首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microsatellite genetic map of the turbot (Scophthalmus maximus)   总被引:3,自引:0,他引:3       下载免费PDF全文
A consensus microsatellite-based linkage map of the turbot (Scophthalmus maximus) was constructed from two unrelated families. The mapping panel was derived from a gynogenetic family of 96 haploid embryos and a biparental diploid family of 85 full-sib progeny with known linkage phase. A total of 242 microsatellites were mapped in 26 linkage groups, six markers remaining unlinked. The consensus map length was 1343.2 cM, with an average distance between markers of 6.5 +/- 0.5 cM. Similar length of female and male maps was evidenced. However, the mean recombination at common intervals throughout the genome revealed significant differences between sexes, approximately 1.6 times higher in the female than in the male. The comparison of turbot microsatellite flanking sequences against the Tetraodon nigroviridis genome revealed 55 significant matches, with a mean length of 102 bp and high sequence similarity (81-100%). The comparative mapping revealed significant syntenic regions among fish species. This study represents the first linkage map in the turbot, one of the most important flatfish in European aquaculture. This map will be suitable for QTL identification of productive traits in this species and for further evolutionary studies in fish and vertebrate species.  相似文献   

2.
Expressed sequence tags (ESTs) can be used to identify microsatellite markers. We developed 81 polymorphic microsatellite markers from 4,940 ESTs of the olive flounder, Paralichthys olivaceus. Out of 100 EST-derived microsatellites for which PCR primers were designed, 81 loci were polymorphic in 30 individuals from a single natural population with 2–28 (mean 10.6) alleles per locus. The observed and expected heterozygosities of these loci were 0.033–1.000 and 0.033–0.965, respectively. Segregation analysis within a mapping family revealed non-amplifying null alleles at five loci. These new EST-derived microsatellite markers should be useful for population genetic analyses, pedigree tracing and constructing a linkage map for olive flounder.  相似文献   

3.
4.
We generated a high-density genetic linkage map of soybean usingexpressed sequence tag (EST)-derived microsatellite markers.A total of 6920 primer pairs (10.9%) were designed to amplifysimple sequence repeats (SSRs) from 63 676 publicly availablenon-redundant soybean ESTs. The polymorphism of two parent plants,the Japanese cultivar ‘Misuzudaizu’ and the Chineseline ‘Moshidou Gong 503’, were examined using 10%polyacrylamide gel electrophoresis. Primer pairs showing polymorphismwere then used for genotyping 94 recombinant inbred lines (RILs)derived from a cross between the parents. In addition to previouslyreported markers, 680 EST-derived microsatellite markers wereselected and subjected to linkage analysis. As a result, 935marker loci were mapped successfully onto 20 linkage groups,which totaled 2700.3 cM in length; 693 loci were detected usingthe 668 EST-derived microsatellite markers developed in thisstudy, the other 242 loci were detected with 105 RFLP markers,136 genome-derived microsatellite markers, and one phenotypicmarker. We examined allelic variation among 23 soybean cultivars/linesand a wild soybean line using 668 mapped EST-derived microsatellitemarkers (corresponding to 686 marker loci), in order to determinethe transferability of the markers among soybean germplasms.A limited degree of macrosynteny was observed at the segmentallevel between the genomes of soybean and the model legume Lotusjaponicus, which suggests that considerable genome shufflingoccurred after separation of the species and during establishmentof the paleopolyploid soybean genome.  相似文献   

5.
In this study, we identified and characterized 160 microsatellite loci from an expressed sequence tag (EST) database generated from immune-related organs of turbot (Scophthalmus maximus). A final set of 83 new polymorphic microsatellites were validated after the analysis of 40 individuals of Atlantic origin including both wild and farmed individuals. The allele number and the expected heterozygosity ranged from 2 to 18 and from 0.021 to 0.951, respectively. Evidences of null alleles at moderate-high frequencies were detected at six loci using population data. None of the analysed loci showed deviations from Mendelian segregation after the analysis of five full-sib families including approximately 92 individuals/family. The markers are used to consolidate the turbot genetic map, and because they are mostly EST-derived, they will be very useful for comparative genomic studies within flatfishes and with model fish species. Using an in silico approach, we detected significant homologies of microsatellite sequences with the EST databases of the flatfish species with highest genomic resources (Senegalese sole, Atlantic halibut, bastard halibut) in 31% of these turbot markers. The conservation of these microsatellites within Pleuronectiformes will pave the way for anchoring genetic maps of different species and identifying genomic regions related to productive traits.  相似文献   

6.
Wang CM  Liu P  Yi C  Gu K  Sun F  Li L  Lo LC  Liu X  Feng F  Lin G  Cao S  Hong Y  Yin Z  Yue GH 《PloS one》2011,6(8):e23632
Jatropha curcas is a potential plant species for biodiesel production. However, its seed yield is too low for profitable production of biodiesel. To improve the productivity, genetic improvement through breeding is essential. A linkage map is an important component in molecular breeding. We established a first-generation linkage map using a mapping panel containing two backcross populations with 93 progeny. We mapped 506 markers (216 microsatellites and 290 SNPs from ESTs) onto 11 linkage groups. The total length of the map was 1440.9 cM with an average marker space of 2.8 cM. Blasting of 222 Jatropha ESTs containing polymorphic SSR or SNP markers against EST-databases revealed that 91.0%, 86.5% and 79.2% of Jatropha ESTs were homologous to counterparts in castor bean, poplar and Arabidopsis respectively. Mapping 192 orthologous markers to the assembled whole genome sequence of Arabidopsis thaliana identified 38 syntenic blocks and revealed that small linkage blocks were well conserved, but often shuffled. The first generation linkage map and the data of comparative mapping could lay a solid foundation for QTL mapping of agronomic traits, marker-assisted breeding and cloning genes responsible for phenotypic variation.  相似文献   

7.
A framework genetic map based on genomic DNA-derived SSR, EST-derived SSR, EST-STS and EST-RFLP markers was developed using 181 genotypes generated from D8909-15 (female) × F8909-17 (male), the ‘9621’ population. Both parents are half siblings with a common female parent, Vitis rupestris ‘A. de Serres’, and different male parents (forms of V. arizonica). A total of 542 markers were tested, and 237 of them were polymorphic for the female and male parents. The female map was developed with 159 mapped markers covering 865.0 cM with an average marker distance of 5.4 cM in 18 linkage groups. The male map was constructed with 158 mapped molecular markers covering 1055.0 cM with an average distance of 6.7 cM in 19 linkage groups. The consensus ‘9621’ map covered 1154.0 cM with 210 mapped molecular markers in 19 linkage groups, with average distance of 5.5 cM. Ninety-four of the 210 markers on the consensus map were new. The ‘Sex’ expression locus segregated as single major gene was mapped to linkage group 2 on the consensus and the male map. PdR1, a major gene for resistance to Pierce’s disease, caused by the bacterium Xylella fastidiosa, was mapped to the linkage group 14 between markers VMCNg3h8 and VVIN64, located 4.3 and 2.7 cM away from PdR1, respectively. Differences in segregation distortion of markers were also compared between parents, and three clusters of skewed markers were observed on linkage groups 6, 7 and 14.  相似文献   

8.
The sequencing and detailed comparative functional analysis of genomes of a number of select botanical models open new doors into comparative genomics among the angiosperms, with potential benefits for improvement of many orphan crops that feed large populations. In this study, a set of simple sequence repeat (SSR) markers was developed by mining the expressed sequence tag (EST) database of sorghum. Among the SSR-containing sequences, only those sharing considerable homology with rice genomic sequences across the lengths of the 12 rice chromosomes were selected. Thus, 600 SSR-containing sorghum EST sequences (50 homologous sequences on each of the 12 rice chromosomes) were selected, with the intention of providing coverage for corresponding homologous regions of the sorghum genome. Primer pairs were designed and polymorphism detection ability was assessed using parental pairs of two existing sorghum mapping populations. About 28% of these new markers detected polymorphism in this 4-entry panel. A subset of 55 polymorphic EST-derived SSR markers were mapped onto the existing skeleton map of a recombinant inbred population derived from cross N13 × E 36-1, which is segregating for Striga resistance and the stay-green component of terminal drought tolerance. These new EST-derived SSR markers mapped across all 10 sorghum linkage groups, mostly to regions expected based on prior knowledge of rice–sorghum synteny. The ESTs from which these markers were derived were then mapped in silico onto the aligned sorghum genome sequence, and 88% of the best hits corresponded to linkage-based positions. This study demonstrates the utility of comparative genomic information in targeted development of markers to fill gaps in linkage maps of related crop species for which sufficient genomic tools are not available.  相似文献   

9.
A consensus map for sugi (Cryptomeria japonica) was constructed by integrating linkage data from two unrelated third-generation pedigrees, one derived from a full-sib cross and the other by self-pollination of F1 individuals. The progeny segregation data of the first pedigree were derived from cleaved amplified polymorphic sequences, microsatellites, restriction fragment length polymorphisms, and single nucleotide polymorphisms. The data of the second pedigree were derived from cleaved amplified polymorphic sequences, isozyme markers, morphological traits, random amplified polymorphic DNA markers, and restriction fragment length polymorphisms. Linkage analyses were done for the first pedigree with JoinMap 3.0, using its parameter set for progeny derived by cross-pollination, and for the second pedigree with the parameter set for progeny derived from selfing of F1 individuals. The 11 chromosomes of C. japonica are represented in the consensus map. A total of 438 markers were assigned to 11 large linkage groups, 1 small linkage group, and 1 nonintegrated linkage group from the second pedigree; their total length was 1372.2 cM. On average, the consensus map showed 1 marker every 3.0 cM. PCR-based codominant DNA markers such as cleaved amplified polymorphic sequences and microsatellite markers were distributed in all linkage groups and occupied about half of mapped loci. These markers are very useful for integration of different linkage maps, QTL mapping, and comparative mapping for evolutional study, especially for species with a large genome size such as conifers.  相似文献   

10.
The present study describes a new set of 61 polymorphic microsatellite markers for beans and the construction of a genetic map using the BAT93 x Jalo EEP558 (BJ) population for the purpose of developing a reference linkage map for common bean (Phaseolus vulgaris). The main objectives were to integrate new microsatellites on the existing framework map of the BJ population, and to develop the first linkage map for the BJ population based exclusively on microsatellites. Of the total of 264 microsatellites evaluated for polymorphism, 42.8% showed polymorphism between the genitors. An integrated map was created totaling 199 mapped markers in 13 linkage groups, with an observed length of 1358 cM and a mean distance between markers of 7.23 cM. For the map constructed exclusively with microsatellites, 106 markers were placed in 12 groups with a total length of 606.8 cM and average distance of 6.8 cM. Linkage group designation and marker order for BM microsatellites generally agreed with previous mapping, while the new microsatellites were well distributed across the genome, corroborating the utility of the BJ population for a reference map. The extensive use of the microsatellites and the availability of a reference map can help in the development of other genetic maps for common bean through the transfer of information of marker order and linkage, which will allow comparative analysis and map integration, especially for future quantitative trait loci and association mapping studies.  相似文献   

11.

Background

Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been developed and characterised for various traits. Although some genetic linkage maps of these populations have been aligned with each other using publicly available DNA markers, the number of common markers among genetic maps is still low, limiting the ability to compare candidate gene and QTL locations across germplasm.

Results

A set of 204 expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers has been assigned to map positions using eight different ryegrass mapping populations. Marker properties of a subset of 64 EST-SSRs were assessed in six to eight individuals of each mapping population and revealed 83% of the markers to be polymorphic in at least one population and an average number of alleles of 4.88. EST-SSR markers polymorphic in multiple populations served as anchor markers and allowed the construction of the first comprehensive consensus map for ryegrass. The integrated map was complemented with 97 SSRs from previously published linkage maps and finally contained 284 EST-derived and genomic SSR markers. The total map length was 742 centiMorgan (cM), ranging for individual chromosomes from 70 cM of linkage group (LG) 6 to 171 cM of LG 2.

Conclusions

The consensus linkage map for ryegrass based on eight mapping populations and constructed using a large set of publicly available Lolium EST-SSRs mapped for the first time together with previously mapped SSR markers will allow for consolidating existing mapping and QTL information in ryegrass. Map and markers presented here will prove to be an asset in the development for both molecular breeding of ryegrass as well as comparative genetics and genomics within grass species.  相似文献   

12.
There is an immediate need for a high-density genetic map of cotton anchored with fiber genes to facilitate marker-assisted selection (MAS) for improved fiber traits. With this goal in mind, genetic mapping with a new set of microsatellite markers [comprising both simple (SSR) and complex (CSR) sequence repeat markers] was performed on 183 recombinant inbred lines (RILs) developed from the progeny of the interspecific cross Gossypium hirsutum L. cv. TM1 × Gossypium barbadense L. Pima 3-79. Microsatellite markers were developed using 1557 ESTs-containing SSRs (≥10 bp) and 5794 EST-containing CSRs (≥12 bp) obtained from ~14,000 consensus sequences derived from fiber ESTs generated from the cultivated diploid species Gossypium arboreum L. cv AKA8401. From a total of 1232 EST-derived SSR (MUSS) and CSR (MUCS) primer-pairs, 1019 (83%) successfully amplified PCR products from a survey panel of six Gossypium species; 202 (19.8%) were polymorphic between the G. hirsutum L. and G. barbadense L. parents of the interspecific mapping population. Among these polymorphic markers, only 86 (42.6%) showed significant sequence homology to annotated genes with known function. The chromosomal locations of 36 microsatellites were associated with 14 chromosomes and/or 13 chromosome arms of the cotton genome by hypoaneuploid deficiency analysis, enabling us to assign genetic linkage groups (LG) to specific chromosomes. The resulting genetic map consists of 193 loci, including 121 new fiber loci not previously mapped. These fiber loci were mapped to 19 chromosomes and 11 LG spanning 1277 cM, providing approximately 27% genome coverage. Preliminary quantitative trait loci analysis suggested that chromosomes 2, 3, 15, and 18 may harbor genes for traits related to fiber quality. These new PCR-based microsatellite markers derived from cotton fiber ESTs will facilitate the development of a high-resolution integrated genetic map of cotton for structural and functional study of fiber genes and MAS of genes that enhance fiber quality. Electronic Supplementary Material Supplementary material is available for this article at Names are necessary to report factually on available data, however, the USDA neither guarantees nor warrants the standard of products or service, and the use of the name by the USDA implies no approval of the products or service to the exclusion of others that may also be suitable.  相似文献   

13.
The growing availability of ESTs provides a potentially valuable source of new DNA markers. The authors examined the SUCEST database and developed EST-derived markers. Thus to enhance the resolution of an existing linkage map and to identify putative functional polymorphic gene loci in a sugarcane commercial cross, 149 EST-SSRs and 10 EST-RFLPs were screened in the SP80-180 × SP80-4966 mapping population. With the markers already analyzed in the previous map, 2303 polymorphic markers were generated, of which 1669 (72.5%) were single-dose (SD) markers. Out of these 1669 SD markers, 664 (40%) were scattered onto 192 co-segregation groups (CGs) with a total estimated length of 6.261,1 cM. Using both genomic and EST-derived SSR and RFLP markers, 120 out of the 192 CGs were formed into fourteen putative homology groups (HGs). The EST-derived markers were subjected to BLASTX search in the SUCEST database, of which putative function was assigned to 113 EST-SSRs and six EST-RFLPs based on high nucleotide homology to previously studied genes. The integration of EST-derived markers improved the map, making it possible to consider additional fine mapping of the genome, and providing the means for developing ‘perfect markers’ associated with key QTL. To summarize, this paper deals with the construction of a genetic linkage map of sugarcane that is populated by functionally associated markers.  相似文献   

14.
Grapevine molecular maps based on microsatellites, AFLP and RAPD markers are now available. SSRs are essential to allow cross-talks between maps, thus upgrading any growing grapevine maps. In this work, single nucleotide polymorphisms (SNPs) were developed from coding sequences and from unique BAC-end sequences, and nested in a SSR framework map of grapevine. Genes participating to flavonoids metabolism and defence, and signal transduction pathways related genes were also considered. Primer pairs for 351 loci were developed from ESTs present on public databases and screened for polymorphism in the “Merzling” (a complex genotype Freiburg 993–60 derived from multiple crosses also involving wild Vitis species) × Vitis vinifera (cv. Teroldego) cross population. In total 138 SNPs, 108 SSR markers and a phenotypic trait (berry colour) were mapped in 19 major linkage groups of the consensus map. In specific cases, ESTs with putatively related functions mapped near QTLs previously identified for resistance and berry ripening. Genes related to anthocyanin metabolism mapped in different linkage groups. A myb gene, which has been correlated with anthocyanin biosynthesis, cosegregated with berry colour on linkage group 2. The possibility of associating candidate genes to known position of QTL is discussed for this plant. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Marzia Salmaso and Giulia Malacarne contributed equally to the present work.  相似文献   

15.
16.
A Genetic Linkage Map of the Male Goat Genome   总被引:32,自引:0,他引:32       下载免费PDF全文
This paper presents a first genetic linkage map of the goat genome. Primers derived from the flanking sequences of 612 bovine, ovine and goat microsatellite markers were gathered and tested for amplification with goat DNA under standardized PCR conditions. This screen made it possible to choose a set of 55 polymorphic markers that can be used in the three species and to define a panel of 223 microsatellites suitable for the goat. Twelve half-sib paternal goat families were then used to build a linkage map of the goat genome. The linkage analysis made it possible to construct a meiotic map covering 2300 cM, i.e., >80% of the total estimated length of the goat genome. Moreover, eight cosmids containing microsatellites were mapped by fluorescence in situ hybridization in goat and sheep. Together with 11 microsatellite-containing cosmids previously mapped in cattle (and supposing conservation of the banding pattern between this species and the goat) and data from the sheep map, these results made the orientation of 15 linkage groups possible. Furthermore, 12 coding sequences were mapped either genetically or physically, providing useful data for comparative mapping.  相似文献   

17.
A genetic linkage map of the channel catfish genome (N = 29) was constructed using EST-based microsatellite and single nucleotide polymorphism (SNP) markers in an interspecific reference family. A total of 413 microsatellites and 125 SNP markers were polymorphic in the reference family. Linkage analysis using JoinMap 4.0 allowed mapping of 331 markers (259 microsatellites and 72 SNPs) to 29 linkage groups. Each linkage group contained 3–18 markers. The largest linkage group contained 18 markers and spanned 131.2 cM, while the smallest linkage group contained 14 markers and spanned only 7.9 cM. The linkage map covered a genetic distance of 1811 cM with an average marker interval of 6.0 cM. Sex-specific maps were also constructed; the recombination rate for females was 1.6 times higher than that for males. Putative conserved syntenies between catfish and zebrafish, medaka, and Tetraodon were established, but the overall levels of genome rearrangements were high among the teleost genomes. This study represents a first-generation linkage map constructed by using EST-derived microsatellites and SNPs, laying a framework for large-scale comparative genome analysis in catfish. The conserved syntenies identified here between the catfish and the three model fish species should facilitate structural genome analysis and evolutionary studies, but more importantly should facilitate functional inference of catfish genes. Given that determination of gene functions is difficult in nonmodel species such as catfish, functional genome analysis will have to rely heavily on the establishment of orthologies from model species.  相似文献   

18.
Gene-derived markers are pivotal to the analysis of genome structure, organization, and evolution and necessary for comparative genomics. However, gene-derived markers are relatively difficult to develop. This project utilized the genomic resources of channel catfish expressed sequence tags (ESTs) to identify simple sequence repeats (SSRs), or microsatellites. It took the advantage of ESTs for the establishment of gene identities, and of microsatellites for the acquisition of high polymorphism. When microsatellites are tagged to genes, the microsatellites can then be used as gene markers. A bioinformatic analysis of 43,033 ESTs identified 4855 ESTs containing microsatellites. Cluster analysis indicated that 1312 of these ESTs fell into 569 contigs, and the remaining 3534 ESTs were singletons. A total of 4103 unique microsatellite-containing genes were identified. The dinucleotide CA/TG and GA/TC pairs were the most abundant microsatellites. AT-rich microsatellite types were predominant among trinucleotide and tetranucleotide microsatellites, consistent with our earlier estimation that the catfish genome is highly AT-rich. Our preliminary results indicated that the majority of the identified microsatellites were polymorphic and, therefore, useful for genetic linkage mapping of catfish. Mapping of these gene-derived markers is under way, which will set the foundation for comparative genome analysis in catfish.  相似文献   

19.
A consolidated linkage map for rainbow trout (Oncorhynchus mykiss)   总被引:20,自引:0,他引:20  
Androgenetic doubled haploid progeny produced from a cross between the Oregon State University and Arlee clonal rainbow trout (Oncorhynchus mykiss) lines, used for a previous published rainbow trout map, were used to update the map with the addition of more amplified fragment length polymorphic (AFLP) markers, microsatellites, type I and allozyme markers. We have added more than 900 markers, bringing the total number to 1359 genetic markers and the sex phenotype including 799 EcoRI AFLPs, 174 PstI AFLPs, 226 microsatellites, 72 VNTR, 38 SINE markers, 29 known genes, 12 minisatellites, five RAPDs, and four allozymes. Thirty major linkage groups were identified. Synteny of linkage groups in our map with the outcrossed microsatellite map has been established for all except one linkage group in this doubled haploid cross. Putative homeologous relationships among linkage groups, resulting from the autotetraploid nature of the salmonid genome, have been revealed based on the placement of duplicated microsatellites and type I loci.  相似文献   

20.
An integrated consensus linkage map is proposed for globe artichoke. Maternal and paternal genetic maps were constructed on the basis of an F1 progeny derived from crossing an artichoke genotype (Mola) with its progenitor, the wild cardoon (Tolfa), using EST-derived SSRs, genomic SSRs, AFLPs, ten genes, and two morphological traits. For most genes, mainly belonging to the chlorogenic acid pathway, new markers were developed. Five of these were SNP markers analyzed through high-resolution melt technology. From the maternal (Mola) and paternal (Tolfa) maps, an integrated map was obtained, containing 337 molecular and one morphological markers ordered in 17 linkage groups (LGs), linked between Mola and Tolfa. The integrated map covers 1,488.8 cM, with an average distance of 4.4 cM between markers. The map was aligned with already existing maps for artichoke, and 12 LGs were linked via 31 bridge markers. LG numbering has been proposed. A total of 124 EST-SSRs and two genes were mapped here for the first time, providing a framework for the construction of a functional map in artichoke. The establishment of a consensus map represents a necessary condition to plan a complete sequencing of the globe artichoke genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号