首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homoisocitrate dehydrogenase (HIcDH, 3-carboxy-2-hydroxyadipate dehydrogenase) catalyzes the fourth reaction of the alpha-aminoadipate pathway for lysine biosynthesis, the conversion of homoisocitrate to alpha-ketoadipate using NAD as an oxidizing agent. A chemical mechanism for HIcDH is proposed on the basis of the pH dependence of kinetic parameters, dissociation constants for competitive inhibitors, and isotope effects. According to the pH-rate profiles, two enzyme groups act as acid-base catalysts in the reaction. A group with a p K a of approximately 6.5-7 acts as a general base accepting a proton as the beta-hydroxy acid is oxidized to the beta-keto acid, and this residue participates in all three of the chemical steps, acting to shuttle a proton between the C2 hydroxyl and itself. The second group acts as a general acid with a p K a of 9.5 and likely catalyzes the tautomerization step by donating a proton to the enol to give the final product. The general acid is observed in only the V pH-rate profile with homoisocitrate as a substrate, but not with isocitrate as a substrate, because the oxidative decarboxylation portion of the isocitrate reaction is limiting overall. With isocitrate as the substrate, the observed primary deuterium and (13)C isotope effects indicate that hydride transfer and decarboxylation steps contribute to rate limitation, and that the decarboxylation step is the more rate-limiting of the two. The multiple-substrate deuterium/ (13)C isotope effects suggest a stepwise mechanism with hydride transfer preceding decarboxylation. With homoisocitrate as the substrate, no primary deuterium isotope effect was observed, and a small (13)C kinetic isotope effect (1.0057) indicates that the decarboxylation step contributes only slightly to rate limitation. Thus, the chemical steps do not contribute significantly to rate limitation with the native substrate. On the basis of data from solvent deuterium kinetic isotope effects, viscosity effects, and multiple-solvent deuterium/ (13)C kinetic isotope effects, the proton transfer step(s) is slow and likely reflects a conformational change prior to catalysis.  相似文献   

2.
The kinetic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae was determined using initial velocity studies in the absence and presence of product and dead end inhibitors in both reaction directions. Data suggest a steady state random kinetic mechanism. The dissociation constant of the Mg-homoisocitrate complex (MgHIc) was estimated to be 11 +/- 2 mM as measured using Mg2+ as a shift reagent. Initial velocity data indicate the MgHIc complex is the reactant in the direction of oxidative decarboxylation, while in the reverse reaction direction, the enzyme likely binds uncomplexed Mg2+ and alpha-ketoadipate. Curvature is observed in the double-reciprocal plots for product inhibition by NADH and the dead-end inhibition by 3-acetylpyridine adenine dinucleotide phosphate when MgHIc is the varied substrate. At low concentrations of MgHIc, the inhibition by both nucleotides is competitive, but as the MgHIc concentration increases, the inhibition changes to uncompetitive, consistent with a steady state random mechanism with preferred binding of MgHIc before NAD. Release of product is preferred and ordered with respect to CO2, alpha-ketoadipate, and NADH. Isocitrate is a slow substrate with a rate (V/E(t)) 216-fold slower than that measured with HIc. In contrast to HIc, the uncomplexed form of isocitrate and Mg2+ bind to the enzyme. The kinetic mechanism in the direction of oxidative decarboxylation of isocitrate, on the basis of initial velocity studies in the absence and presence of dead-end inhibitors, suggests random addition of NAD and isocitrate with Mg2+ binding before isocitrate in rapid equilibrium, and the mechanism approximates rapid equilibrium random. The Keq for the overall reaction measured directly using the change in NADH as a probe is 0.45 M.  相似文献   

3.
4.
5.
6.
The crystal structure of Saccharomyces cerevisiae ScAdh6p has been solved using the anomalous signal from the two zinc atoms found per subunit, and it constitutes the first structure determined from a member of the cinnamyl alcohol dehydrogenase family. ScAdh6p subunits exhibit the general fold of the medium-chain dehydrogenases/reductases (MDR) but with distinct specific characteristics. In the three crystal structures solved (two trigonal and one monoclinic), ScAdh6p molecules appear to be structural heterodimers composed of one subunit in the apo and the second subunit in the holo conformation. Between the two conformations, the relative disposition of domains remains unchanged, while two loops, Cys250-Asn260 and Ile277-Lys292, experience large movements. The apo-apo structure is disfavoured because of steric impairment involving the loop Ile277-Lys292, while in the holo-holo conformation some of the hydrogen bonds between subunits would break apart. These suggest that the first NADPH molecule would bind to the enzyme much more tightly than the second. In addition, fluorimetric analysis of NADPH binding demonstrates that only one cofactor molecule binds per dimer. Therefore, ScAdh6p appears to function according to a half-of-the-sites reactivity mechanism, resulting from a pre-existing (prior to cofactor binding) tendency for the structural asymmetry in the dimer. The specificity of ScAdh6p towards NADPH is mainly due to the tripod-like interactions of the terminal phosphate group with Ser210, Arg211 and Lys215. The size and the shape of the substrate-binding pocket correlate well with the substrate specificity of ScAdh6p towards cinnamaldehyde and other aromatic compounds. The structural relationships of ScAdh6p with other MDR structures are analysed.  相似文献   

7.
8.
Xu H  West AH  Cook PF 《Biochemistry》2006,45(39):12156-12166
Kinetic data have been measured for the histidine-tagged saccharopine dehydrogenase from Saccharomyces cerevisiae, suggesting the ordered addition of nicotinamide adenine dinucleotide (NAD) followed by saccharopine in the physiologic reaction direction. In the opposite direction, the reduced nicotinamide adenine dinucleotide (NADH) adds to the enzyme first, while there is no preference for the order of binding of alpha-ketoglutarate (alpha-Kg) and lysine. In the direction of saccharopine formation, data also suggest that, at high concentrations, lysine inhibits the reaction by binding to free enzyme. In addition, uncompetitive substrate inhibition by alpha-Kg and double inhibition by NAD and alpha-Kg suggest the existence of an abortive E:NAD:alpha-Kg complex. Product inhibition by saccharopine is uncompetitive versus NADH, suggesting a practical irreversibility of the reaction at pH 7.0 in agreement with the overall K(eq). Saccharopine is noncompetitive versus lysine or alpha-Kg, suggesting the existence of both E:NADH:saccharopine and E:NAD:saccharopine complexes. NAD is competitive versus NADH, and noncompetitive versus lysine and alpha-Kg, indicating the combination of the dinucleotides with free enzyme. Dead-end inhibition studies are also consistent with the random addition of alpha-Kg and lysine. Leucine and oxalylglycine serve as lysine and alpha-Kg dead-end analogues, respectively, and are uncompetitive against NADH and noncompetitive against alpha-Kg and lysine, respectively. Oxaloacetate (OAA), pyruvate, and glutarate behave as dead-end analogues of lysine, which suggests that the lysine-binding site has a higher affinity for keto acid analogues than does the alpha-Kg site or that dicarboxylic acids have more than one binding mode on the enzyme. In addition, OAA and glutarate also bind to free enzyme as does lysine at high concentrations. Glutarate gives S-parabolic noncompetitive inhibition versus NADH, indicating the formation of a E:(glutarate)2 complex as a result of occupying both the lysine- and alpha-Kg-binding sites. Pyruvate, a slow alternative keto acid substrate, exhibits competitive inhibition versus both lysine and alpha-Kg, suggesting the combination to the E:NADH:alpha-Kg and E:NADH:lysine enzyme forms. The equilibrium constant for the reaction has been measured at pH 7.0 as 3.9 x 10(-7) M by monitoring the change in NADH upon the addition of the enzyme. The Haldane relationship is in very good agreement with the directly measured value.  相似文献   

9.
Andi B  Xu H  Cook PF  West AH 《Biochemistry》2007,46(44):12512-12521
Three structures of saccharopine dehydrogenase (l-lysine-forming) (SDH) have been determined in the presence of sulfate, adenosine monophosphate (AMP), and oxalylglycine (OxGly). In the sulfate-bound structure, a sulfate ion binds in a cleft between the two domains of SDH, occupies one of the substrate carboxylate binding sites, and results in partial closure of the active site of the enzyme due to a domain rotation of almost 12 degrees in comparison to the apoenzyme structure. In the second structure, AMP binds to the active site in an area where the NAD+ cofactor is expected to bind. All of the AMP moieties (adenine ring, ribose, and phosphate) interact with specific residues of the enzyme. In the OxGly-bound structure, carboxylates of OxGly interact with arginine residues representative of the manner in which substrate (alpha-ketoglutarate and saccharopine) may bind. The alpha-keto group of OxGly interacts with Lys77 and His96, which are candidates for acid-base catalysis. Analysis of ligand-enzyme interactions, comparative structural analysis, corroboration with kinetic data, and discussion of a ternary complex model are presented in this study.  相似文献   

10.
Summary Insertion of the transposable element Ty at the ADH4 locus results in increased levels of a new alcohol dehydrogenase (ADH) activity in Saccharomyces cerevisiae. The DNA sequence of this locus has been determined. It contains a long open reading frame which is not homologous to the other ADH isozymes that have been characterized in S. cerevisiae nor does it show obvious homology to Drosophila ADH. The hypothetical ADH does, however, show strong homology to the sequence of an iron-activated ADH from the bacterium Zymomonas mobilis. Thus ADH4 appears to encode an ADH structural gene which, along with the Zymomonas enzyme, may define a new family of alcohol dehydrogenases.Now The Plant Cell Research Institute, Inc., 6560 Trinity Court, Dublin, CA 94568, USA  相似文献   

11.
Homoserine dehydrogenase of Saccharomyces cerevisiae has been rapidly purified to homogeneity by heat and acid treatments, ammonium sulfate fractionation, and chromatography on Matrex Gel Red A and Q-Sepharose columns. The final preparation migrated as a single entity upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a Mr of 40,000. The Mr of the native enzyme was 81,000 as determined by gel filtration, suggesting that the enzyme is composed of two identical subunits. This feature was also confirmed by cross-linking analysis using the bifunctional reagent dimethyl suberimidate. Feedback inhibition by L-methionine and L-threonine was observed using the purified enzyme. The enzyme was markedly stabilized against heat treatment at high salt concentrations. Additions of feedback inhibitors or high concentrations of salts failed to cause any dissociation or aggregation of the enzyme subunits unlike enzymes from other sources such as Rhodospirillum rubrum. The enzyme denatured in 3 M guanidine-HCl was refolded by simple dilution with a concomitant restoration of the activity. Cross-linking analysis of the renaturation process suggested that the formation of the dimer is required for activity expression. Amino acid sequence analysis of peptides obtained by digestion of the enzyme protein with Achromobacter lyticus protease I revealed that several amino acid residues are strictly conserved among homoserine dehydrogenases from S. cerevisiae, Escherichia coli, and Bacillus subtilis.  相似文献   

12.
Saccharomyces cerevisiae possesses three isozymes of 5,10-methylenetetrahydrofolate dehydrogenase (MTD). The NAD-dependent enzyme is the first monofunctional form found in eukaryotes. Here we report its crystallization in a form suitable for high-resolution structure. The space group is P42212 with cell constants a = b = 75.9, c = 160.0 Å, and there is one 36 kDa molecule in the asymmetric unit. Crystals diffract to 2.9 Å resolution. Proteins 26:481–482 © 1996 Wiley-Liss, Inc.  相似文献   

13.
A procedure for the purification of aldehyde dehydrogenase from bakers' yeast (Saccharomyces cerevisiae) is reported. Treatment with acid, heat and organic solvents was avoided and chromatographic and filtration techniques in the presence of phenylmethylsulfonylfluoride were mainly used. An affinity chromatography step using the reactive dye Cibacron blue F3G-A, which was covalently bound to Sepharose 4B, was found to be essential. The enzyme was bound to and then released from the dye. The purified enzyme was shown to be homogeneous by gel filtration, disc electrophoresis and SDS electrophoresis. The molecular weight of the purified enzyme determined by gel filtration was 170,000, which agreed with that of the enzyme in the crude extract. The enzyme was composed of subunits of a molecular weight of 57,000. The specific activity of the enzyme was 20 units per mg of protein under the standard assay conditions. The substrate specificity, the relative maximal velocity, the michaelis constants, the pH optimum, the stability and the activation energy of the enzyme are reported.  相似文献   

14.
Xu H  West AH  Cook PF 《Biochemistry》2007,46(25):7625-7636
A survey of NADH, alpha-Kg, and lysine analogues has been undertaken in an attempt to define the substrate specificity of saccharopine dehydrogenase and to identify functional groups on all substrates and dinucleotides important for substrate binding. A number of NAD analogues, including NADP, 3-acetylpyridine adenine dinucleotide (3-APAD), 3-pyridinealdehyde adenine dinucleotide (3-PAAD), and thionicotinamide adenine dinucleotide (thio-NAD), can serve as a substrate in the oxidative deamination reaction, as can a number of alpha-keto analogues, including glyoxylate, pyruvate, alpha-ketobutyrate, alpha-ketovalerate, alpha-ketomalonate, and alpha-ketoadipate. Inhibition studies using nucleotide analogues suggest that the majority of the binding energy of the dinucleotides comes from the AMP portion and that distinctly different conformations are generated upon binding of the oxidized and reduced dinucleotides. Addition of the 2'-phosphate as in NADPH causes poor binding of subsequent substrates but has little effect on coenzyme binding and catalysis. In addition, the 10-fold decrease in affinity of 3-APAD in comparison to NAD suggests that the nicotinamide ring binding pocket is hydrophilic. Extensive inhibition studies using aliphatic and aromatic keto acid analogues have been carried out to gain insight into the keto acid binding pocket. Data suggest that a side chain with three carbons (from the alpha-keto group up to and including the side chain carboxylate) is optimal. In addition, the distance between the C1-C2 unit and the C5 carboxylate of the alpha-keto acid is also important for binding; the alpha-oxo group contributes a factor of 10 to affinity. The keto acid binding pocket is relatively large and flexible and can accommodate the bulky aromatic ring of a pyridine dicarboxylic acid and a negative charge at the C3 but not the C4 position. However, the amino acid binding site is hydrophobic, and the optimal length of the hydrophobic portion of the amino acid carbon side chain is three or four carbons. In addition, the amino acid binding pocket can accommodate a branch at the gamma-carbon, but not at the beta-carbon.  相似文献   

15.
Previous comparisons of centromeric DNA sequences in laboratory strains of Saccharomyces cerevisiae have revealed conserved sequences within 120 base pairs (bp) which appear to be essential for centromere function. We wanted to find out whether centromeric DNA in Saccharomyces strains with different degrees of DNA sequence divergence carry the same conserved sequences or not. Bam HI DNA fragments from two S. cerevisiae strains and one Saccharomyces uvarum strain were cloned into a centromere selection vector and tested for centromere function in a S. cerevisiae laboratory strain. Fragments having centromere function were obtained at approximately equal frequencies from all three strains. Two of the S. uvarum centromeric DNAs and two of the S. cerevisiae centromeric DNAs were sequenced and shown to carry in a 120 bp region sequences essentially like those of centromeric DNA in S. cerevisiae laboratory strains. DNA hybridization to separated chromosomal DNAs revealed that the two newly determined S. cerevisiae centromeric DNA sequences belong to chromosomes V and XIII, respectively. On leave from: Department of Cell and Tumor Biology, Roswell Park Memorial Institute, Buffalo, NY 14263, USA; On leave from: The Biological Laboratories, University of Leiden, The Netherlands  相似文献   

16.
The non-enzymatic deamidation of asparaginyl residues is a major source of spontaneous damage of several proteins under physiological conditions. In many cases, deamidation and isoaspartyl formation alters the biological activity or stability of the native polypeptide. Rates of deamidation of particular residues depend on many factors including protein structure and solvent exposure. Here, we investigated the spontaneous deamidation of the two NADP-glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae, which have different kinetic properties and are differentially expressed in this yeast. Our results show that Asn54, present in Gdh3p but missing in the GDH1-encoded homologue, is readily deamidated in vitro under alkaline conditions. Relative to the native enzyme, deamidated Gdh3p shows reduced protein stability. The different deamidation rates of the two isoenzymes could explain to some extent, the relative in vivo instability of the allosteric Gdh3p enzyme, compared to that of Gdh1p. It is thus possible that spontaneous asparaginyl modification could play a role in the metabolic regulation of ammonium assimilation and glutamate biosynthesis.  相似文献   

17.
18.
The mannoprotein which is a major component of the cell wall of Saccharomyces cerevisiae is an effective bioemulsifier. Mannoprotein emulsifier was extracted in a high yield from whole cells of fresh bakers' yeast by two methods, by autoclaving in neutral citrate buffer and by digestion with Zymolase (Miles Laboratories; Toronto, Ontario, Canada), a beta-1,3-glucanase. Heat-extracted emulsifier was purified by ultrafiltration and contained approximately 44% carbohydrate (mannose) and 17% protein. Treatment of the emulsifier with protease eliminated emulsification. Kerosene-in-water emulsions were stabilized over a broad range of conditions, from pH 2 to 11, with up to 5% sodium chloride or up to 50% ethanol in the aqueous phase. In the presence of a low concentration of various solutes, emulsions were stable to three cycles of freezing and thawing. An emulsifying agent was extracted from each species or strain of yeast tested, including 13 species of genera other than Saccharomyces. Spent yeast from the manufacture of beer and wine was demonstrated to be a possible source for the large-scale production of this bioemulsifier.  相似文献   

19.
Saccharopine dehydrogenase [N6-(glutaryl-2)-L-lysine:NAD oxidoreductase (L-lysine forming)] catalyzes the final step in the alpha-aminoadipate pathway for lysine biosynthesis. It catalyzes the reversible pyridine nucleotide-dependent oxidative deamination of saccharopine to generate alpha-Kg and lysine using NAD+ as an oxidizing agent. The proton shuttle chemical mechanism is proposed on the basis of the pH dependence of kinetic parameters, dissociation constants for competitive inhibitors, and isotope effects. In the direction of lysine formation, once NAD+ and saccharopine bind, a group with a pKa of 6.2 accepts a proton from the secondary amine of saccharopine as it is oxidized. This protonated general base then does not participate in the reaction again until lysine is formed at the completion of the reaction. A general base with a pKa of 7.2 accepts a proton from H2O as it attacks the Schiff base carbon of saccharopine to form the carbinolamine intermediate. The same residue then serves as a general acid and donates a proton to the carbinolamine nitrogen to give the protonated carbinolamine. Collapse of the carbinolamine is then facilitated by the same group accepting a proton from the carbinolamine hydroxyl to generate alpha-Kg and lysine. The amine nitrogen is then protonated by the group that originally accepted a proton from the secondary amine of saccharopine, and products are released. In the reverse reaction direction, finite primary deuterium kinetic isotope effects were observed for all parameters with the exception of V2/K(NADH), consistent with a steady-state random mechanism and indicative of a contribution from hydride transfer to rate limitation. The pH dependence, as determined from the primary isotope effect on DV2 and D(V2/K(Lys)), suggests that a step other than hydride transfer becomes rate-limiting as the pH is increased. This step is likely protonation/deprotonation of the carbinolamine nitrogen formed as an intermediate in imine hydrolysis. The observed solvent isotope effect indicates that proton transfer also contributes to rate limitation. A concerted proton and hydride transfer is suggested by multiple substrate/solvent isotope effects, as well as a proton transfer in another step, likely hydrolysis of the carbinolamine. In agreement, dome-shaped proton inventories are observed for V2 and V2/K(Lys), suggesting that proton transfer exists in at least two sequential transition states.  相似文献   

20.
In the yeast Saccharomyces cerevisiae, mitochondrial translation of most, if not all, mitochondrially encoded genes is regulated by an individual set of gene-specific activators. Translation of the COB mRNA encoding cytochrome b requires the function of two nuclearly encoded proteins, Cbs1p and Cbs2p. Genetic data revealed that the 5'-untranslated region of COB mRNA is the target of both proteins. Recently, we provided evidence for an interaction of Cbs2p with mitochondrial ribosomes. We demonstrate here by means of blue native gel electrophoresis, density gradient centrifugation and tandem affinity purification that a portion of Cbs1p is also associated with mitochondrial ribosomes. In addition, we demonstrate that the amount of ribosome-associated Cbs1p is elevated in the presence of chloramphenicol, which is known to stall ribosomes on mRNAs. In the presence of puromycin, which strips off the mRNA and nascent protein chains from ribosomes, Cbs1p is no longer associated with ribosomes. Our data indicate that the observed interaction is mediated by ribosome-bound mRNA, thus restricting the association to ribosomes actively translating cytochrome b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号