首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we have found that partially unfolded lysozyme exerts broad spectrum antimicrobial action in vitro against Gram-negative and Gram-positive bacteria independent of its catalytic activity. In parallel, an internal peptide (residues 98-112) of hen egg white lysozyme, obtained after digestion with clostripain, possessed broad spectrum antimicrobial action in vitro. This internal peptide is part of a helix-loop-helix domain (87-114 sequence of hen lysozyme) located at the upper lip of the active site cleft of lysozyme. The helix-loop-helix (HLH) structures are known motifs commonly found in membrane-active and DNA-binding proteins. To evaluate the contribution of the HLH peptide to the antimicrobial properties of lysozyme, the HLH sequence and its secondary structure derivatives of chicken and human lysozyme were synthesized and tested for antimicrobial activity against several bacterial strains. We found that the full HLH peptide of both chicken and human lysozymes was potently microbicidal against both Gram-positive and Gram-negative bacteria and the fungus Candida albicans. The N-terminal helix of HLH was specifically bactericidal to Gram-positive bacteria, whereas the C-terminal helix was bactericidal to all tested strains. Outer and inner membrane permeabilization studies, as well as measurements of transmembrane electrochemical potentials, provided evidence that HLH peptide and its C-terminal helix domain kill Gram-negative bacteria by crossing the outer membrane via self-promoted uptake and causing damage to the inner membrane through channel formation. The results are discussed in terms of proposed mechanisms for the catalytically independent antimicrobial activity of lysozyme that offer a new strategy for the design of potential antimicrobial drugs in the treatment of infectious diseases.  相似文献   

2.
The prophenoloxidase activating enzyme (ppA), a serine proteinase catalyzing the conversion of prophenoloxidase to an active phenoloxidase, has a molecular mass of about 36 kDa in its active form. This protein was cloned from a blood cell cDNA library and its corresponding cDNA of 1736 base pairs encodes a zymogenic protein (proppA) of 468 amino acids. An antibody raised against a synthetic peptide derived from a region of the cDNA sequence could efficiently inhibit the beta-1,3-glucan triggered activation of prophenoloxidase in vitro. The C-terminal half of the proppA is composed of a typical serine proteinase domain, with a sequence similar to other invertebrate and vertebrate serine proteinases. The N-terminal half contains a cationic glycine-rich domain, a cationic proline-rich domain and a clip-domain, in which the disulfide-bonding pattern is likely to be identical to those of the horseshoe crab big defensin and mammalian beta-defensins. Antibodies made against both the C- and the N-terminal halves recognize two proppAs under reducing conditions. However, under nonreducing conditions only the anti-C antibody recognized the two proppAs, which suggests that a conformational change takes place upon reduction that allows the anti-N to react with the N-terminal half of proppA. The recombinant clip-domain in crayfish proppA was overexpressed in Escherichia coli and the resulting peptide exhibited antibacterial activity against Gram-positive bacterial strains such as Micrococcus luteus Ml11 and Bacillus megaterium Bm11 with 50% growth inhibitory concentrations of 1.43 microM and 17.9 microM, respectively. These results suggest that the clip-domains in proppAs may function as antibacterial peptides.  相似文献   

3.
4.
The 3D structure of the membrane-permeabilizing 41-mer pediocin-like antimicrobial peptide curvacin A produced by lactic acid bacteria has been studied by NMR spectroscopy. In DPC micelles, the cationic and hydrophilic N-terminal half of the peptide forms an S-shaped beta-sheet-like domain stabilized by a disulfide bridge and a few hydrogen bonds. This domain is followed by two alpha-helices: a hydrophilic 6-mer helix between residues 19 and 24 and an amphiphilic/hydrophobic 11-mer helix between residues 29 and 39. There are two hinges in the peptide, one at residues 16-18 between the N-terminal S-shaped beta-sheet-like structure and the central 6-mer helix and one at residues 26-28 between the central helix and the 11-mer C-terminal helix. The latter helix is the only amphiphilic/hydrophobic part of the peptide and is thus presumably the part that penetrates into the hydrophobic phase of target-cell membranes. The hinge between the two helices may introduce the flexibility that allows the helix to dip into membranes. The helix-hinge-helix structure in the C-terminal half of curvacin A clearly distinguishes this peptide from the other pediocin-like peptides whose structures have been analyzed and suggests that curvacin A along with the structural homologues enterocin P and carnobacteriocin BM1 belong to a subgroup of the pediocin-like family of antimicrobial peptides.  相似文献   

5.
Healthcare-associated infections (HAIs) are causes of mortality and morbidity worldwide. The prevalence of bacterial resistance to common antibiotics has increased in recent years, highlighting the need to develop novel alternatives for controlling these pathogens. Pitviper venoms are composed of a multifaceted mixture of peptides, proteins and inorganic components. L-amino oxidase (LAO) is a multifunctional enzyme that is able to develop different activities including antibacterial activity. In this study a novel LAO from Bothrops mattogrosensis (BmLAO) was isolated and biochemically characterized. Partial enzyme sequence showed full identity to Bothrops pauloensis LAO. Moreover, LAO here isolated showed remarkable antibacterial activity against Gram-positive and -negative bacteria, clearly suggesting a secondary protective function. Otherwise, no cytotoxic activities against macrophages and erythrocytes were observed. Finally, some LAO fragments (BmLAO-f1, BmLAO-f2 and BmLAO-f3) were synthesized and further evaluated, also showing enhanced antimicrobial activity. Peptide fragments, which are the key residues involved in antimicrobial activity, were also structurally studied by using theoretical models. The fragments reported here may be promising candidates in the rational design of new antibiotics that could be used to control resistant microorganisms.  相似文献   

6.
The antimicrobial activity of bovine lactoferrin (bLF) is attributed to lactoferricin, which is situated in the N1-domain of bLF. Recently, another antimicrobial domain consisting of residues 268-284, designated lactoferrampin (LFampin), has been identified in the N1-domain of bLF, which exhibited antimicrobial activity against Candida albicans and several bacteria. In the present study, the candidacidal activity of a series of peptides spanning this antimicrobial domain was investigated in relation to the charge and the capacity to form a helical conformation in hydrophobic environments. C-Terminal truncation of LFampin resulted in a drastic decrease in candidacidal activity. Positively charged residues clustered at the C-terminal side of the LFampin domain appeared to be crucial for the candidacidal activity. The ability to adopt helical conformations did not change when LFampin was truncated at the C-terminal side. N-Terminally truncated LFampin peptides, truncated up to the sequence 270-284, were more reluctant to adopt a helical conformation. Therefore, we conclude that the C-terminal part of LFampin 265-284, which is the most active peptide, is crucial for its candidacidal activity, due to the presence of clustered positive charges, and that the N-terminal part is essential for activity as it facilitates helix formation.  相似文献   

7.
Pediocin-like antimicrobial peptides (AMPs) form a group of lactic acid bacteria produced, cationic membrane-permeabilizing peptides with 37 to 48 residues. Upon exposure to membrane-mimicking entities, their hydrophilic, cationic, and highly conserved N-terminal region forms a three-stranded antiparallel beta-sheet supported by a conserved disulfide bridge. This N-terminal beta-sheet region is followed by a central amphiphilic alpha-helix and this in most (if not all) of these peptides is followed by a rather extended C-terminal tail that folds back onto the central alpha-helix, thereby creating a hairpin-like structure in the C-terminal half. There is a flexible hinge between the beta-sheet N-terminal region and the hairpin C-terminal region and one thus obtains two domains that may move relative to each other. The cationic N-terminal beta-sheet domain mediates binding of the pediocin-like AMPs to the target-cell surface through electrostatic interactions, while the more hydrophobic and amphiphilic C-terminal hairpin domain penetrates into the hydrophobic part of the target-cell membrane, thereby mediating leakage through the membrane. The hinge provides the structural flexibility that enables the C-terminal hairpin domain to dip into the hydrophobic part of the membrane. Despite extensive sequence similarities, these AMPs differ markedly in their target-cell specificity, and results obtained with hybrid AMPs indicate that the membrane-penetrating hairpin-like C-terminal domain is the major specificity determinant.Bacteria that produce pediocin-like AMPs also produce a 11-kDa cognate immunity protein that protects the producer. The immunity proteins are well-structured, 4-helix bundle cytosolic proteins. They show a high degree of specificity in that they largely recognize and confer immunity only to their cognate AMP and in some cases to a few AMPs that are closely related to their cognate AMP. The C-terminal half of the immunity proteins contains a domain that is involved in specific recognition of the C-terminal membrane-penetrating specificity-determining hairpin domain of the cognate AMP.  相似文献   

8.
Defensins are a major group of antimicrobial peptides and are found widely in vertebrates, invertebrates and plants. Invertebrate defensins have been identified from insects, scorpions, mussels and ticks. In this study, chemically synthesized tick defensin was used to further investigate the activity spectrum and mode of action of natural tick defensin. Synthetic tick defensin showed antibacterial activity against many Gram-positive bacteria but not Gram-negative bacteria and low hemolytic activity, characteristic of invertebrate defensins. Furthermore, bactericidal activity against pathogenic Gram-positive bacteria including Bacillus cereus, Enterococcus faecalis and methicillin-resistant Staphylococcus aureus was observed. However, more than 30 min was necessary for tick defensin to completely kill bacteria. The interaction of tick defensin with the bacterial cytoplasmic membrane and its ability to disrupt the membrane potential was analyzed. Tick defensin was able to disrupt the membrane potential over a period of 30-60 min consistent with its relatively slow killing. Transmission electron microscopy of Micrococcus luteus treated with tick defensin showed lysis of the cytoplasmic membrane and leakage of cellular cytoplasmic contents. These findings suggest that the primary mechanism of action of tick defensin is bacterial cytoplasmic membrane lysis. In addition, incomplete cell division with multiple cross-wall formation was occasionally seen in tick defensin-treated bacteria showing pleiotropic secondary effects of tick defensin.  相似文献   

9.
Yang ST  Jeon JH  Kim Y  Shin SY  Hahm KS  Kim JI 《Biochemistry》2006,45(6):1775-1784
Cathelicidins are essential components of the innate immune system of mammals, providing them a weapon against microbial invasion. PMAP-23 adopting a helix-hinge-helix structure with a central PXXP motif is a member of the cathelicidin family and has potent killing activities against a broad spectrum of microbial organisms. Although the antimicrobial effect of PMAP-23 is believed to be mediated by membrane disruption, many details of this event remain unclear. Here, we try to characterize the interaction between PMAP-23 and membrane phospholipids, focusing on the function of the central PXXP motif. PMAP-PA, in which the Pro residues were substituted by Ala, had significantly more alpha-helical content than PMAP-23, but was less amphipathic and more damaging to human erythrocytes and zwitterionic liposomes. The observed differences in the structures and biological activities of PMAP-23 and PMAP-PA confirmed the functional importance of the central hinge PXXP motif, which enables PMAP-23 to adopt a well-defined amphipathic conformation along its entire length and to have selective antimicrobial activity. CD and Trp fluorescence studies using fragments corresponding to the two helical halves of PMAP-23 revealed that the N-terminal half binds to anionic phospholipids and is more stable than the C-terminal half. In addition, Trp fluorescence quench analyses revealed that the C-terminal helix inserts more deeply into the hydrophobic region of the membrane than the N-terminal helix. Finally, observations made using biosensor technology enabled us to distinguish between the membrane binding and insertion steps, substantiating a proposed kinetic mode of the peptide-membrane interaction in which PMAP-23 first attaches to the membrane via the N-terminal amphipathic helix, after which bending and/or swiveling of the PXXP motif enables insertion of the C-terminal helix into the lipid bilayer.  相似文献   

10.
Lin CH  Tzen JT  Shyu CL  Yang MJ  Tu WC 《Peptides》2011,32(10):2027-2036
Mastoparans, a family of small peptides, are isolated from the wasp venom. In this study, six mastoparans were identified in the venom of six Vespa species in Taiwan. The precursors of these mastoparans are composed of N-terminal signal sequence, prosequence, mature mastoparan, and appendix glycine at C-terminus. These mature mastoparans all have characteristic features of linear cationic peptides rich in hydrophobic and basic amino acids without disulfide bond. Therefore, these peptides could be predicted to adopt an amphipathic α-helical secondary structure. In fact, the CD (circular dichroism) spectra of these peptides show a high content α-helical conformation in the presence of 8 mM SDS or 40% 2,2,2-trifluoroethanol (TFE). All mastoparans exhibit mast cell degranulation activity, antimicrobial activity against both Gram-positive and -negative bacteria tested, various degree of hemolytic activity on chicken, human, and sheep erythrocytes as well as membrane permeabilization on Escherichia coli BL21. Our results also show that the hemolytic activity of mastoparans is correlated to mean hydrophobicity and mean hydrophobic moment.  相似文献   

11.
Heat shock protein 33 (Hsp33) inhibits aggregation of partially denatured proteins during oxidative stress. The chaperone activity of Hsp33 is unique among heat shock proteins because the activity is reversibly regulated by cellular redox status. We report here the crystal structure of the N-terminal region of Hsp33 fragments with constitutive chaperone activity. The structure reveals that the N-terminal portion of Hsp33 forms a tightly associated dimer formed by a domain crossover. A concave groove on the dimeric surface contains an elongated hydrophobic patch that could potentially bind denatured protein substrates. The termini of the subunits are located near the hydrophobic patch, indicating that the cleaved C-terminal domain may shield the hydrophobic patch in an inactive state. Two of the four conserved zinc-coordinating cysteines are in the end of the N-terminal domain, and the other two are in the cleaved C-terminal domain. The structural information and subsequent biochemical characterizations suggest that the redox switch of Hsp33 occurs by a reversible dissociation of the C-terminal regulatory domain through oxidation of zinc-coordinating cysteines and zinc release.  相似文献   

12.
The injection of low doses of bacteria into the aquatic larvae of dragonflies (Aeschna cyanea, Odonata, Paleoptera) induces the appearance in their hemolymph of a potent antibacterial activity. We have isolated a 38-residue peptide from this hemolymph which is strongly active against Gram-positive bacteria and also shows activity against one of the Gram-negative bacteria which was tested. The peptide is a novel member of the insect defensin family of inducible antibacterial peptides, which had so far only been reported from the higher insect orders believed to have evolved 100 million years after the Paleoptera. Aeschna defensin is more potent than defensin from the dipteran Phormia, from which its structure differs in several interesting aspects, which are discussed in the paper.  相似文献   

13.
牛蛙两个新Temporins基因的克隆及其抗菌机制的研究   总被引:3,自引:0,他引:3  
Temporins 是从蛙属中得到的一类羧基端酰胺化的疏水性抗菌肽,具有抗细菌、霉菌、酵母菌、原虫及病毒活性.为了研究牛蛙皮肤抗菌肽的多样性及其结构特点,根据GenBank数据库中蛙属抗菌肽基因信号肽序列设计简并引物,从牛蛙皮肤cDNA文库中克隆到两个新的temporins 家族抗菌肽,命名为 temporin-La (LLRHVVKILEKYLamide) 和 temporin-Lb (LFRHVVKIFEKYLamide).合成的 temporin-La 和 temporin-Lb肽具有很强的抗菌活性,尤其是对革兰氏阳性细菌.溶血性测定结果表明,temporin-La 浓度高至250 mg/L 时对兔红细胞仍无溶血活性,而 temporin-Lb 具有较弱的溶血活性(半数致死浓度LC50 ≈ 230 μmol/L).通过透射电镜观察 temporin-La 和 temporin-Lb 处理过的金黄色葡萄球菌的细胞结构,发现它们都能直接地杀死细菌,但作用机制不一样.  相似文献   

14.
In the venom of eusocial bee Lasioglossum laticeps, we identified a novel unique antimicrobial peptide named lasiocepsin consisting of 27 amino acid residues and two disulfide bridges. After identifying its primary structure, we synthesized lasiocepsin by solid-phase peptide synthesis using two different approaches for oxidative folding. The oxidative folding of fully deprotected linear peptide resulted in a mixture of three products differing in the pattern of disulfide bridges. Regioselective disulfide bond formation significantly improved the yield of desired product. The synthetic lasiocepsin possessed antimicrobial activity against both Gram-positive and -negative bacteria, antifungal activity against Candida albicans, and no hemolytic activity against human erythrocytes. We synthesized two lasiocepsin analogs cyclized through one native disulfide bridge in different positions and having the remaining two cysteines substituted by alanines. The analog cyclized through a Cys8-Cys25 disulfide bridge showed reduced antimicrobial activity compared to the native peptide while the second one (Cys17-Cys27) was almost inactive. Linear lasiocepsin having all four cysteine residues substituted by alanines or alkylated was also inactive. That was in contrast to the linear lasiocepsin with all four cysteine residues non-paired, which exhibited remarkable antimicrobial activity. The shortening of lasiocepsin by several amino acid residues either from the N- or C-terminal resulted in significant loss of antimicrobial activity. Study of Bacillus subtilis cells treated by lasiocepsin using transmission electron microscopy showed leakage of bacterial content mainly from the holes localized at the ends of the bacterial cells.  相似文献   

15.
Hong SY  Park TG  Lee KH 《Peptides》2001,22(10):1669-1674
By using short linear antimicrobial peptides as a model system, the effect of peptide charge on the specificity between Candida albicans (fungi) and Gram-positive bacteria was investigated. In a present study, we added and/or deleted lysine residue(s) at the C-terminal and/or N-terminal end(s) of an antimicrobial peptide (KKVVFKVKFK-NH(2)) and synthesized the peptides that had similar alpha helical structures in a lipid membrane mimic condition. The increase of peptide charge improved antifungal activity without the change of antibacterial activity. Structure-activity relationship study about the peptides revealed that the net positive charge must play an important role in the specificity between C. albicans and Gram-positive bacteria and the increase of the net positive charge without the moderate change of secondary structure could improve activity for C. albicans rather than Gram-positive bacteria.  相似文献   

16.
Ahn HS  Cho W  Kang SH  Ko SS  Park MS  Cho H  Lee KH 《Peptides》2006,27(4):640-648
Tenecin 1, a peptide consisting of 43 amino acids, exhibits a potent bactericidal activity against various Gram-positive bacteria and shares a common structural feature of insect defensin family corresponding to cysteine stabilized alpha/beta motif. Our previous research indicated that an active fragment was successfully extracted from C-terminal beta sheet domain of Tenecin 1, whereas the fragment corresponding to the alpha helical region of the protein had no antibacterial activity. We chose this inactive fragment corresponding to alpha helical region of Tenecin 1 and synthesized derivatives with a different net positive charge by using rational design. Interestingly, we successfully endowed antibacterial activity as well as antifungal activity to the inactive alpha helical fragment by single or double amino acid replacement(s) without an increase of hemolytic activity. The leakage of dye from vesicles induced by the active peptides suggested that these peptides act on the membranes of pathogen as a primary mode of action. Structure-activity relationship study of a series of the active derivatives revealed that amphiphilic structure and high net positive charge were prerequisite factors for the activity and that there was a relationship between the antibacterial activity and the isoelectric point of the active peptides. In this work, we showed an efficient method to endow the antibacterial activity as well as antifungal activity to the inactive fragment derived from a cyclic insect defensin protein and suggested a facile method to screen for active fragments from cyclic host defense peptides.  相似文献   

17.
A recombinant Anopheles gambiae defensin peptide was used to define the antimicrobial activity spectrum against bacteria, filamentous fungi and yeast. Results showed that most of the Gram-positive bacterial species tested were sensitive to the recombinant peptide in a range of concentrations from 0.1 to 0.75 microM. No activity was detected against Gram-negative bacteria, with the exception of some E. coli strains. Growth inhibitory activity was detected against some species of filamentous fungi. Defensin was not active against yeast. The kinetics of bactericidal and fungicidal effects were determined for Micrococcus luteus and Neurospora crassa, respectively. Differential mass spectrometry analysis was used to demonstrate induction of defensin in the hemolymph of bacteria-infected adult female mosquitoes. Native peptide levels were quantitated in both hemolymph and midgut tissues. The polytene chromosome position of the defensin locus was mapped by in situ hybridization.  相似文献   

18.
Bacillus amyloliquefaciens FZB42 is a Gram-positive plant growth-promoting bacterium with an impressive capacity to synthesize nonribosomal secondary metabolites with antimicrobial activity. Here we report on a novel circular bacteriocin which is ribosomally synthesized by FZB42. The compound displayed high antibacterial activity against closely related Gram-positive bacteria. Transposon mutagenesis and subsequent site-specific mutagenesis combined with matrix-assisted laser desorption ionization–time of flight mass spectroscopy revealed that a cluster of six genes covering 4,490 bp was responsible for the production, modification, and export of and immunity to an antibacterial compound, here designated amylocyclicin, with a molecular mass of 6,381 Da. Peptide sequencing of the fragments obtained after tryptic digestion of the purified peptide revealed posttranslational cleavage of an N-terminal extension and head-to-tail circularization of the novel bacteriocin. Homology to other putative circular bacteriocins in related bacteria let us assume that this type of peptide is widespread among the Bacillus/Paenibacillus taxon.  相似文献   

19.
Highly antimicrobial active arginine- and tryptophan-rich peptides were synthesized ranging in size from 11 to five amino acid residues in order to elucidate the main structural requirement for such short antimicrobial peptides. The amino acid sequences of the peptides were based on previous studies of longer bovine and murine lactoferricin derivatives. Most of the peptides showed strong inhibitory action against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive bacterium Staphylococcus aureus. For the most active derivatives, the minimal inhibitory concentration values observed for the Gram-negative bacteria were 5 microg/ml (3.5 microM), whereas it was 2.5 microg/ml (1.5 microM) for the Gram-positive bacterium. It was essential for the antimicrobial activity that the peptides contained a minimum of three tryptophan and three arginine residues, and carried a free N-terminal amino group and an amidated C-terminal end. Furthermore, a minimum sequence size of seven amino acid residues was required for a high antimicrobial activity against Pseudomonas aeruginosa. The insertion of additional arginine and tryptophan residues into the peptides resulted only in small variations in the antimicrobial activity, whereas replacement of a tryptophan residue with tyrosine in the hepta- and hexapeptides resulted in reduced antimicrobial activity, especially against the Gram-negative bacteria. The peptides were non-haemolytic, making them highly potent as prospective antibiotic agents.  相似文献   

20.
Pediocin AcH is a 44-residue antimicrobial peptide with bactericidal potency against Gram-positive bacteria such as Listeria. It belongs to a family of bacteriocins that, when membrane-associated, is predicted to contain beta-sheet and alpha-helical regions. All bacteriocins in this family have a conserved N-terminal disulfide bond. An additional C-terminal disulfide bond in pediocin AcH is thought to confer enhanced potency and broader specificity range against sensitive bacteria. The C-terminal disulfide bond may also affect the conformation of the C-terminus. The secondary structures of pediocin AcH in aqueous solution and vesicles from susceptible cells, as well as the ability of trifluoroethanol (TFE) and detergent systems to induce secondary structures like those induced in vesicles, were studied by circular dichroism (CD) spectroscopy. Like related peptides, pediocin AcH was highly unordered in aqueous solution, 56%. However, it also contained 20% beta-strand and 15% beta-turn structures. Upon complete binding to vesicles, 32% alpha-helical structure formed, the unordered structure decreased to 32%, and the beta-strand and beta-turn structures remained largely unchanged. Thus, a betaalpha domain structure formed in vesicles. The helical structure likely forces the C-terminal tail to loop back on the helix so that the C24-C44 disulfide bond can form. Detergent micelles were superior to TFE in their ability to induce secondary structural fractions in pediocin AcH comparable to those observed in vesicles. This demonstrates the importance of a hydrocarbon-water interface to pediocin AcH structure induction and suggests that it is preferable to use detergent micelles as solvents in NMR studies of pediocin AcH structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号