首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How germ cell specification occurs remains a fundamental question in embryogenesis. The embryos of several model organisms contain germ cell determinants (germ plasm) that segregate to germ cell precursors. In other animals, including mice, germ cells form in response to regulative mechanisms during development. To investigate germ cell determination in urodeles, where germ plasm has never been conclusively identified, we cloned a DAZ-like sequence from axolotls, Axdazl. Axdazl is homologous to Xdazl, a component of Xenopus germ plasm found in the vegetal pole of oocytes and eggs. Axdazl RNA is not localized in axolotl oocytes, and, furthermore, these oocytes do not contain the mitochondrial cloud that localizes Xdazl and other germ plasm components in Xenopus. Maternal Axdazl RNA is inherited in the animal cap and equatorial region of early embryos. At gastrula, neurula, and tailbud stages, Axdazl RNA is widely distributed. Axdazl first shows cell-specific expression in primordial germ cells (PGCs) approaching the gonad at stage 40, when nuage (germ plasm) appears in PGCs. These results suggest that, in axolotls, germ plasm components are insufficient to specify germ cells.  相似文献   

2.
The germ line is established in animal embryos with the formation of primordial germ cells (PGCs), which give rise to gametes. Therefore, the need to form PGCs can act as a developmental constraint by inhibiting the evolution of embryonic patterning mechanisms that compromise their development. Conversely, events that stabilize the PGCs may liberate these constraints. Two modes of germ cell determination exist in animal embryos: (a) either PGCs are predetermined by the inheritance of germ cell determinants (germ plasm) or (b) PGCs are formed by inducing signals secreted by embryonic tissues (i.e., regulative determination). Surprisingly, among the major extant amphibian lineages, one mechanism is found in urodeles and the other in anurans. In anuran amphibians PGCs are predetermined by germ plasm; in urodele amphibians PGCs are formed by inducing signals. To determine which mechanism is ancestral to the tetrapod lineage and to understand the pattern of inheritance in higher vertebrates, we used a phylogenetic approach to analyze basic morphological processes in both groups and correlated these with mechanisms of germ cell determination. Our results indicate that regulative germ cell determination is a property of embryos retaining ancestral embryological processes, whereas predetermined germ cells are found in embryos with derived morphological traits. These correlations suggest that regulative germ cell formation is an important developmental constraint in vertebrate embryos, acting before the highly conserved pharyngula stage. Moreover, our analysis suggests that germ plasm has evolved independently in several lineages of vertebrate embryos.  相似文献   

3.
4.
Posterior polar plasm of the Drosophila egg has been shown to function autonomously in germ cell determination after transplantation to either the anterior or mid-ventral region of the early embryo. By means of similar transplantations, we have tested the ability of polar plasm of Drosophila immigrans to induce the formation of pole cells in a Drosophila melanogaster embryo. After the transplantation of polar plasm, "hybrid" pole cells were found in which both pole cell-specific organelles, the polar granules and nuclear body, were structurally similar to those characteristic of the transplanted cytoplasm. In order to determine whether these hybrid cells can function as germ cell precursors, these cells were transplanted to the posterior tip of genetically marked embryos. Approximately 5% of the flies obtained from embryos receiving potential pole cells produce offspring derived from the induced pole cells. This result demonstrates that polar plasm can function in interspecific species combinations and indicates that the molecular mechanisms of germ cell determination are conservative in evolution. Finally, in order to test whether there is any evidence for cytoplasmic inheritance of polar granules, embryos derived from hybrid pole cells were examined for their polar granule morphology. The fine structure of the granules conformed to that of the nucleus. Thus, no evidence was found for the cytoplasmic inheritance of these particular organelles.  相似文献   

5.
SUMMARY In bilaterian animals, germ cells are specified by the inductive/regulative mode or the predetermined (germ plasm) mode. Among tetrapods, mammals and urodeles use the inductive mode, whereas birds and anurans use the predetermined mode. From histological data it has been predicted that some reptiles including turtles use the inductive mode. Examining turtle oocytes, we find that Dazl RNA, Vasa RNA, and Vasa protein are not localized, suggesting that germ plasm is not present. In turtle embryos at somite stages, primordial germ cells (PGCs) expressing Dazl lie on a path from the lateral posterior extraembryonic endoderm through the gut to the gonad as previously described. In gastrulating embryos, cells expressing Dazl are found in the blastoporal plate and subsequently below the blastoporal plate, indicating that PGCs are generated at the equivalent of the early posterior primitive streak of mammals. Vasa RNA is expressed in somatic cells of gastrula to early somite stages, and Vasa RNA and protein are expressed in PGCs of later embryos. Taken together the evidence strongly suggests that turtles, and other reptiles (lacertoid lizards) with the same location of PGCs in embryos, use the inductive mode of germ cell specification. Phylogenetic analysis of the available evidence supports the following hypotheses: (1) the inductive mode is basal among reptiles, indicating that this mode was maintained as basal tetrapods evolved to amniotes, (2) the predetermined mode arose twice within reptiles, and (3) the induced mode may be used in several lepidosaurs whose PGCs are located in an unusual pattern distributed around the embryo.  相似文献   

6.
The germarium, oocytes and embryos of the parthenogenetic viviparous pea aphid Acyrthosiphon pisum are contained within a single ovariole. This species provides an excellent model for studying how maternally-inherited germ plasm is specified and how it is transferred to primordial germ cells. Previous studies have shown that germ cells are first segregated at the embryonic posterior after formation of the blastoderm. We used two cross-reacting antibodies against the conserved germline markers Vasa and Nanos, which specifically identified these presumptive germ cells, to investigate whether germ cells were determined during early development. We observed randomly-distributed weak expression of Vasa signals in the developing oocyte but no localization in the oocyte segregated from the germarium. Localized Vasa was not apparent until it was detected at the posterior in the embryo undergoing the second nuclear division. Nanos, on the other hand, was localized to a nuage-like structure surrounding the nucleus in the developing and segregated oocytes. At the beginning of the oocyte maturation division, Nanos localization shifted to the posterior and could be identified in successive stages until it was incorporated into the germ cells. Taken together, our results suggest that germ plasm is specified in the developing oocyte and that Nanos is an earlier germline marker than Vasa. Germ cells stained for Vasa remained at a dorsal location in the egg during mid-development and then were guided into abdominal segments A1 to A6 during germ-band retraction. We infer that germ cells coalesce with segmented gonadal mesoderm during this period.  相似文献   

7.
8.
In many animals, the germ line is specified by a distinct cytoplasmic structure called germ plasm (GP). GP is necessary for primordial germ cell (PGC) formation in anuran amphibians including Xenopus. However, it is unclear whether GP is a direct germ cell determinant in vertebrates. Here we demonstrate that GP acts autonomously for germ cell formation in Xenopus.EGFP-labeled GP from the vegetal pole was transplanted into animal hemisphere of recipient embryos. Cells carrying transplanted GP (T-GP) at the ectopic position showed characteristics similar to the endogenous normal PGCs in subcellular distribution of GP and presence of germ plasm specific molecules. However, T-GP-carrying-cells in the ectopic tissue did not migrate towards the genital ridge. T-GP-carrying cells from gastrula or tailbud embryos were transferred into the endoderm of wild-type hosts. From there, they migrated into the developing gonad. To clarify whether ectopic T-GP-carrying cells can produce functional germ cells, they were identified by changing the recipients, from the wild-type Xenopus to transgenic Xenopus expressing DsRed2. After transferring T-GP carrying cells labeled genetically with DsRed2 into wild-type hosts, we could find chimeric gonads in mature hosts. Furthermore, the spermatozoa and eggs derived from T-GP-carrying cells were fertile. Thus, we have demonstrated that Xenopus germ plasm is sufficient for germ cell determination.  相似文献   

9.
In many animal species, germ cells are specified by maternally provided, often asymmetrically localized germ cell determinant, termed the germ plasm. It has been shown that in model organisms such as Xenopus laevis, Danio rerio and Drosophila melanogaster germ plasm components (various proteins, mRNAs and mitochondria) are delivered to the proper position within the egg cell by germline specific organelles, i.e. Balbiani bodies, nuage accumulations and/or sponge bodies. In the present article, we review the current knowledge on morphology, molecular composition and functioning of these organelles in main lineages of arthropods and different ovary types on the backdrop of data derived from the studies of the model vertebrate species.  相似文献   

10.
In some species such as flies, worms, frogs and fish, the key to forming and maintaining early germ cell populations is the assembly of germ plasm, microscopically distinct egg cytoplasm that is rich in RNAs, RNA-binding proteins and ribosomes. Cells which inherit germ plasm are destined for the germ cell lineage. In contrast, in mammals, germ cells are formed and maintained later in development as a result of inductive signaling from one embryonic cell type to another. Research advances, using complementary approaches, including identification of key signaling factors that act during the initial stages of germ cell development, differentiation of germ cells in vitro from mouse and human embryonic stem cells and the demonstration that homologs of germ plasm components are conserved in mammals, have shed light on key elements in the early development of mammalian germ cells. Here, we use FRET (Fluorescence Resonance Energy Transfer) to demonstrate that living mammalian germ cells possess specific RNA/protein complexes that contain germ plasm homologs, beginning in the earliest stages of development examined. Moreover, we demonstrate that, although both human and mouse germ cells and embryonic stem cells express the same proteins, germ cell-specific protein/protein interactions distinguish germ cells from precursor embryonic stem cells in vitro; interactions also determine sub-cellular localization of complex components. Finally, we suggest that assembly of similar protein complexes may be central to differentiation of diverse cell lineages and provide useful diagnostic tools for isolation of specific cell types from the assorted types differentiated from embryonic stem cells.  相似文献   

11.
Vasa is a widely conserved germline marker, both in vertebrates and invertebrates. We identify a vasa orthologue, Sgvasa, and use it to study germline development in the grasshopper Schistocerca gregaria, a species in which no germ plasm has been identified. In adults, Sgvasa is specifically expressed in the ovary and testis. It is expressed at high levels during early oogenesis, but no detectable vasa RNA and little Vasa protein are present in mature unlaid eggs. None appears to be localized to any defined region of the egg cortex, suggesting that germline specification may not depend on maternal germ plasm expressing vasa. Vasa protein is expressed in most cleavage energids as they reach the egg surface and persists at high levels in most cells aggregating to form the embryonic primordium. However, after gastrulation, Vasa protein persists only in extraembryonic membranes and in cells at the outer margin of the late heart-stage embryo. In the embryo, it then become restricted to cells at the dorsal margin of the forming abdomen. In older embryos, these Vasa-positive cells move toward the midline; Vasa protein accumulates asymmetrically in their cytoplasm, a pattern closely resembling that of germ cells in late embryonic gonads. Thus, we suggest that the Vasa-stained cells in the abdominal margin are germ cells, as proposed by Nelson (1934), and not cardioblasts, as has been proposed by others.  相似文献   

12.
13.
Germ plasm is found in germ‐line cells of Xenopus and thought to include the determinant of primordial germ cells (PGCs). As mitochondria is abundant in germ plasm, vital staining of mitochondria was used to analyze the movement and function of germ plasm; however, its application was limited in early cleavage embryos. We made transgenic Xenopus, harboring enhanced green fluorescent protein (EGFP) fused to the mitochondria transport signal (Dria‐line). Germ plasm with EGFP‐labeled mitochondria was clearly distinguishable from the other cytoplasm, and retained mostly during one generation of germ‐line cells in Dria‐line females. Using the Dria‐line, we show that germ plasm is reorganized from near the cell membrane to the perinuclear space at St. 9, dependent on the microtubule system.  相似文献   

14.
Primordial germ cell (PGC) formation is pivotal for fertility. Mammalian PGCs are epigenetically induced without the need for maternal factors and can also be derived in culture from pluripotent stem cells. In egg-laying animals such as Drosophila and zebrafish, PGCs are specified by maternal germ plasm factors without the need for inducing factors. In these organisms, PGC formation and cultivation in vitro from indeterminate embryonic cells have not been possible. Here, we report PGC formation and cultivation in vitro from blastomeres dissociated from midblastula embryos (MBEs) of the fish medaka (Oryzias latipes). PGCs were identified by using germ-cell-specific green fluorescent protein (GFP) expression from a transgene under the control of the vasa promoter. Embryo perturbation was exploited to study PGC formation in vivo, and dissociated MBE cells were cultivated under various conditions to study PGC formation in vitro. Perturbation of somatic development did not prevent PGC formation in live embryos. Dissociated MBE blastomeres formed PGCs in the absence of normal somatic structures and of known inducing factors. Most importantly, under culture conditions conducive to stem cell derivation, some dissociated MBE blastomeres produced GFP-positive PGC-like cells. These GFP-positive cells contained genuine PGCs, as they expressed PGC markers and migrated into the embryonic gonad to generate germline chimeras. Our data thus provide evidence for PGC preformation in medaka and demonstrate, for the first time, that PGC formation and derivation can be obtained in culture from early embryos of medaka as a lower vertebrate model.  相似文献   

15.
It is generally assumed that in amphibian embryos neural crest cells migrate dorsally, where they form the mesenchyme of the dorsal fin, laterally (between somites and epidermis), where they give rise to pigment cells, and ventromedially (between somites and neural tube), where they form the elements of the peripheral nervous system. While there is agreement about the crest migratory routes in the axolotl (Ambystoma mexicanum), different opinions exist about the lateral pathway in Xenopus. We investigated neural crest cell migration in Xenopus (stages 23, 32, 35/36 and 41) using the X. laevis-X. borealis nuclear marker system and could not find evidence for cells migrating laterally. We have also used immunohistochemistry to study the distribution of the extracellular matrix (ECM) glycoproteins fibronectin (FN) and tenascin (TN), which have been implicated in directing neural crest cells during their migrations in avian and mammalian embryos, in the neural crest migratory pathways of Xenopus and the axolotl. In premigratory stages of the crest, both in Xenopus (stage 22) and the axolotl (stage 25), FN was found subepidermally and in extracellular spaces around the neural tube, notochord and somites. The staining was particularly intense in the dorsal part of the embryo, but it was also present along the visceral and parietal layers of the lateral plate mesoderm. TN, in contrast, was found only in the anterior trunk mesoderm in Xenopus; in the axolotl, it was absent. During neural crest cell migration in Xenopus (stages 25-33) and the axolotl (stages 28-35), anti-FN stained the ECM throughout the embryo, whereas anti-TN staining was limited to dorsal regions. There it was particularly intense medially, i.e. in the dorsal fin, around the neural tube, notochord, dorsal aorta and at the medial surface of the somites (stage 35 in both species). During postmigratory stages in Xenopus (stage 40), anti-FN staining was less intense than anti-TN staining. In culture, axolotl neural crest cells spread differently on FN- and TN-coated substrata. On TN, the onset of cellular outgrowth was delayed for about 1 day, but after 3 days the extent of outgrowth was indistinguishable from cultures grown on FN. However, neural crest cells in 3-day-old cultures were much more flattened on FN than on TN. We conclude that both FN and TN are present in the ECM that lines the neural crest migratory pathways of amphibian embryos at the time when the neural crest cells are actively migrating. FN is present in the embryonic ECM before the onset of neural crest migration.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Germ cells are essential for the maintenance of a species, and in most organisms a specific germ cell lineage is established early during embryogenesis. In flies, worms and frogs a morphologically distinct germ plasm assembles in the egg and signals present in this cytoplasm are necessary for the establishment of the germ cell fate. Although the molecular nature of the germ cell signal remains unknown, genes involved in the process of germ cell determination, proliferation and survival have recently been identified.  相似文献   

17.
Ultraviolet (UV) irradiation of the vegetal pole of anuran embryos at the two-cell stage has been reported to cause aberrant cleavage as well as a subsequent reduction in germ cell numbers. In this study, we find no correlation between UV-induced cleavage abnormalities and the absence of primordial germ cells in Rana pipiens tadpoles examined at stage 25. On the other hand, some tadpoles from a population which was lacking primordial germ cells at stage 25 subsequently contained germ cells. These late-appearing germs cells exhibited damaged mitochondria, autophagosomes, and secondary lysosomes, while surrounding somatic cells were morphologically normal. We suggest that these cytoplasmic abnormalities resulted from an effect of the initial UV irradiation of germ plasm. We conclude that one effect of UV irradiation of germ plasm is to delay or inhibit the migration of primordial germ cells into the genital ridges.  相似文献   

18.
The establishment of the germline is a critical, yet surprisingly evolutionarily labile, event in the development of sexually reproducing animals. In the fly Drosophila, germ cells acquire their fate early during development through the inheritance of the germ plasm, a specialized maternal cytoplasm localized at the posterior pole of the oocyte. The gene oskar (osk) is both necessary and sufficient for assembling this substance. Both maternal germ plasm and oskar are evolutionary novelties within the insects, as the germline is specified by zygotic induction in basally branching insects, and osk has until now only been detected in dipterans. In order to understand the origin of these evolutionary novelties, we used comparative genomics, parental RNAi, and gene expression analyses in multiple insect species. We have found that the origin of osk and its role in specifying the germline coincided with the innovation of maternal germ plasm and pole cells at the base of the holometabolous insects and that losses of osk are correlated with changes in germline determination strategies within the Holometabola. Our results indicate that the invention of the novel gene osk was a key innovation that allowed the transition from the ancestral late zygotic mode of germline induction to a maternally controlled establishment of the germline found in many holometabolous insect species. We propose that the ancestral role of osk was to connect an upstream network ancestrally involved in mRNA localization and translational control to a downstream regulatory network ancestrally involved in executing the germ cell program.  相似文献   

19.
20.
In zebrafish, primordial germ cells (PGCs) are determined by a specialized maternal cytoplasm, the germ plasm, which forms at the distal ends of the cleavage furrows in 4-cell embryos. The germ plasm includes maternal mRNAs from the germline-specific genes such as vasa and nanos1, and vegetally localized dazl RNA is also incorporated into the germ plasm. However, little is known about the distributions and assembly mechanisms of germ plasm components, especially during oogenesis. Here we report that the germ plasm RNAs vasa, nanos1, and dazl co-localize with the mitochondrial cloud (MC) and are transported to the vegetal cortex during early oogenesis. We found that a mitochondrial cloud localization element (MCLE) previously identified in the 3' untranslated region (3'UTR) of Xenopus Xcat2 gene can direct RNA localization to the vegetal cortex via the MC in zebrafish oocytes. In addition, the RNA-binding protein Hermes is a component of the MC in zebrafish oocytes, as is the case in Xenopus. Moreover, we provide evidence that the dazl 3'UTR possesses at least three types of cis-acting elements that direct multiple steps in the localization process: MC localization, anchorage at the vegetal cortex, and localization at the cleavage furrows. Taken together, the data show that the MC functions as a conserved feature that participates in transport of the germ plasm RNAs in Xenopus and zebrafish oocytes. Furthermore, we propose that the germ plasm components are assembled in a stepwise and spatiotemporally-regulated manner during oogenesis and early embryogenesis in zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号