首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virus diseases of cacao in West Africa; technique of insect transmission   总被引:2,自引:0,他引:2  
Experiments on the technique of insect transmission of the cacao virus 1A (swollen-shoot) are described. This virus is unique in being transmitted by mealybugs (Coccoidea) and the experiments show that all stages of Pseudococcus njalensis Laing and of Ferrisia virgata Ckll. are vectors. These insects become infective after feeding for less than 4 hr. on the infected plant and transmit after less than 3 hr. on the test plant. The virus is non-persistent in the vector after 3 hr. test-feeding. The vectors can collect virus from either leaf, green shoot, bark or pod; the young symptom-bearing leaf is the best site for infection-feeding and the cotyledon of the bean for test-feeding.  相似文献   

2.
The minimum acquisition period of velvet tobacco mottle virus (VTMoV) by its mirid vector Cyrtopeltis nicotianae was about 1 min, with an increase in the rate of transmission (i.e. proportion of test plants infected) for acquisition periods up to 1000 min. Pre-acquisition starvation periods up to 18 h did not affect the rate of transmission. After an acquisition access period of 2 days, the minimum inoculation period was between 1 and 2 h and the rate of transmission increased with increasing inoculation time; when the acquisition access period was 1 h, or if vectors were fasted for 16 h after the 2 day acquisition, the rate of transmission was significantly lower. When mirids were transferred sequentially each day to a healthy plant after a 24 h acquisition feed, they transmitted intermittently for up to 10 days. Up to 50% of mirids transmitted after a moult and this was not due to the mirids probing the shed cuticles or exudates of infective insects. Mirids transmitted after a moult, following acquisition periods of 10, 100 or 1000 min. C. nicotianae transmitted solanum nodiflorum mottle virus (SNMV), sowbane mosaic virus (SoMV) and southern bean mosaic virus (SBMV), but not subterranean clover mottle virus (SCMoV), lucerne transient streak virus (LTSV), tobacco ringspot virus (TRSV), galinsoga mosaic virus (GMV), nor nicotiana velutina mosaic virus (NVMV). Tomato bushy stunt virus (TBSV) was transmitted to 1/58 test plants.  相似文献   

3.
1. Free-living insects are often thought of as more vulnerable to environmental hazards than concealed insects, such as galling or mining insects. The possibility that larvae of the free-living leaf beetle Galerucella lineola seek out existing plant structures and thereby become partly concealed was explored.
2. Neonate larvae of G. lineola frequently feed in rolled-in margins of young leaves of their host plant, Salix viminalis . In addition to nutritional benefits from feeding on young leaves, larvae may also gain protection against adverse weather conditions and general predators by feeding in the leaf rolls. Field and laboratory experiments were conducted to test these hypotheses.
3. Artificial shelters were constructed and cohorts of neonate larvae were placed on experimental plants. In all experiments, larvae preferred to feed in shelters, even when shelters were constructed on mature leaves.
4. In one of the experiments, fewer larvae disappeared when shelters were provided. In a predator exclusion experiment, however, no differences in predator-inflicted mortality on G. lineola were found between shelter-containing shoots and control shoots.
5. A laboratory experiment showed increased protection from desiccation when shelters were present; growth rate was higher for larvae feeding on plants with shelters.
6. Thus, free-living insects may not always be as exposed to environmental hazards as is often assumed. In particular, young larvae may take advantage of preformed structures on their host plant and feed in a concealed microhabitat. Because mortality, in general, is high during early instars, shelter-seeking behaviour may increase survival significantly. The existence of preformed shelters may therefore be a plant characteristic that should be considered when exploring the environmental risks associated with the free-living habit.  相似文献   

4.
Whiteflies, which had originated from a mixed culture of Bemisia spp. collected from cassava ( Manihot utilissima Pohl.) in the field, needed to feed for at least 4 hr. on the young leaves of a cassava plant with mosaic before they acquired the virus. Whiteflies that acquired virus in 4–6 hr. required another 4 hr. to become viruliferous. Once viruliferous they could infect healthy plants in a feeding period of 15 min., but longer periods gave more infections. Adult whiteflies remained infective for more than 48 hr. after ending their infection feed. Cassava fed upon by only one viruliferous fly sometimes became infected.
The virus-vector relationships of cassava mosaic virus resemble those of cotton leaf-curl virus but the first could not be transmitted to cotton or the second to cassava.  相似文献   

5.
Wounding of plants by insects is often mimicked in the laboratory by mechanical means such as cutting or crushing, and has not been compared directly with other forms of biotic stress such as virus infection. To compare the response of plants to these types of biotic and abiotic stress, trypsin inhibitor (TI) activity induced locally and systemically in mature tobacco (Nicotiana tabacum L.) and tomato (Lycopersicon esculentum L.) plants was followed for 12 days. In tobacco, cutting, crushing and insect feeding all induced comparable levels of TI activity of approx. 5 nmol·(mg leaf protein)?1 in wounded leaves, while tobacco mosaic virus (TMV) infection of tobacco induced 10-fold lower amounts in the infected leaves. In tomato, feeding by insects also led to the induction of a level of TI activity of 5 nmol·(mg leaf protein)?1. In contrast, both cutting and crushing of tomato leaves induced 10-fold higher amounts. These data show that biotic stress, in the form of insect feeding and TMV infection, and abiotic stress, in the form of wounding, have different effects on local levels of induced TI activity in mature tobacco and tomato plants. Irrespective of the type of wounding, in neither tobacco nor tomato could systemic induction of TI activity be observed in nearby unwounded leaves, which suggests that systemic induction of TI activity in mature tobacco and tomato plants is different from systemic TI induction in seedlings. Wounding of tobacco leaves, however, did increase the responsiveness to wounding elsewhere in the plant, as measured by an increased induction of TI activity.  相似文献   

6.
From the time of first feeding on plants infected with strawberry virus 3, 10–19 days elapsed before Capitophorus fragariae became infective, a longer 'latent period' than any previously recorded for an aphid-transmitted virus. The time taken for aphids to develop infectivity after leaving infected plants decreased with increasing duration of the infection feed. Aphids which had fed for 16 days on an infected plant caused infection in the first day of test feeding.  相似文献   

7.
Aphids ( Capitophorus fragariae Theob.) allowed to feed for several days on a strawberry plant infected with yellow-edge transmitted two virus fractions. The isolation and properties of one (virus 1) have been described previously. The other (virus 2) was separated by transferring the aphids to fresh indicators after 24 hr.
Virus 2 was retransmitted after infection feeding periods of 24 hr. or more and persisted in the vector for several days. There is some evidence that it is itself a complex of viruses which can be separated further. On Fragaria vesca virus 2 produced chlorotic spotting, slight marginal chlorosis of the leaves and slight cupping of the leaflets. On Royal Sovereign strawberry it produced slight chlorosis of the young leaves.
On Royal Sovereign viruses 1 and 2 together produced symptoms of yellow-edge which is thus shown to be caused by a virus complex which can be resolved by means of the aphis vector.  相似文献   

8.
Exposing both surfaces of leaves systemically infected with cabbage black ring spot virus (CBRSV) or henbane mosaic virus to ultra-violet radiation decreases the infectivity of expressed sap to about one-fifth. As irradiation probably inactivates virus mainly in the epidermis, which occupies about one-quarter the volume of the leaves, these viruses seem to occur at much higher concentrations in sap from the epidermis than in sap from other cells. By contrast, tobacco mosaic virus seems not to occur predominantly in the epidermis.
CBRSV and henbane mosaic virus are normally transmitted most frequently by previously fasted aphids that feed for only short periods on infected leaves, but aphids treated like this transmit rarely from leaves that have been exposed to ultraviolet radiation. Irradiation has relatively little effect on the proportion of aphids that transmit after long infection feedings. Fasting seems to increase transmission by increasing the probability that aphids will imbibe sap from the epidermis of leaves they newly colonize. With longer periods on infected leaves, the ability of fasted aphids to transmit probably decreases because they then feed from deeper cells and their stylets contain sap with less virus. Only virus contained in the stylets seems to be transmitted, not virus taken into the stomach. About half the transmissions of henbane mosaic virus by aphids that have colonized tobacco leaves for hours may be caused by insects that temporarily cease feeding on the phloem and newly penetrate the epidermis.
Irradiating infected leaves affected the transmission of sugar-beet mosaic virus in the same way as that of henbane mosaic virus, but had little effect on the transmission of beet yellows virus, whose vectors become more likely to transmit the longer they feed on infected plants.  相似文献   

9.
Honeydew excretion of single Myzus persicae nymphs on potato leafroll virus (PLVR)-infected Physalis floridana was studied during the acquisition access period (AAP) in relation to the efficiency of virus transmission.
With increasing length of the AAP, the percentage of nymphs that transmitted the virus increased. These nymphs produced significantly more honeydew droplets during the AAP on PLRV-infected P. floridana plants than nymphs which failed to transmit the virus. However, the number of honeydew droplets excreted during the AAP by transmitting nymphs did not affect the length of the latency period. Nymphs which infected the first test plant after a short latency period produced a similar amount of honeydew during the AAP to those with a longer latency period.
Honeydew excretion recorded on plants of varied age, showed that nymphs feeding on bottom leaves of infected plants produced more honeydew droplets than on comparable leaves of healthy plants. On infected plants, nymphs produced more honeydew droplets on bottom leaves with pronounced symptoms than on top leaves that hardly showed any symptom of PLRV infection.
The concentration of viral antigen measured by ELISA was lower in top leaves than in bottom leaves of infected plants. Nevertheless, nymphs feeding on top leaves transmitted the virus more efficiently than those which used bottom leaves as virus source. When bottom leaves were used as a virus source, the percentage of viruliferous nymphs decreased with plant age. These results indicate that the availability of virus for acquisition by aphids declines with increasing plant age and symptom severity.  相似文献   

10.
Raspberry leaf mottle virus is acquired by Amphorophora rubi in feeding periods of 1/2-2 hr. Longer feeding periods cause no significant fluctuations in infectivity. During continuous feeding on healthy plants, infectivity declines rapidly after 2 hr., but persists for at least 5 hr. if aphids are transferred frequently to fresh healthy plants. The estimated probability of infection by single aphids is 1 in 20. Rarely more than 50% of test plants, Rubus occidentalis , seedlings became infected, and this is thought to be due mainly to variation in plant susceptibility. Young leaves of infected Norfolk Giant are, however, better sources of virus than older leaves.  相似文献   

11.
A virus that causes chlorotic streaks on ryegrass leaves was transmitted by the eriophyid mite Abacarus hystrix (Nalepa). Virus-free mites acquired the virus in 2 hr. feeding on infected ryegrass and the proportion that became infective increased with increased feeding time up to 12 hr.; vectors lost infectivity within 24 hr. of leaving the infected leaves. All instars of A. hystrix transmitted the virus.
The virus was transmitted by manual inoculation of sap to other species of Gramineae, including oats, rice, cocksfoot and meadow fescue, but none of these hosts seemed to contain as much virus as ryegrass; their saps did not precipitate specifically with antiserum prepared against the virus in ryegrass, whereas sap from infected ryegrass precipitated up to a dilution of 1/32. Infective sap of S22 Italian ryegrass contained flexuous rod-shaped particles; the dilution end-point of the virus was about 1 in 1000; the virus was inactivated when held for 10 min. at 60°C. and most of its infectivity was lost after 24 hr. at room temperature.  相似文献   

12.
Summary Herbivory can alter the balance between sources and sinks within a plant, and changes in the source-sink ratio often lead to changes in plant photosynthetic rates. We investigated how feeding by three insect herbivores affected photosynthetic rates and growth of goldenrod (Solidago altissima). One, a phloem-sap feeding aphid (Uroleucon caligatum), creates an additional sink, and the other two, a leaf-chewing beetle (Trirhabda sp.) and a xylem-sap feeding spittlebug (Philaenus spumarius) both reduce source supply by decreasing leaf area. Plants were grown outside in large pots and insects were placed on them at predetermined densities, with undamaged plants included as controls. All insects were removed after a 12-day feeding period. We measured photosynthetic rates both of damaged leaves and of undamaged leaves that were produced after insect removal. Photosynthetic rates per unit area of damaged leaves were reduced by spittlebug feeding, but not by beetle or aphid feeding. Conductance of spittlebugdamaged leaves did not differ from controls, but internal carbon dioxide concentrations were increased. These results indicate that spittlebug feeding does not cause stomatal closure, but impairs fixation within the leaf. Effects of spittlebug feeding on photosynthetic rates persisted after the insects were removed from the plants. Photosynthetic rates per unit area of leaves produced after insect removal on spittlegug-damaged plants were lower than control levels, even though the measurements were taken 12 days after insect removal. The measurement leaf on spittlebugdamaged plants was reduced in area by 27% relative to the controls, but specific leaf area (leaf area/leaf weight) was increased by 18%. Because of the shift in specific leaf area, photosynthetic rates were also examined per unit leaf weight, and when this was done there were no significant differences between control and spittlebug-damaged plants. Beetle and aphid feeding had no effects on the photosynthetic rate of the leaves produced after insect removal. Plant relative growth rates (in terms of height) were reduced by spittlebugs during the period that the insects were feeding on the plants. Relative growth rates of spittlebug-damaged plants were increased above control levels after insect removal, but these plants were still shorter than controls 17 days after insect removal. Beetles and aphids did not affect plant relative growth rates or plant height. Feeding by both spittlebugs and beetles reduced leaf area, and the effect of the spittlebug was more severe than that of the beetle. These results show that effects of herbivory on photosynthetic rates cannot be predicted simply by considering changes in the source-sink ratio, and that spittlebug feeding is more damaging to the host plant than beetle or aphid feeding.  相似文献   

13.
Experiments on the virus-vector relationship of the Trinidad cowpea mosaic virus, transmitted by Ceratoma ruficornis , gave the following results: ability to infect decreased with increasing time after ceasing to feed on infected plants, but vectors remained infective for 14 days (much longer than the longevity in vitro of the virus at glasshouse shade temperatures of 23–31°C.); the beetles transmitted more consistently after longer feeding on infected plants, though feeds of under 5 min. made them efficient vectors; the proportion of plants infected increased with the amount of feeding damage on them; fasting the vectors before feeding on infected plants increased voracity but had no effect on their ability to transmit; beetles became infective immediately after feeding on infected plants. Cowpeas were infected by inoculation with macerated infective vectors or with juice regurgitated by vectors. There is no evidence that aphids or other sucking insects can transmit the virus. It seems similar to squash mosaic and turnip yellow mosaic, for vectors of all three viruses probably transmit by regurgitating infective juice during feeding.  相似文献   

14.
To maximize fitness, plant pathogenic viruses may manipulate their arthropod vectors through direct and indirect (via the host plant) interactions. For many virus-vector-plant associations, insect feeding does not always lead to virus acquisition. In fact, many plant viruses, especially those that propagate into their vectors, are acquired at low rates. Although the majority of insects colonizing an infected plant escape from viral infection, they are still exposed to the indirect effects (i.e. the effect of plant metabolism modification following virus infection). Little information has been reported on the effects of plant viruses on insects that become infected versus those that do not (here referred to as “exposed”). The effect that the Maize mosaic virus (MMV) (Rhabdoviridae) exerts on the fitness and wing dimorphism of the planthopper vector, Peregrinus maidis (Hemiptera, Delphacidae), that developed on leaves from either young or old corn plants was examined. MMV exerted non-consistent to minimal direct effects on developmental time, longevity, nymphal mortality and fecundity. In addition, some small yet significant fitness costs were encountered by exposed planthoppers to escape MMV infection. Furthermore, a significantly higher proportion of macropters over brachypters were produced on MMV-infected old leaves compared with healthy leaves of a similar age. We conclude that the virus influences the dispersal of the vector, promoting a larger production of macropters at the costs of brachypters at a late stage of the plant infection. Because MMV infection in planthoppers did not segregate by wing morphotype, our results indicate that the dispersal of both infected and exposed planthoppers was a likely consequence of the indirect effects of MMV.  相似文献   

15.
Gall-inducing insects are highly specialized herbivores that modify the phenotype of their host plants. Beyond the direct manipulation of plant morphology and physiology in the immediate environment of the gall, there is also evidence of plant-mediated effects of gall-inducing insects on other species of the assemblages and ecosystem processes associated with the host plant. We analysed the impact of gall infestation by the aphid Pemphigus spirothecae on chemical leaf traits of clonal Lombardy poplars (Populus nigra var. italica) and the subsequent effects on intensity of herbivory and decomposition of leaves across five sites. We measured the herbivory of two feeding guilds: leaf-chewing insects that feed on the blade (e.g. caterpillars and sawfly larvae) and skeletonising insects that feed on the mesophyll of the leaves (e.g. larvae of beetles). Galled leaves had higher phenol (35%) and lower nitrogen and cholorophyll contents (35% respectively 37%) than non-galled leaves, and these differences were stronger in August than in June. Total herbivory intensity was 27% higher on galled than on non-galled leaves; damage by leaf chewers was on average 61% higher on gall infested leaves, whereas damage by skeletonising insects was on average 39% higher on non-galled leaves. After nine months the decomposition rate of galled leaf litter was 15% lower than that of non-galled leaf litter presumably because of the lower nitrogen content of the galled leaf litter. This indicated after-life effects of gall infestation on the decomposers. We found no evidence for galling x environment interactions.  相似文献   

16.
Predatory mites of the family Phytoseiidae feed on herbivorous mites and insects but they also use a variety of non-prey food items, such as pollen and nectar. Plant tissue is another potential food source. We investigated whether plant feeding occurs in the two phytoseiids Euseius scutalis (Athias-Henriot) and Typhlodromips swirskii (Athias-Henriot), which are natural enemies of whiteflies. These predatory mites can suppress populations of Bemisia tabaci (Gennadius) on isolated plants and are candidates for biological control of this pest. Both species can be reared on a diet of pollen, but E. scutalis requires a leaf tissue substrate, suggesting that this species might feed on plant tissue. To test this hypothesis, we applied a systemic insecticide (aldicarb) to cucumber plants and assessed the survival of predatory mites on leaves from insecticide-treated plants and untreated plants, both in presence and absence of pollen. The survival of T. swirskii was not affected by the presence of systemic insecticide in the plant. However, the survival of E. scutalis on leaves from insecticide-treated plants was 10 times lower than on leaves from untreated plants. Since the two species showed similar sensitivity to the insecticide when applied in a slide-dip test, this suggests that E. scutalis ingested insecticide through feeding on the leaf tissue. Mortality on treated leaves was observed both in absence and presence of pollen, suggesting that plant feeding is indispensable for E. scutalis. The extent to which plants are used as food by E. scutalis requires further analysis.  相似文献   

17.
The name anemone mosaic is proposed for a previously unrecorded virus disease of Anemone coronaria L.; infected plants have mottled leaves, and broken and distorted flowers. This virus can cause winter browning, and can contribute to crinkle in anemones.
The virus infected forty-seven out of ninety plant species tested; it was transmitted by mechanical inoculation, and by four of the six aphid species tested. Most aphids ceased to be infective within 30 min. when continuing to feed after leaving an infected plant.
Properties in vitro varied according to conditions of the tests; the thermal inactivation point was always below 62°C., the dilution end-point did not exceed 1/2500, and the virus inactivated at 18°C., the fewer than 72 hr.
Intracellular inclusion bodies were produced in all hosts examined.
Anemone mosaic virus is very similar to viruses placed in the turnip virus 1 group of Hoggan & Johnson, and is serologically related to cabbage black ringspot virus, although AMV infection did not protect plants against infection with cabbage black ring-spot virus.
Weeds naturally infected with AMV were found in anemone plantations, and this virus was detected, together with cucumber mosaic and tobacco necrosis viruses, in corms imported into this country.  相似文献   

18.
The grape weevil, Naupactus xanthographus Germar (Coleoptera: Curculionidae), is a polyphagous insect which is a cause of important damage to several economically relevant crops, including grape (Vitis vinifera) and avocado (Persea americana), in several countries of Latin America. The larvae cause damage to the roots and rootlets of plants, and adults feed on leaves of their host plant. Despite its economic importance, there are few reports on the behavioral and nutritional ecology of this weevil. In this context, laboratory feeding and olfactometer bioassays with N. xanthographus were performed. The feeding performance was evaluated by measuring the weight variation of the insects after 1 and 6 h of feeding on grape or avocado leaves, respectively. After 1 h of feeding, insects showed no significant differences in weight increase. However, after a period of 6 h of feeding, males had continued feeding on grape leaves, but not on avocado leaves. Bioassays using a Y-tube olfactometer showed that males are attracted to volatiles of both host plants. Furthermore, starved males and females showed no preference to volatiles of grape or avocado. However, non-starved males and females preferred grape volatiles over avocado volatiles. Based on the combined results of the assays, we conclude that grape is preferred over avocado for N. xanthographus. Furthermore, this is the first report on the effect of starvation on the attraction to host plant volatiles in Curculionidae.  相似文献   

19.
Adult apterae of Myzus persicae (Sulz.), were fed, after a period of fasting, on leaves containing radioactive phosphorus. The weight of sap imbibed by the aphids after varying feeding times was estimated by relating their radioactivity, at the end of each feeding period, to the activity per unit fresh weight of the leaf lamina on which they fed. The calculations were made on the assumption that 32P is uniformly distributed in the leaf tissues.
The mean rates of uptake so estimated were about 10 μg. of sap for the first hour of feeding; 40 μg/hr. between 1 and 4 hr. feeding, and 17 μg./hr. between 6 and 24 hr. feeding. The decrease in apparent rate of uptake with the longer feeding times is attributed to loss of 32P in nymphs born during the feeding period.
When aphids were fed on seedlings raised in water culture solution containing 32P no activity was detected after 5 min. feeding and an insignificant fraction after 15 min., but when the isotope was introduced by immersing the leaves for several days in the culture solution, aphids fed for 5 and 15 min. became appreciably active.
The increase in rate of uptake after 1 hr. of feeding indicates that aphids do not start to feed normally until they reach the phloem, but the activity after short feeding times suggests that previously starved aphids feed to some extent on other tissues, possibly only on the epidermis.  相似文献   

20.
Keeping French-bean plants before inoculation at 36, 32 or 28°C. for 1–2 days increased their susceptibility to infection with red clover mottle virus, but longer exposures to 36 and 32°C. decreased susceptibility. Susceptibility increased most rapidly at 36°C. The number of infections was unaffected by changes in post-inoculation temperatures between 12 and 24°C., but decreased above 24°C. The rate virus multiplied increased with increase of temperature up to 28°C., but the maximum virus concentrations reached at 18, 24 and 28°C. were very similar and above the maximum reached at 30°C.
Thiouracil inhibited infection slightly but neither it nor azaguanine affected the multiplication of red clover mottle virus in French bean. Trichothecin inhibited infection and interfered with virus accumulation. Inhibition of infection was associated with macroscopic injury to the leaves, and washing leaves up to 1 hr. after inoculation prevented both inhibition and leaf damage. Virus multiplication was not resumed when leaves were transferred from trichothecin solutions to water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号