首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In most organisms, biological variability rests on the behaviour of the chromosomes in the meiotic context. Despite the importance of meiosis, very little is known about the meiotic behaviour of the Eimeria chromosomes. The aim of the present study is to describe the standard synaptonemal complex karyotype from Eimeria tenella oocyst spreads by electron microscopy. For that purpose, complete sets of pachytene synaptonemal complexes were obtained and the morphological pachytene karyotype was determined. The authors used a previously reported method that overcomes the difficulty of the extreme resistance of protozoan oocysts to disruption and permits the release of intact meiotic chromosomes. The chromosomes were selected under a light microscope and those selected were stained with phosphotungtic acid and studied by transmission electron microscopy. The authors confirmed 14 chromosomes, which were observed as synaptonemal complexes, and the karyotype was constructed by arranging synaptonemal complexes according to their relative lengths and kinetochore position. Components of the synaptonemal complex, lateral elements, central element, recombination nodules and kinetochore were observed. Measures of the kynetochore, width of the synaptonemal complex, diameter of the recombination nodule and length of the telomeres are given. Minimal and no significant differences were found between measures of chromosomes isolated from different Eimeria tenella strains. To the best of our knowledge, the present investigation for the first time identifies and describes the morphological characteristics of the synaptonemal complex of Eimeria tenella during the meiosis that occurs within the oocysts. In addition, the authors provide evidence of the presence of recombination nodules, suggesting that the recombination process may play an important role in the molecular evolution of this parasite.  相似文献   

3.
The HOP1 gene encodes a meiosis-specific component of yeast chromosomes   总被引:37,自引:0,他引:37  
  相似文献   

4.
Synaptonemal complexes reveal mutagen-induced effects in germ cell meiotic chromosomes. This study was aimed at characterizing relationships between damage to synaptonemal complexes and metaphase I chromosomes following radiation exposure at various stages of spermatogenesis. Male mice were irradiated with doses of 0, 2, or 4 Gy, and spermatocytes were harvested at times consistent with earlier exposures as spermatogonial stem cells, preleptotene cells (premeiotic DNA synthesis), or meiotic prophase cells. After stem-cell exposure, twice as many rearrangements were observed in synaptonemal complexes as in metaphase I chromosomes. Irradiation during premeiotic DNA synthesis resulted in dose-related increases in synaptonemal complex breakage and rearrangements (including novel forms) and in metaphase chromosomal aberrations. Following prophase exposure, various types and levels of damage to synaptonemal complexes and metaphase chromosomes were observed. Irradiation of zygotene cells led to high frequencies of chromosome multivalents in metaphase I without a correspondingly high level of damage in preceding prophase synaptonemal complexes. Thus irradiation of premeiotic and meiotic cells results in variable relationships between damage to synaptonemal complexes and metaphase chromosomes. Interpretations of these relationships are based upon what is known about both radiation clastogenesis and the structural/temporal relationships between synaptonemal complexes at prophase and chromosomes at metaphase I of meiosis.  相似文献   

5.
The behavior of meiotic chromosomes differs in several respects from that of their mitotic counterparts, resulting in the generation of genetically distinct haploid cells. This has been attributed in part to a meiosis-specific chromatin-associated protein structure, the synaptonemal complex. This complex consist of two parallel axial elements, each one associated with a pair of sister chromatids, and a transverse filament located between the synapsed homologous chromosomes. Recently, a different protein structure, the cohesin complex, was shown to be associated with meiotic chromosomes and to be required for chromosome segregation. To explore the functions of the two different protein structures, the synaptonemal complex and the cohesin complex, in mammalian male meiotic cells, we have analyzed how absence of the axial element affects early meiotic chromosome behavior. We find that the synaptonemal complex protein 3 (SCP3) is a main determinant of axial-element assembly and is required for attachment of this structure to meiotic chromosomes, whereas SCP2 helps shape the in vivo structure of the axial element. We also show that formation of a cohesin-containing chromosomal core in meiotic nuclei does not require SCP3 or SCP2. Our results also suggest that the cohesin core recruits recombination proteins and promotes synapsis between homologous chromosomes in the absence of an axial element. A model for early meiotic chromosome pairing and synapsis is proposed.  相似文献   

6.
, and 1992. Mannitol metabolism in Eimeria tenella. International Journal for Parasitology 22: 1157–1163. Unsporulated oocysts of Eimeria tenella contain large quantities of carbohydrates, namely amylopectin, mannitol and glucose. Analysis of the carbohydrate content of sporulating oocysts revealed that mannitol content increased markedly during early stages of sporogony (first 4–6 h) but slowly diminished during the next 40 h of sporulation. Accumulation of mannitol was accompanied by a rapid decrease in amylopectin and free glucose, suggesting that mannitol might be synthesized from glucose released from amylopectin. Mannitol was also detected in sporozoite and merozoite extracts. All four mannitol cycle enzymes were detected in oocysts. Sporozoites excysted in vitro had lower activities of all four enzymes. Mannitol-1 -phosphatase and mannitol dehydrogenase activity was also detected in merozoites obtained from the second stage schizonts. Sporozoites incubated with 14C-glucose accumulated radioactively labelled precursor continuously for over 12 h and some of the 14C-glucose was converted into 14C-mannitol. These results indicate that mannitol plays an important role in the metabolism and development of the intracellular stages of the parasite.  相似文献   

7.
Polycomplexes are described for the first time in spermatocytes of a cirripede crustacean, Pollicipes polymerus Sowerby. Synaptonemal complexes of regular tripartite construction are seen from zygotene to mid-pachytene. Although some of the synaptonemal complexes are disrupted at late pachytene and may degenerate at this stage, some persist and by diplotene may form polycomplexes by the bending and self-fusion of their lateral elements. These polycomplexes are still encompassed by chromosomes and consist of four dense plates and intercalated central elements and transverse fibers. Other polycomplexes with five or six dense plates, all of which are considerably wider than lateral elements of mid-pachytene synaptonemal complexes, are also seen in diplotene nuclei. These may be attached to a chromosome at only one end or may be in the nucleoplasm, free of chromosomal involvement except for fine fibrous connectives. No polycomplexes are seen in meiotic cells after diplotene and their fate is unknown. It is suggested that poly-complexes serve as sequestra for synaptonemal material which could prevent normal chromosomal disjunction.  相似文献   

8.
Interactions between homologous chromosomes (pairing, recombination) are of central importance for meiosis. We studied entire chromosomes and defined chromosomal subregions in synchronous meiotic cultures of Schizosaccharomyces pombe by fluorescence in situ hybridization. Probes of different complexity were applied to spread nuclei, to delineate whole chromosomes, to visualize repeated sequences of centromeres, telomeres, and ribosomal DNA, and to study unique sequences of different chromosomal regions. In diploid nuclei, homologous chromosomes share a joint territory even before entry into meiosis. The centromeres of all chromosomes are clustered in vegetative and meiotic prophase cells, whereas the telomeres cluster near the nucleolus early in meiosis and maintain this configuration throughout meiotic prophase. Telomeres and centromeres appear to play crucial roles for chromosome organization and pairing, both in vegetative cells and during meiosis. Homologous pairing of unique sequences shows regional differences and is most frequent near centromeres and telomeres. Multiple homologous interactions are formed independently of each other. Pairing increases during meiosis, but not all chromosomal regions become closely paired in every meiosis. There is no detectable axial compaction of chromosomes in meiotic prophase. S. pombe does not form mature synaptonemal complexes, but axial element-like structures (linear elements), which were analyzed in parallel. Their appearance coincides with pairing of interstitial chromosomal regions. Axial elements may define minimal structures required for efficient pairing and recombination of meiotic chromosomes.  相似文献   

9.
In the current study the expression and ultrastructural localization of heat shock protein 70 (HSP70) was analyzed by immunogold labelling of surface spreads of meiotic chromosomes from Eimeria tenella oocysts. The authors used a previously reported method that overcomes the difficulties of the resistance of Eimeria oocysts to disruption and permits the release of intact meiotic chromosomes. HSP70 was localized at the ultrastructural level using an anti-HSP70 monoclonal antibody in combination with a secondary antibody coupled to colloidal gold. Synaptonemal complexes (SCs) were visualized by means of the surface spreading technique to study both HSP70 expression and the consequences of the lack of HSP70 in the behaviour of the eimerian chromosomes during meiosis. For that purpose E. tenella oocysts were treated with quercetin, a flavonoid that is known to inhibit the synthesis of HSP70. The results showed a close association of HSP70 with the lateral elements (LEs) of the SCs. That association began at the time that SCs were formed and persisted until disassemble. Comparison between distribution of immunogold label over the SCs from non-treated and treated oocysts revealed a decreasing number of gold particles as the concentration of quercetin increased. The current results demonstrated three dose-dependent effects of the quercetin treatment of Eimeria oocysts: a reduction in the HSP70 synthesis; defects in SC formation or desynapsis, and inhibition of sporulation. HSP70, as a structural component of the SCs, may be involved in SC functions such as chromosomal pairing, recombination, or disjunction.  相似文献   

10.
Inverted meiosis is observed in plants (Cyperaceae and Juncaceae) and insects (Coccoidea, Aphididae) with holocentric chromosomes, the centromeres of which occupy from 70 to 90% of the metaphase chromosome length. In the first meiotic division (meiosis I), chiasmata are formed and rodlike bivalents orient equationally, and in anaphase I, sister chromatids segregate to the poles; the diploid chromosome number is maintained. Non-sister chromatids of homologous chromosomes remain in contact during interkinesis and prophase II and segregate in anaphase II, forming haploid chromosome sets. The segregation of sister chromatids in meiosis I was demonstrated by example of three plant species that were heterozygous for chromosomal rearrangements. In these species, sister chromatids, marked with rearrangement, segregated in anaphase I. Using fluorescent antibodies, it was demonstrated that meiotic recombination enzymes Spo11 and Rad5l, typical of canonical meiosis, functioned at the meiotic prophase I of pollen mother cells of Luzula elegance and Rhynchospora pubera. Moreover, antibodies to synaptonemal complexes proteins ASY1 and ZYP1 were visualized as filamentous structures, pointing to probable formation of synaptonemal complexes. In L. elegance, chiasmata are formed by means of chromatin threads containing satellite DNA. According to the hypothesis of the author of this review, equational division of sister chromatids at meiosis I in the organisms with inverted meiosis can be explained by the absence of specific meiotic proteins (shugoshins). These proteins are able to protect cohesins of holocentric centromeres from hydrolysis by separases at meiosis I, as occurs in the organisms with monocentric chromosomes and canonical meiosis. The basic type of inverted meiosis was described in Coccoidea and Aphididae males. In their females, the variants of parthenogenesis were also observed. Until now, the methods of molecular cytogenetics were not applied for the analysis of inverted meiosis in Coccoidea and Aphididae. Evolutionary, inverted meiosis is thought to have appeared secondarily as an adaptation of the molecular mechanisms of canonical meiosis to chromosome holocentrism.  相似文献   

11.
Summary We describe a comparative study of the behavior of nucleolar structures and their relationship with nucleolar chromosomes and synaptonemal complexes at first meiotic prophase of human oocytes in an attempt to elucidate the nature of this cellular organization and to learn more about maternal nondisjunction. The number of main nucleoli varies along the different stages of prophase I and is usually low. It shows an increase from leptotene to pachytene and a decrease from pachytene to diplotene related to a decrease and an increase of main nucleoli volume, respectively. The methodology employed has enabled us to analyze in detail dark bodies, round bodies, dense bodies, and main nucleoli in chromosome or synaptonemal complex spreads. The relationship between nucleolar chromosomes or synaptonemal complexes and the nucleoli implies the existence, in a very reduced space, of chromosomal regions that contain homologous sequences and that are often unpaired. This situation may facilitate the production of heterologous pairing and chromosomal exchanges between nonhomologous chromosomes and finally result in aneuploidy. THus, the situation explained above together with the differences between the oocyte and spermatocyte NOR cycles could be one of the reasons for the higher incidence of aneuploidies of maternal origin at meiosis I.  相似文献   

12.
An ultrastructural analysis of three yeast rad 6-1/rad 6-1 diploids on sporulation medium for 0, 6, 10, and 24 h shows that arrest occurs at meiotic prophase. Two strains, CL 139 and PU 6, fail to complete chromosome synapsis based on the continued presence of single chromosomal cores in arrested nuclei. A clone derived from CL 139, however, showed complete pairing as evident from the presence of 17 synaptonemal complexes. All three strains underwent spindle pole body duplication but the poles failed to form a proper metaphase I spindle. A revertant Rad 6+ isolated from CL 139 showed normal chromosome behaviour and normal kinetic functions. It is concluded that the absence of meiotic recombination in some Rad 6 strains may result from asynapsis, but that in other strains (e.g., CL 139s) recombination fails in spite of complete synapsis. In all cases the lack of sporulation is adequately explained by failure of the kinetic apparatus to form a metaphase I spindle.  相似文献   

13.
Chromatin rearrangements in the meiotic prophase are characterized by the assembly and disassembly of synaptonemal complexes (SC), a protein structure that stabilizes the pairing of homologous chromosomes in prophase. We report the identification of human and mouse cDNA coding for stromalin 3 (STAG3), a new mammalian stromalin member of the synaptonemal complex. The stromalins are a group of highly conserved proteins, represented in several organisms from yeast to humans. Stromalins are characterized by the stromalin conservative domain (SCD), a specific motif found in all proteins of the family described to date. STAG3 is expressed specifically in testis, and immunolocalization experiments show that STAG3 is associated to the synaptonemal complex. As the protein encoded by the homologous gene (Scc3p) in Saccharomyces cerevisiae was found to be a subunit of a cohesin complex that binds chromosomes until the onset of anaphase, our data suggest that STAG3 is involved in chromosome pairing and maintenance of synaptonemal complex structure during the pachytene phase of meiosis in a cohesin-like manner. We have mapped the human STAG3 gene to the 7q22 region of chromosome 7; six human STAG3-related genes have also been mapped: two at 7q22 near the functional gene, one at 7q11.22, and three at 7q11.23, two of them flanking the breakpoints commonly associated with the Williams-Beuren syndrome (WBS) deletion. Since the WBS deletion occurs as a consequence of unequal meiotic crossing over, we suggest that STAG3 duplications predispose to germline chromosomal rearrangement within this region.  相似文献   

14.
Electron microscopic study of total preparations of synaptonemal complexes of spermatocytes I from sterile heterozygous male mice--t12/tw18; tw5/twPa-1; twPa-1/tw18 was performed. T/tw18 and C3H/N fertile heterozygotes were used in each variant as control. The cells are karyotyped in all experiments, as based on the measurements of the length of 19 SC autosomes and SC sex complex. All sterile compounds (spermatocytes) demonstrate high frequency of different types of associations (72%) between sex chromosomes and the autosome 17 carrying a chromosomal aberration in the region of the T-locus. The heterozygotes tx/ty used in our experiments show no disruption of chromosome synapsis, when even studied under electron microscope, though some atypical changes in the ultrastructure of chromosome axes and frequent atypical associations of the axes of XY-sex bivalents in sterile heterozygous animals exist.  相似文献   

15.
Marsupial sex chromosomes break the rule that recombination during first meiotic prophase is necessary to ensure reductional segregation during first meiotic division. It is widely accepted that in marsupials X and Y chromosomes do not share homologous regions, and during male first meiotic prophase the synaptonemal complex is absent between them. Although these sex chromosomes do not recombine, they segregate reductionally in anaphase I. We have investigated the nature of sex chromosome association in spermatocytes of the marsupial Thylamys elegans, in order to discern the mechanisms involved in ensuring their proper segregation. We focused on the localization of the axial/lateral element protein SCP3 and the cohesin subunit STAG3. Our results show that X and Y chromosomes never appear as univalents in metaphase I, but they remain associated until they orientate and segregate to opposite poles. However, they must not be tied by a chiasma since their separation precedes the release of the sister chromatid cohesion. Instead, we show they are associated by the dense plate, a SCP3-rich structure that is organized during the first meiotic prophase and that is still present at metaphase I. Surprisingly, the dense plate incorporates SCP1, the main protein of the central element of the synaptonemal complex, from diplotene until telophase I. Once sex chromosomes are under spindle tension, they move to opposite poles losing contact with the dense plate and undergoing early segregation. Thus, the segregation of the achiasmatic T. elegans sex chromosomes seems to be ensured by the presence in metaphase I of a synaptonemal complex-derived structure. This feature, unique among vertebrates, indicates that synaptonemal complex elements may play a role in chromosome segregation.  相似文献   

16.
The presence of synaptonemal complexes were checked in dividing chromosomes as evidence for meiotic division in germinating sporangia. Continuous urografin gradients were used to separate out the various phases of germinating sporangia, the nuclei were removed and embedded for ultrastructural studies. Meiotic inhibitors were applied to germinating sporangia to retard meiotic division to highlight the synaptonemal complexes. At an early phase of sporangial differentiation dividing nuclei developed with synaptonemal complexes. Meiotic inhibitors and stimulators may be used to control sporangial germination for an induction of a high meiospore count. This may be of crucial importance in the utilization of Coelomomyces spp. as a biological control agent of mosquito species.  相似文献   

17.
M Bojko 《Génome》1988,30(5):697-709
Synaptonemal complex abnormalities are frequent in reconstructed meiotic prophase nuclei of Neurospora crassa and Neurospora intermedia. Three kinds of synaptonemal complex anomalies were seen: lateral component splits, lateral component junctions, and multiple complexes. The anomalies apparently are formed during or after the pairing process, as they were not seen in the largely unpaired early zygotene chromosomes. Their presence at all the other substages from mid-zygotene to late pachytene indicates that they are not eliminated before the synaptonemal complex decomposes at diplotene. Abnormal synaptonemal complexes were seen in all 19 crosses of N. crassa and N. intermedia that were examined, including matings between standard laboratory strains, inversions, Spore killers, and strains collected from nature. The frequency of affected nuclei and degree of abnormality within a nucleus varied in different matings. No abnormalities were present in the homothallic species Neurospora africana and Neurospora terricola. Structural chromosome aberrations, introgression, and heterozygosity have been eliminated as causes for pairing disorder. The abnormal synaptonemal complexes seemingly do not interfere with normal ascus development and ascospore formation. The affected nuclei are not aborted during meiotic prophase, nor are they eliminated by abortion of mature asci. The abnormal meiocytes do not lead to aneuploidy, as judged by the low frequency of white ascospores in crosses between wild type strains that have many abnormalities. Thus, the abnormal synatonemal complexes do not appear to prevent chiasma formation between homologues.  相似文献   

18.
During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global features of chromosome organization during this process, using a chromosome painting method in whole-mount Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers (PCs) with mobile patches of the nuclear envelope (NE)-spanning SUN-1/ZYG-12 protein complexes is not the primary driver of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC) and X-PC binding protein HIM-8 in promoting elongation of X chromosome territories, separable from their role(s) in mediating local stabilization of pairing and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners.  相似文献   

19.
Recognition of homologous chromosomes during meiotic prophase is associated in most cases with the formation of the synaptonemal complex along the length of the chromosome. Telomeres, located at the nuclear periphery, are preferential initiation sites for the assembly of the synaptonemal complex. In most eukaryotic cells, telomeres cluster in a restricted area, leading to the bouquet configuration in leptotene-zygotene, while this typical organization progressively disappears in late zygotene-pachytene. We wondered whether such striking changes in the intranuclear ordering and pairing of meiotic chromosomes during the progression of prophase I could be correlated with activity of the centrosome and/or microtubule-organizing center (MTOC). Plant cells may be used as a model of special interest for this study as the whole nuclear surface acts as an MTOC, unlike other cell types where MTOCs are restricted to centrosomes or spindle pole bodies. Using a monoclonal antibody (mAb 6C6) raised against isolated calf centrosomes we found that the 6C6 antigen is present over the entire surface of the plant meiotic nucleus, in early prophase I, before chromosomal pairing. At zygotene, short fragments of chromosomes become stained near the nuclear envelope and within the nucleus. At pachytene, after complete synapsis, the labeling specifically concentrates within the synaptonemal complexes, although the nuclear surface is no longer reactive. Ultrastructural localization using immunogold labeling indicates that the 6C6 antigen is colocalized with the synaptonemal complex structures. Later in metaphase I, the antigen is found at the kinetochores. Our data favor the idea that the 6C6 antigen may function as a particular chromosomal passenger-like protein. These observations shed new light on the molecular organization of the plant synaptonemal complex and on the redistribution of cytoskeleton-related antigens during initiation of meiosis. They suggest that antigens of MTOCs are relocated to chromosomes during the synapsis process starting at telomeres and contribute to the spatial arrangement of meiotic chromosomes. Such cytoskeleton-related antigens may acquire different functions depending on their localization, which is cell-cycle regulated.  相似文献   

20.
Silver-Stained accessory structures on human sex chromosomes   总被引:3,自引:0,他引:3  
Summary Using a combination of silver-staining and light microscopic techniques on human male meiotic preparations, it is feasible to study the morphology and behavior of both autosomal synaptonemal complexes and sex chromosome axes. During leptotene and early zygotene, the X and Y chromosomes are separate; their axes appearing as thin, filamentous structures. During late zygotene/early pachytene, the sex chromosomes come close to each other and a distinct sex vesicle is formed. We confirm the existence of a short synaptonemal complex between the terminal ends of the X and Y chromosomes. In our preparations, a number of accessory structures can be seen along the axes of the sex chromosomes. These structures appear to be similar in morphology to those previously observed in several other mammalian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号