose phosphate pathway is one of the main sources of NADPH. The first enzyme of the pathway, glucose-6-phosphate dehydrogenase (G6PDH), is generally considered an exclusive NADPH producer, but a rigorous assessment of cofactor preference has yet to be reported. In this work, the specificity constants for NADP and NAD for G6PDH were determined using a pure enzyme preparation. Absence of the phosphate group on the cofactor leads to a 410-fold reduction in the performance of the enzyme. Furthermore, the contribution of the phosphate group to binding of the transition state to the active site was calculated to be 3.6 kcal·mol(-1). In order to estimate the main kinetic parameters for NAD(P) and NAD(P)H, we used the classical initial-rates approach, together with an analysis of reaction time courses. To achieve this, we developed a new analytical solution to the integrated Michaelis-Menten equation by including the effect of competitive product inhibition using the ω-function. With reference to relevant kinetic parameters and intracellular metabolite concentrations reported by others, we modeled the sensitivity of reduced cofactor production by G6PDH as a function of the redox ratios of NAD/NADH (rR(NAD)) and NADP/NADPH (rR(NADP)). Our analysis shows that NADPH production sharply increases within the range of thermodynamically feasible values of rR(NADP), but NADH production remains low within the range feasible for rR(NAD). Nevertheless, we show that certain combinations of rR(NADP) and rR(NAD) sustain greater levels of NADH production over NADPH.  相似文献   

4.
Glucose-6-phosphate dehydrogenase from sporangiophores of Phycomyces blakesleeanus NRRL 1555 (-) was partially purified. The enzyme showed a molecular weight of 85 700 as determined by gel-filtration. NADP+ protected the enzyme from inactivation. Magnesium ions did not affect the enzyme activity. Glucose-6-phosphate dehydrogenase was specific for NADP+ as coenzyme. The reaction rates were hyperbolic functions of substrate and coenzyme concentrations. The Km values for NADP+ and glucose 6-phosphate were 39.8 and 154.4 microM, respectively. The kinetic patterns, with respect to coenzyme and substrate, indicated a sequential mechanism. NADPH was a competitive inhibitor with respect to NADP+ (Ki = 45.5 microM) and a non-competitive inhibitor with respect to glucose 6-phosphate. ATP inhibited the activity of glucose-6-phosphate dehydrogenase. The inhibition was of the linear-mixed type with respect to NADP+, the dissociation constant of the enzyme-ATP complex being 2.6 mM, and the enzyme-NADP+-ATP dissociation constant 12.8 mM.  相似文献   

5.
Reimers, J. M., Huang, Q., Albe, K. R., and Wright, B. E. 1993. Purification and kinetic characterization of glucose-6-phosphate dehydrogenase from Dictyostelium discoideum. Experimental Mycology 17, 1-6. Glucose-6-phosphate dehydrogenase from Dictyostelium discoideum was purified 650-fold and kinetically characterized. The enzyme catalyzed the conversion of G6P + NADP to 6PG + NADPH stoichiometrically and irreversibly in vitro . The purified enzyme is specific for NADP. Michaelis constants for G6P and NADP were 0.040 and 0.011 mM, respectively. NADPH was found to be a competitive inhibitor with respect to NADP with a Ki of 0.006 mM and a noncompetitive inhibitor with respect to G6P. The data from initial velocity and product inhibition studies were consistent with a sequential mechanism.  相似文献   

6.
Metabolic fluxes in the central metabolism were determined for lysine-producing Corynebacterium glutamicum ATCC 21526 with sucrose as a carbon source, providing an insight into molasses-based industrial production processes with this organism. For this purpose, 13C metabolic flux analysis with parallel studies on [1-(13C)Fru]sucrose, [1-(13C)Glc]sucrose, and [13C6Fru]sucrose was carried out. C. glutamicum directed 27.4% of sucrose toward extracellular lysine. The strain exhibited a relatively high flux of 55.7% (normalized to an uptake flux of hexose units of 100%) through the pentose phosphate pathway (PPP). The glucose monomer of sucrose was completely channeled into the PPP. After transient efflux, the fructose residue was mainly taken up by the fructose-specific phosphotransferase system (PTS) and entered glycolysis at the level of fructose-1,6-bisphosphate. Glucose-6-phosphate isomerase operated in the gluconeogenetic direction from fructose-6-phosphate to glucose-6-phosphate and supplied additional carbon (7.2%) from the fructose part of the substrate toward the PPP. This involved supply of fructose-6-phosphate from the fructose part of sucrose either by PTS(Man) or by fructose-1,6-bisphosphatase. C. glutamicum further exhibited a high tricarboxylic acid (TCA) cycle flux of 78.2%. Isocitrate dehydrogenase therefore significantly contributed to the total NADPH supply of 190%. The demands for lysine (110%) and anabolism (32%) were lower than the supply, resulting in an apparent NADPH excess. The high TCA cycle flux and the significant secretion of dihydroxyacetone and glycerol display interesting targets to be approached by genetic engineers for optimization of the strain investigated.  相似文献   

7.
The activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) FROM SPINACH CHLOROPLASTS IS STRONGLY REGULATED BY THE RATIO OF NADPH/NADP+, with the extent of this regulation controlled by the concentration of ribulose 1,5-diphosphate. Other metabolites of the reductive pentose phosphate cycle are far less effective in mediating the regulation of the enzyme activity by NADPH/NADP+ ratio. With a ratio of NADPH/NADP+ of 2, and a concentration of ribulose 1,5-diphosphate of 0.6 mM, the activity of the enzyme is completely inhibited. This level of ribulose 1,5-diphosphate is well within the concentration range which has been reported for unicellular green algae photosynthesizing in vivo. Ratios of NADPH/NADP+ of 2.0 have been measured for isolated spinach chloroplasts in the light and under physiological conditions. Since ribulose 1,5-diphosphate is a metabolite unique to the reductive pentose phosphate cycle and inhibits glucose-6-phosphate dehydrogenase in the presence of NADPH/NADP+ ratios found in chloroplasts in the light, it is proposed that regulation of the oxidative pentose phosphate cycle is accomplished in vivo by the levels of ribulose 1,5-diphosphate, NADPH, and NADP+. It already has been shown that several key reactions of the reductive pentose phosphate cycle in chloroplasts are regulated by levels of NADPH/NADP+ or other electron-carrying cofactors, and at least one key-regulated step, the carboxylation reaction is strongly affected by 6-phosphogluconate, the metabolic unique to the oxidative pentose phosphate cycle. Thus there is an interesting inverse regulation system in chloroplasts, in which reduced/oxidized coenzymes provide a general regulatory mechanism. The reductive cycle is activated at high NADPH/NADP+ ratios where the oxidative cycle is inhibited, and ribulose 1,5-diphosphate and 6-phosphogluconate provide further control of the cycles, each regulating the cycle in which it is not a metabolite.  相似文献   

8.
The in vivo dynamics of the pentose phosphate pathway has been studied with transient experiments in continuous culture of Saccharomyces cerevisiae. Rapid sampling was performed with a special sampling device after disturbing the steady state with a pulse of glucose. The time span of observation was 120 s after the pulse. During this short time period the dynamic effect of protein biosynthesis can be neglected. The metabolites of interest (glucose 6-phosphate, NADP, NADPH, 6-phosphogluconate, and MgATP2-) we determined with enzymatic assays and HPLC. The experimental observations were then used for the identification of kinetic rate equations and parameters under in vivo conditions. In accordance with results from in vitro studies the in vivo diagnosis supports an ordered Bi-Bi mechanism with noncompetitive inhibition by MgATP2- for the enzyme glucose-6-phosphate dehydrogenase. In the case of 6-phosphogluconate dehydrogenase an ordered Bi-Ter mechanism with a competitive inhibition by MgATP2- has been found. Because the MgATP2- concentration decreases abruptly after the pulse of glucose the inhibitory effect vanishes and the flux through the pentose phosphate pathway increases. This regulation phenomenon guarantees the balance of fluxes through glycolysis and pentose phosphate pathway during the dynamic time period.  相似文献   

9.
The kinetic properties of placental glucose-6-phosphate dehydrogenase were studied, since this enzyme is expected to be an important component of the placental protection system. In this capacity it is also very important for the health of the fetus. The placental enzyme obeyed "Rapid Equilibrium Ordered Bi Bi" sequential kinetics with K(m) values of 40+/-8 microM for glucose-6-phosphate and 20+/-10 microM for NADP. Glucose-6-phosphate, 2-deoxyglucose-6-phosphate and galactose-6-phosphate were used with catalytic efficiencies (k(cat)/K(m)) of 7.4 x 10(6), 4.89 x 10(4) and 1.57 x 10(4) M(-1).s(-1), respectively. The K(m)app values for galactose-6-phosphate and for 2-deoxyglucose-6-phosphate were 10+/-2 and 0.87+/-0.06 mM. With galactose-6-phosphate as substrate, the same K(m) value for NADP as glucose-6-phosphate was obtained and it was independent of galactose-6-phosphate concentration. On the other hand, when 2-deoxyglucose-6-phosphate used as substrate, the K(m) for NADP decreased from 30+/-6 to 10+/-2 microM as the substrate concentration was increased from 0.3 to 1.5 mM. Deamino-NADP, but not NAD, was a coenzyme for placental glucose-6-phosphate dehydrogenase. The catalytic efficiencies of NADP and deamino-NADP (glucose-6-phosphate as substrate) were 1.48 x 10(7) and 4.80 x 10(6) M(-1)s(-1), respectively. With both coenzymes, a hyperbolic saturation and an inhibition above 300 microM coenzyme concentration, was observed. Human placental glucose-6-phosphate dehydrogenase was inhibited competitively by 2,3-diphosphoglycerate (K(i)=15+/-3 mM) and NADPH (K(i)=17.1+/-3.2 microM). The small dissociation constant for the G6PD:NADPH complex pointed to tight enzyme:NADPH binding and the important role of NADPH in the regulation of the pentose phosphate pathway.  相似文献   

10.
Glucose-6-phosphate (G6P) dehydrogenase and 6-phosphogluconate (6PG) dehydrogenase were partially purified about 53-fold and 47-fold, respectively, from the cell-free extract of glucose-grown Candida tropicalis by means of ammonium sulfate fractionation and DEAE-cellulose column chromatography. AMP acted as the competitive inhibitor against G6P and NADP in the G6P dehydrogenase reaction. This inhibition was remarkable at low concentrations of NADP, increasing the sigmoidicity of the NADP-saturation curve. On the other hand, 6PG dehydrogenase was not affected by AMP. Fructose-1,6-bisphosphate (FDP) and phosphoenolpyruvate (PEP) inhibited slightly G6P dehydrogenase. 6PG dehydrogenase was also weakly inhibited by FDP. Apparent Km values of G6P dehydrogenase were calculated as 1.8 × 10?4 m for G6P and 3.1 × 10?5 m for NADP. Those of 6PG dehydrogenase were 9.4 × 10?5 m for 6PG and 2.8 × 10?5 m for NADP.  相似文献   

11.
Glucose-6-phosphate dehydrogenase (G6PD) catalyses the first step of the pentose phosphate pathway which generates NADPH for anabolic pathways and protection systems in liver. G6PD was purified from dog liver with a specific activity of 130 U x mg(-1) and a yield of 18%. PAGE showed two bands on protein staining; only the slower moving band had G6PD activity. The observation of one band on SDS/PAGE with M(r) of 52.5 kDa suggested the faster moving band on native protein staining was the monomeric form of the enzyme.Dog liver G6PD had a pH optimum of 7.8. The activation energy, activation enthalpy, and Q10, for the enzymatic reaction were calculated to be 8.96, 8.34 kcal x mol(-1), and 1.62, respectively.The enzyme obeyed "Rapid Equilibrium Random Bi Bi" kinetic model with Km values of 122 +/- 18 microM for glucose-6-phosphate (G6P) and 10 +/- 1 microM for NADP. G6P and 2-deoxyglucose-6-phosphate were used with catalytic efficiencies (kcat/Km) of 1.86 x 10(6) and 5.55 x 10(6) M(-1) x s(-1), respectively. The intrinsic Km value for 2-deoxyglucose-6-phosphate was 24 +/- 4mM. Deamino-NADP (d-NADP) could replace NADP as coenzyme. With G6P as cosubstrate, Km d-ANADP was 23 +/- 3mM; Km for G6P remained the same as with NADP as coenzyme (122 +/- 18 microM). The catalytic efficiencies of NADP and d-ANADP (G6P as substrate) were 2.28 x 10(7) and 6.76 x 10(6) M(-1) x s(-1), respectively. Dog liver G6PD was inhibited competitively by NADPH (K(i)=12.0 +/- 7.0 microM). Low K(i) indicates tight enzyme:NADPH binding and the importance of NADPH in the regulation of the pentose phosphate pathway.  相似文献   

12.
1. Glucose 6-phosphate dehydrogenase was isolated and partially purified from a thermophilic fungus, Penicillium duponti, and a mesophilic fungus, Penicillium notatum. 2. The molecular weight of the P. duponti enzyme was found to be 120000+/-10000 by gelfiltration and sucrose-density-gradient-centrifugation techniques. No NADP(+)- or glucose 6-phosphate-induced change in molecular weight could be demonstrated. 3. Glucose 6-phosphate dehydrogenase from the thermophilic fungus was more heat-stable than that from the mesophile. Glucose 6-phosphate, but not NADP(+), protected the enzyme from both the thermophile and the mesophile from thermal inactivation. 4. The K(m) values determined for glucose 6-phosphate dehydrogenase from the thermophile P. duponti were 4.3x10(-5)m-NADP(+) and 1.6x10(-4)m-glucose 6-phosphate; for the enzyme from the mesophile P. notatum the values were 6.2x10(-5)m-NADP(+) and 2.5x10(-4)m-glucose 6-phosphate. 5. Inhibition by NADPH was competitive with respect to both NADP(+) and glucose 6-phosphate for both the P. duponti and P. notatum enzymes. The inhibition pattern indicated a rapid-equilibrium random mechanism, which may or may not involve a dead-end enzyme-NADP(+)-6-phosphogluconolactone complex; however, a compulsory-order mechanism that is consistent with all the results is proposed. 6. The activation energies for the P. duponti and P. notatum glucose 6-phosphate dehydrogenases were 40.2 and 41.4kJ.mol(-1) (9.6 and 9.9kcal.mol(-1)) respectively. 7. Palmitoyl-CoA inhibited P. duponti glucose 6-phosphate dehydrogenase and gave an inhibition constant of 5x10(-6)m. 8. Penicillium glucose 6-phosphate dehydrogenase had a high degree of substrate and coenzyme specificity.  相似文献   

13.
Plastids from roots of barley (Hordeum vulgare L.) seedlings were isolated by discontinuous Percoll-gradient centrifugation. Coinciding with the peak of nitrite reductase (NiR; EC 1.7.7.1, a marker enzyme for plastids) in the gradients was a peak of a glucose-6-phosphate (Glc6P) and NADP+-linked nitrite-reductase system. High activities of phosphohexose isomerase (EC 5.3.1.9) and phosphoglucomutase (EC 2.7.5.1) as well as glucose-6-phosphate dehydrogenase (Glc6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) were also present in the isolated plastids. Thus, the plastids contained an overall electron-transport system from NADPH coupled with Glc6PDH and 6PGDH to nitrite, from which ammonium is formed stoichiometrically. However, NADPH alone did not serve as an electron donor for nitrite reduction, although NADPH with Glc6P added was effective. Benzyl and methyl viologens were enzymatically reduced by plastid extract in the presence of Glc6P+ NADP+. When the plastids were incubated with dithionite, nitrite reduction took place, and ammonium was formed stoichiometrically. The results indicate that both an electron carrier and a diaphorase having ferredoxin-NADP+ reductase activity are involved in the electron-transport system of root plastids from NADPH, coupled with Glc6PDH and 6PGDH, to nitrite.Abbreviations Cyt cytochrome - Glc6P glucose-6-phosphate - Glc6PDH glucose-6-phosphate dehydrogenase - MVH reduced methyl viologen - NiR nitrite reductase - 6PG 6-phosphogluconate - 6PGDH 6-phosphogluconate dehydrogenase  相似文献   

14.
In the present work, metabolic flux engineering of Corynebacterium glutamicum was carried out to increase lysine production. The strategy focused on engineering of the pentose phosphate pathway (PPP) flux by different genetic modifications. Over expression of the zwf gene, encoding G6P dehydrogenase, in the feedback-deregulated lysine-producing strain C. glutamicum ATCC 13032 lysC(fbr) resulted in increased lysine production on different carbon sources including the two major industrial sugars, glucose and sucrose. The additional introduction of the A243T mutation into the zwf gene and the over expression of fructose 1,6-bisphosphatase resulted in a further successive improvement of lysine production. Hereby the point mutation resulted in higher affinity of G6P dehydrogenase towards NADP and reduced sensitivity against inhibition by ATP, PEP and FBP. Overall, the lysine yield increased up to 70% through the combination of the different genetic modifications. Through strain engineering formation of trehalose was reduced by up to 70% due to reduced availability of its precursor G6P. Metabolic flux analysis revealed a 15% increase of PPP flux in response to over expression of the zwf gene. Overall a strong apparent NADPH excess resulted. Redox balancing indicated that this excess is completely oxidized by malic enzyme.  相似文献   

15.
6-Phosphogluconate dehydrogenase is the pivotal enzyme that links the gluconate route and the oxidative phase of the pentose phosphate pathway in Schizosaccharomyces pombe. The enzyme differs from the known 6-phosphogluconate dehydrogenases of other sources in that the Schizosaccharomyces enzyme is tetrameric having a subunit mass of 38 kDa, that it requires NADP+ obligatorily for activity, and that it can be activated by divalent metal ions such as Co2+ and Mn2+. Steady-state kinetic studies were undertaken. Initial rate and product inhibition results suggest that 6-phosphogluconate dehydrogenase from Schizosaccharomyces pombe catalyzes NADP(+)-linked oxidative decarboxylation of 6-phosphogluconate by an equilibrium random mechanism with two independent binding sites, namely one site for the nicotinamide coenzyme, NADP+/NADPH, and another site for 6-phosphogluconate-D-ribulose-5-phosphate and for CO2. Studies of pH dependence implicated a basic residue with a pK value of 7.4 in the binding of 6-phosphogluconate and an acidic residue with a pK value of 6.7 in the cation-mediated interaction of NADP+ with the enzyme.  相似文献   

16.
The steady-state kinetics of human erythrocyte glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ 1-oxidoreductase, EC 1.1.1.49) dimers were studied by initial rate measurement. These experiments gave intersecting double-reciprocal plots suggesting a ternary complex mechanism with a Km for NADP and glucose 6-phosphate of 11 microM and 43 microM, respectively. These studies were combined with rate measurements in the presence of one product (NADPH), dead-end inhibitors, as well as alternative substrates. The inhibition by NADPH was found to be competitive with respect to both substrates. Alternate substrates experiments gave linear double-reciprocal plots over a wide range of substrate concentrations. The results suggest that the dimeric enzyme follows either a random or a Theorell-Chance mechanism.  相似文献   

17.
Perfusion of rat livers with 10 mM-fructose or pretreatment of the rat with 6-aminonicotinamide (70 mg/kg) 6 h before perfusion decreased intracellular ATP concentrations and increased the rate of p-nitroanisole O-demethylation. This increase was accompanied by a decrease in the free [NADP+]/[NADPH] ratio calculated from concentrations of substrates assumed to be in near-equilibrium with isocitrate dehydrogenase. After pretreatment with 6-aminonicotinamide the [NADP+]/[NADPH] ratio also declined. Reduction of NADP+ during mixed-function oxidation may be explained by inhibition of of one or more NADPH-generating enzymes. Glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase and "malic" enzyme, partially purified from livers of phenobarbital-treated rats, were inhibited by ATP and ADP. Inhibitor constants of ATP for the four dehydrogenases varied considerably, ranging from 9 micrometer for "malic" enzyme to 1.85 mM for glucose 6-phosphate dehydrogenase. NADPH-cytochrome c reductase was also inhibited by ATP (Ki 2.8 mM) and by ADP (Ki 0.9 mM), but not by AMP. Concentrations of ATP and ADP that inhibited glucose 6-phosphate dehydrogenase and the reductase were comparable with concentrations in the intact liver. Thus agents that lower intracellular ATP may accelerate rates of mixed-function oxidation by a concerted mechanism involving deinhibition of NADPH-cytochrome c reductase and one or more NADPH-generating enzymes.  相似文献   

18.
Summary The lower Vmax of 6PGDH with respect to G6PDH and its higher sensitivity to inhibition by NADPH, suggest the existence of an imbalance between the two dehydrogenases of the pentose phosphate pathway in rat liver. Possible modulators of these activities, particularly in relation with the inhibition by NADPH in physiological conditions, have been investigated. The results suggest that in both cases the inhibition by NADPH is strictly isosteric and that the relative affinities for the reduced and oxidized forms of the pyridine nucleotide are unaffected by glutathion, the intermediates of the pentose phosphate shunt or some divalent ions.Abbreviations G6PDH glucose-6-phosphate dehydrogenase (EC 1.1.1.49) - 6PGDH 6-phosphogluconate dehydrogenase (EC 1.1.1.44) On leave from the Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.  相似文献   

19.
Regulation of the pentose phosphate cycle   总被引:25,自引:12,他引:13       下载免费PDF全文
1. A search was made for mechanisms which may exert a ;fine' control of the glucose 6-phosphate dehydrogenase reaction in rat liver, the rate-limiting step of the oxidative pentose phosphate cycle. 2. The glucose 6-phosphate dehydrogenase reaction is expected to go virtually to completion because the primary product (6-phosphogluconate lactone) is rapidly hydrolysed and the equilibrium of the joint dehydrogenase and lactonase reactions is in favour of virtually complete formation of phosphogluconate. However, the reaction does not go to completion, because glucose 6-phosphate dehydrogenase is inhibited by NADPH (Neglein & Haas, 1935). 3. Measurements of the inhibition (which is competitive with NADP(+)) show that at physiological concentrations of free NADP(+) and free NADPH the enzyme is almost completely inhibited. This indicates that the regulation of the enzyme activity is a matter of de-inhibition. 4. Among over 100 cell constituents tested only GSSG and AMP counteracted the inhibition by NADPH; only GSSG was highly effective at concentrations that may be taken to occur physiologically. 5. The effect of GSSG was not due to the GSSG reductase activity of liver extracts, because under the test conditions the activity of this enzyme was very weak, and complete inhibition of the reductase by Zn(2+) did not abolish the GSSG effect. 6. Preincubation of the enzyme preparation with GSSG in the presence of Mg(2+) and NADP(+) before the addition of glucose 6-phosphate and NADPH much increased the GSSG effect. 7. Dialysis of liver extracts and purification of glucose 6-phosphate dehydrogenase abolished the GSSG effect, indicating the participation of a cofactor in the action of GSSG. 8. The cofactor removed by dialysis or purification is very unstable. The cofactor could be separated from glucose 6-phosphate dehydrogenase by ultrafiltration of liver homogenates. Some properties of the cofactor are described. 9. The hypothesis that GSSG exerts a fine control of the pentose phosphate cycle by counteracting the NADPH inhibition of glucose 6-phosphate dehydrogenase is discussed.  相似文献   

20.
D C Crans  S M Schelble 《Biochemistry》1990,29(28):6698-6706
Vanadate dimer and tetramer inhibit glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. The inhibition by a vanadate mixture containing vanadate monomer, dimer, tetramer, and pentamer was determined by measuring the rates of glucose 6-phosphate oxidation and reduction of NAD (or NADP) catalyzed by glucose-6-phosphate dehydrogenase. The inhibition by vanadate is competitive with respect to NAD or NADP and noncompetitive (a mixed type) with respect to glucose 6-phosphate (G6P) when NAD or NADP are cofactors. This inhibition pattern varies from that observed with phosphate and thus suggests vanadate interacts differently than a phosphate analogue with the enzyme. 51V NMR spectroscopy was used to directly correlate the inhibition of vanadate solutions to the vanadate dimer and/or tetramer, respectively. The activity of the vanadate oligomer varied depending on the cofactor and which substrate was being varied. The vanadate dimer was the major inhibiting species with respect to NADP. This is in contrast to the vanadate tetramer, which was the major inhibiting species with respect to G6P and with respect to NAD. The inhibition by vanadate when G6P was varied was weak. The competitive inhibition pattern with respect to NAD and NADP suggests the possibility that vanadate oligomers may also inhibit catalysis of other NAD- or NADP-requiring dehydrogenases. Significant concentrations of vanadate dimer and tetramer are only found at fairly high vanadate concentrations, so these species are not likely to represent vanadium species present under normal physiological conditions. It is however possible the vanadate dimer and/or tetramer represent toxic vanadate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号