首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virus infections can result in a variety of cellular injuries, and these often involve the permeabilization of host membranes by viral proteins of the viroporin family. Prototypical viroporin 2B is responsible for the alterations in host cell membrane permeability that take place in enterovirus-infected cells. 2B protein can be localized at the endoplasmic reticulum (ER) and the Golgi complex, inducing membrane remodeling and the blockade of glycoprotein trafficking. These findings suggest that 2B has the potential to integrate into the ER membrane, but specific information regarding its biogenesis and mechanism of membrane insertion is lacking. Here, we report experimental results of in vitro translation-glycosylation compatible with the translocon-mediated insertion of the 2B product into the ER membrane as a double-spanning integral membrane protein with an N-/C-terminal cytoplasmic orientation. A similar topology was found when 2B was synthesized in cultured cells. In addition, the in vitro translation of several truncated versions of the 2B protein suggests that the two hydrophobic regions cooperate to insert into the ER-derived microsomal membranes.  相似文献   

2.
Cell infection by picornaviruses leads to membrane permeabilization. Recent evidence suggests the involvement of the non-structural protein 2B in this process. We have recently reported the detection of 2B porin-like activity in isolated membrane-protein systems that lack other cell components. According to data derived from these model membranes, four self-aggregated 2B monomers (i.e. tetramers) would be sufficient to permeabilize a single lipid vesicle, allowing the free diffusion of solutes under ca. 1000 Da. Our findings also support a role for lipids in protein oligomerization and subsequent pore opening. The lipid dependence of these processes points to negatively charged cytofacial surfaces as 2B cell membrane targets.  相似文献   

3.
The maintenance of pluripotency in mammalian embryonic stem cells depends upon the expression of regulatory genes like Oct3/4 and Sox2. While homologues of these genes are also characterized in non-mammalian vertebrates, like birds, amphibians and fish, existence and function of developmental pluripotency associated genes (Dppa) in lower vertebrates have not yet been reported. Here we describe a Dppa2/4-like gene, XDppa2/4, in Xenopus. The protein contains a SAP domain and a conserved C-terminal region. Overexpression of XDppa2/4, murine Dppa2 or Dppa4 produces similar phenotypes (defects in blastopore closure), while injection of XDppa2/4 morpholino generates a loss of blastopore closure and neural fold formation. Embryos die up to tailbud stage. mDppa2 (but not mDppa4) rescues blastopore closure and neurulation defects caused by XDppaMO, but does not prevent subsequent death of embryos. Although XDppa2/4 exhibits a Dppa-like expression pattern and is indispensable for embryogenesis, analyses of various marker genes make its role as a pluripotency factor rather unlikely. Both the gain and loss of function effects until the end of neurulation are caused by the conserved C-terminal region but not by the SAP domain. The SAP domain is required for association of XDppa2/4 to chromatin and for embryonic survival at later stages of development suggesting epigenetic programming events.  相似文献   

4.
Human hepatocyte growth factor (hHGF) consists of characteristic structural domains. In this study, we prepared mutant proteins lacking each of these domains and examined their biological activities for stimulation of hepatocyte DNA synthesis, inhibition of Meth A cell growth, and induction of MDCK cell dissociation. We also examined their interactions with the c-met/HGF receptor by competition analysis and by analysis of levels of tyrosine phosphorylation. The mutant proteins lacking the N-terminal, the first kringle, or the second kringle domain were not biologically effective and could not compete with hHGF bound to the c-met/HGF receptor. The results indicate that these domains are necessary for the biological activities of hHGF mediated by binding to the c-met/HGF receptor. The mutant proteins lacking the third or fourth kringle domain moderately retained biological activities and the receptor binding. The relative levels of the tyrosine phosphorylation of the c-met/HGF receptor by these mutant proteins correlated well with the relative potencies of the biological activities when compared with that of the wild-type hHGF. The mutant protein lacking the light chain was not effective in the biological activities and tyrosine phosphorylation of the c-met/HGF receptor, but competed with hHGF bound to the c-met/HGF receptor. These results suggest that the heavy chain plays an important role in the interaction of hHGF with the c-met/HGF receptor and that the light chain is further required for the tyrosine phosphorylation of the c-met/HGF receptor.  相似文献   

5.
A major question in G protein-coupled receptor signaling concerns the quaternary structure required for signal transduction. Do these transmembrane receptors function as monomers, dimers, or larger oligomers? We have investigated the oligomeric state of the model G protein-coupled receptor rhodopsin (Rho), which absorbs light and initiates a phototransduction-signaling cascade that forms the basis of vision. In this study, different forms of Rho were isolated using gel filtration techniques in mild detergents, including n-dodecyl-beta-D-maltoside, n-tetradecyl-beta-D-maltoside, and n-hexadecyl-beta-D-maltoside. The quaternary structure of isolated Rho was determined by transmission electron microscopy, demonstrating that in micelles containing n-dodecyl-beta-D-maltoside, Rho exists as a mixture of monomers and dimers whereas in n-tetradecyl-beta-D-maltoside and n-hexadecyl-beta-D-maltoside Rho forms higher ordered structures. Especially in n-hexadecyl-beta-D-maltoside, most of the particles are present in tightly packed rows of dimers. The oligomerization of Rho seems to be important for interaction with its cognate G protein, transducin. Although the activated Rho (Meta II) monomer or dimers are capable of activating the G protein, transducin, the activation process is much faster when Rho exists as organized dimers. Our studies provide direct comparisons between signaling properties of Meta II in different quaternary complexes.  相似文献   

6.
Human pre-mRNA splicing factor SF2/ASF has an activity required for general splicing in vitro and promotes utilization of proximal alternative 5' splice sites in a concentration-dependent manner by opposing hnRNP A1. We introduced selected mutations in the N-terminal RNA recognition motif (RRM) and the C-terminal Arg/Ser (RS) domain of SF2/ASF, and assayed the resulting recombinant proteins for constitutive and alternative splicing in vitro and for binding to pre-mRNA and mRNA. Mutants inactive in constitutive splicing can affect alternative splice site selection, demonstrating that these activities involve distinct molecular interactions. Specific protein-RNA contact mediated by Phe56 and Phe58 in the RNP-1 submotif of the SF2/ASF RRM are essential for constitutive splicing, although they are not required for RRM-mediated binding to pre-mRNA. The RS domain is also required for constitutive splicing activity and both Arg and Ser residues are important. Analysis of domain deletion mutants demonstrated strong synergy between the RRM and a central degenerate RRM repeat in binding to RNA. These two domains are sufficient for alternative splicing activity in the absence of an RS domain.  相似文献   

7.
8.
The potential of using a synthetic cardosin-based rennet in cheese manufacturing was recently demonstrated with the development and optimization of production of a recombinant form of cardosin B in Kluyveromyces lactis. With the goal of providing a more detailed characterization of this rennet, we herein evaluate the impact of the plant-specific insert (PSI) on cardosin B secretion in this yeast, and provide a thorough analysis of the specificity requirements as well as the biochemical and structural properties of the isolated recombinant protease. We demonstrate that the PSI domain can be substituted by different linker sequences without substantially affecting protein secretion and milk clotting activity. However, the presence of small portions of the PSI results in dramatic reductions of secretion yields in this heterologous system. Kinetic characterization and specificity profiling results clearly suggest that synthetic cardosin B displays lower catalytic efficiency and is more sequence selective than native cardosin B. Elucidation of the structure of synthetic cardosin B confirms the canonical fold of an aspartic protease with the presence of two high mannose-type, N-linked glycan structures; however, there are some differences in the conformation of the flap region when compared to cardosin A. These subtle variations in catalytic properties and the more stringent substrate specificity of synthetic cardosin B help to explain the observed suitability of this rennet for cheese production.  相似文献   

9.
ATPase and peptide-binding activity of recombinant human heat shock proteins HSP70A1B and HSC70 and two hybrid proteins derived from them was investigated. UV-spectral recorded data were used to characterize conformational rearrangements induced by domain replacement or HSP70-peptide interaction. It was shown that the N-terminal domain dramatically affects the substrate specificity of the C-terminal peptide-binding domain, which puts forward a new hypothesis for HSP70 chaperone machinery. On the other hand, the peptide-binding domain affected the ATPase activity of the recombinant proteins. There was a linear relationship between the ATPase activity and the peptide complex percentage. This connection can be used for quantification of HSP70 complexes with unlabeled peptides.  相似文献   

10.
11.
RsbU is a positive regulator of the activity of sigmaB, the general stress-response sigma factor of Gram+ microorganisms. The N-terminal domain of this protein has no significant sequence homology with proteins of known function, whereas the C-terminal domain is similar to the catalytic domains of PP2C-type phosphatases. The phosphatase activity of RsbU is stimulated greatly during the response to stress by associating with a kinase, RsbT. This association leads to the induction of sigmaB activity. Here we present data on the activation process and demonstrate in vivo that truncations in the N-terminal region of RsbU are deleterious for the activation of RsbU. This conclusion is supported by comparisons of the phosphatase activities of full-length and a truncated form of RsbU in vitro. Our determination of the crystal structure of the N-terminal domain of RsbU from Bacillus subtilis reveals structural similarities to the regulatory domains from ubiquitous protein phosphatases and a conserved domain of sigma-factors, illuminating the activation processes of phosphatases and the evolution of "partner switching." Finally, the molecular basis of kinase recruitment by the RsbU phosphatase is discussed by comparing RsbU sequences from bacteria that either possess or lack RsbT.  相似文献   

12.
Gimm JA  An X  Nunomura W  Mohandas N 《Biochemistry》2002,41(23):7275-7282
Protein 4.1R is the prototypical member of a protein family that includes 4.1G, 4.1B, and 4.1N. 4.1R plays a crucial role in maintaining membrane mechanical integrity by binding cooperatively to spectrin and actin through its spectrin-actin-binding (SAB) domain. While the binary interaction between 4.1R and spectrin has been well characterized, the actin binding site in 4.1R remains unidentified. Moreover, little is known about the interaction of 4.1R homologues with spectrin and actin. In the present study, we showed that the 8 aa motif (LKKNFMES) within the 10 kDa spectrin-actin-binding domain of 4.1R plays a critical role in binding of 4.1R to actin. Recombinant 4.1R SAB domain peptides with mutations in this motif showed a marked decrease in their ability to form ternary complexes with spectrin and actin. Binary protein-protein interaction studies revealed that this decrease resulted from the inability of mutant SAB peptides to bind to actin filaments while affinity for spectrin was unchanged. We also documented that the 14 C-terminal residues of the 21 amino acid cassette encoded by exon 16 in conjunction with residues 27-43 encoded by exon 17 constituted a fully functional minimal spectrin-binding motif. Finally, we showed that 4.1N SAB domain was unable to form a ternary complex with spectrin and actin, while 4.1G and 4.1B SAB domains were able to form such a complex but less efficiently than 4.1R SAB. This was due to a decrease in the ability of 4.1G and 4.1B SAB domain to interact with actin but not with spectrin. These data enabled us to propose a model for the 4.1R-spectrin-actin ternary complex which may serve as a general paradigm for regulation of spectrin-based cytoskeleton interaction in various cell types.  相似文献   

13.
Folding of secretory proteins is associated with the formation and isomerization of disulfide bonds. ERp72, a protein disulfide isomerase (PDI) family member, possesses 3 thioredoxin homology domains, but the participation of each domain in disulfide-bond formation and isomerization remains to be determined. We analyzed the function of individual domains in the insulin reduction assay system by site-directed mutagenesis with cysteine-to-serine replacement. All domains contributed to apparent steady-state binding (Km) and catalysis at saturating substrate concentrations (kcat) but in different manners. A mutant ERp72 with mutations in domains 1 and 2 (ERp72-mut-1+2) exhibited reductions in kcat of 73.9% when compared with wild type, whereas ERp72-mut-1+3 (mutations in domains 1 and 3) and ERp72-mut-2+3 (mutations in domains 2 and 3) exhibited less substantial reductions in kcat. ERp72-mut-1+3 and ERp72-mut-2+3 showed elevations in Km of 89.9% and 96.2%, respectively, when compared with wild type, whereas ERp72-mut-1+2 exhibited smaller elevations in Km. These results suggest that domains 1 and 2 make greater contributions to catalyzing efficacy and domain 3 to binding affinity. Domain 2 is involved in binding affinity, in combination with domain 3, in addition to its own contribution to catalyzing efficacy. This assignment of functions to individual domains is similar to that observed in other PDI domains, which is consistent with the high sequence homology between ERp and PDI domains.  相似文献   

14.
Non-structural poliovirus 2B protein induces plasma membrane permeabilization and has been recently implicated in triggering apoptosis via the mitochondrial pathway. Here we describe that the pore-forming P3 peptide, based on the 2B amphipathic domain, translocates through the plasma membrane of culture cells and targets mitochondria. Cell permeabilization by P3 versions of different lengths, together with peptide uptake analyses supported an internalization mechanism dependent on P3 capacity to interact physically with lipid bilayers and establish permeating pores therein. Internalized P3 was found associated with mitochondria, but contrary to the parental 2B protein, the short peptide did not affect the morphology or cell distribution of these organelles, nor induced apoptosis. We conclude that P3 constitutes a mitochondriotropic sequence, which is however devoid of 2B pro-apoptotic activity.  相似文献   

15.
Over the last few years the importance of the intracellular C-terminus in the signaling of G-protein coupled receptors (GPCR) has become increasingly evident. In an effort to provide a structural framework for biological function, we have determined the conformation of the C-terminus of the bradykinin (BK) B2 receptor. Using a uniformly 15N- and 13C-enriched sample of the BKB2 receptor [309-366], NMR results clearly define three alpha-helices lying on the zwitterionic surface of the dodecylphosphocholine. The proximal helix consisting of residues 311-326 was previously predicted based on homology modeling with rhodopsin. This corresponds to what is often called helix-8 of the GPCRs. The two distal helices, residues 333-345 and 348-363, are clearly borne out by the NMR data. The functional importance of these secondary structural elements was probed by determination of the signaling properties (inositol phosphate formation) of mutant BKB2 receptors lacking the domains (deletion mutants) or containing the corresponding region from the related GPCR, angiotensin II AT1a (chimera receptors). We demonstrate that the regions between the helices (residues 327-333 and 346-347) can be exchanged without loss of signaling. In contrast, modification of the three helices, particularly the hydroxyl-containing residues, has drastic effects on the signaling profile of the BKB2 receptor. By coupling of the structural features with the functional data, the molecular mechanisms of signaling by the BKB2 receptor are beginning to be established.  相似文献   

16.
Prohormone convertases (PC) 1 and 2, enzymes found primarily in neuroendocrine tissues, are thought to mediate the proteolytic cleavage of many peptide precursors. To date, endogenous binding proteins for both PC2 (7B2) and PC1 (proSAAS) have been identified. Although 7B2 represents a potent inhibitor of PC2, the most important function of 7B2 as regards this enzyme appears to be the absolute requirement of PC2 for 7B2 in the generation of active enzyme, recently corroborated through production of a null animal that lacks PC2 activity. The purpose of the present study was to determine whether proSAAS exerts effects on PC1 other than inhibition, and to establish functional similarities and differences between 7B2 and proSAAS. We first asked whether the N-terminal domain of proSAAS (proSAAS-(1-180)) could stabilize PC1 activity, similar to the effect of the N-terminal domain of 7B2 on PC2. Recombinant His-tagged proSAAS-(1-180) had no effect on PC1 activity in vitro and was unable to protect PC1 from thermal denaturation. Transient cotransfection of proSAAS-(1-225) cDNA with PC1 cDNA into HEK 293 cells reduced the amount of PC1 activity detected in the medium. Surprisingly, cotransfection of proSAAS-(1-180) cDNA, encoding a protein that lacks the inhibitory C-terminal domain peptide, also reduced the activity of PC1 detected in the medium, but the mass of PC1 secreted into the medium was increased, suggesting a proSAAS-mediated inactivation reaction. Similar results were observed in CHO/PC1 cells stably transfected with pro-SAAS-(1-180). Stable transfection of SAAS cDNAs into AtT-20 cells was used to examine the role of proSAAS in a neuroendocrine setting. Unlike 7B2, proSAAS-(1-225) was able to slow convertase-mediated processing of proopiomelanocortin and proenkephalin; however, similarly to 7B2, proSAAS expression did not result in any accumulated differences in the content of cellular processed peptide. In summary, although both proSAAS and 7B2 potently inhibit PC enzymes via a C-terminal peptide, their intracellular interactions with PCs appear to differ significantly, with each binding protein exhibiting unique properties.  相似文献   

17.
Staphylococcus aureus is the major cause of nosocomial infections world-wide, with increasing prevalence of community-acquired diseases. The recent dramatic increase in multi-antibiotic resistance, including resistance to the last-resort drug, vancomycin, together with the lack of an effective vaccine highlight the need for better understanding of S.aureus pathogenicity. Comparative analysis of available bacterial genomes allows for the identification of previously uncharacterized S.aureus genes with potential roles in pathogenicity. A good example is a cluster of six serine protease-like (spl) genes encompassed in one operon, which encode for putative proteases with similarity to staphylococcal glutamylendopeptidase (V8 protease). Here, we describe an efficient expression system for the production of recombinant SplB and SplC proteases in Escherichia coli, together with structural and functional characterization of the purified enzymes. A unique mechanism of cytoplasm protection against activity of misdirected SplB was uncovered. Apparently, the co-translated signal peptide maintains protease latency until it is cleaved by the signal peptidase during protein secretion. Furthermore, the crystal structure of the SplC protease revealed a fold resembling that of the V8 protease and epidermolytic toxins. Arrangement of the active site cleft and substrate-binding pocket of SplC explains the mechanism of enzyme latency and suggests that some Spl proteases possess restricted substrate specificity similar to that of the V8 protease and epidermolytic toxins.  相似文献   

18.
The amino acid sequence of ERp57, which functions in the endoplasmic reticulum together with the lectins calreticulin and calnexin to achieve folding of newly synthesized glycoproteins, is highly similar to that of protein disulfide isomerase (PDI), but they have their own distinct roles in protein folding. We have characterized the domain structure of ERp57 by limited proteolysis and N-terminal sequencing and have found it to be similar but not identical to that of PDI. ERp57 had three major protease-sensitive regions, the first of which was located between residues 120 and 150, the second between 201 and 215, and the third between 313 and 341, the data thus being consistent with a four-domain structure abb'a'. Recombinant expression in Escherichia coli was used to verify the domain boundaries. Each single domain and a b'a' double domain could be produced in the form of soluble, folded polypeptides, as verified by circular dichroism spectra and urea gradient gel electrophoresis. When the ability of ERp57 and its a and a' domains to fold denatured RNase A was studied by electrospray mass analyses, ERp57 markedly enhanced the folding rate at early time points, although less effectively than PDI, but was an ineffective catalyst of the overall process. The a and a' domains produced only minor, if any, increases in the folding rate at the early stages and no increase at the late stages. Interaction of the soluble ERp57 domains with the P domain of calreticulin was studied by chemical cross-linking in vitro. None of the single ERp57 domains nor the b'a' double domain could be cross-linked to the P domain, whereas cross-linking was obtained with a hybrid ERpabb'PDIa'c polypeptide but not with ERpabPDIb'a'c, indicating that multiple domains are involved in this protein-protein interaction and that the b' domain of ERp57 cannot be replaced by that of PDI.  相似文献   

19.
Picornavirus 2B, a non-structural protein required for effective viral replication, has been implicated in cell membrane permeabilization during the late phases of infection. Here, we have approached the molecular mechanism of this process by assessing the pore-forming activity of an overlapping peptide library that spanned the complete 2B sequence. At non-cytopathic concentrations, only the P3 peptide, spanning 2B residues 35-55, effectively assembled hydrophilic pores that allowed diffusion of low molecular mass solutes across the cell plasma membrane (IC50 ≈ 4 × 10−7 M) and boundary liposome bilayers (starting at peptide to lipid molar ratios > 1:104). Circular dichroism data were consistent with its capacity to fold as a helix in a membrane-like environment. Furthermore, addition of this peptide to a sealed plasma-membrane model, consisting of retinal rod outer segments patch-clamped in a whole-cell configuration, induced ion channel activity within seconds at concentrations as low as 10−8 M. Thus, we have established a “one-helix” 2B version that possesses the intrinsic pore-forming activity required to directly and effectively permeabilize the cell plasma membrane. We conclude that 2B viroporin can be classified as a genuine pore-forming toxin of viral origin, which is produced intracellularly at certain times post infection.  相似文献   

20.
The Guanine-rich RNA sequence binding factor 1 (GRSF1) is a member of the heterogeneous nuclear ribonucleoprotein F/H family and has been implicated in RNA processing, RNA transport and translational regulation. Amino acid alignments and homology modeling suggested the existence of three distinct RNA-binding domains and two auxiliary domains. Unfortunately, little is known about the molecular details of GRSF1/RNA interactions. To explore the RNA-binding mechanisms we first expressed full-length human GRSF1 and several truncation mutants, which include the three separated qRRM domains in E. coli, purified the recombinant proteins and quantified their RNA-binding affinity by RNA electrophoretic mobility shift assays. The expression levels varied between 1 and 10 mg purified protein per L bacterial liquid culture and for full-length human GRSF1 a binding constant (KD-value) of 0.5 μM was determined. In addition, our mechanistic experiments with different truncation mutants allowed the following conclusions: i) Deletion of either of the three RNA-binding domains impaired the RNA-binding affinity suggesting that the simultaneous presence of the three domains is essential for high-affinity RNA-binding. ii) Deletion of the Ala-rich auxiliary domain did hardly affect RNA-binding. Thus, this structural subunit may not be involved in RNA interaction. iii) Deletion of the acidic auxiliary domain improved the RNA-binding suggesting a regulatory role for this structural motif. iv) The isolated RNA-binding domains did not exhibit sizeable RNA-binding affinities. Taken together these data suggest that a cooperative interaction of the three qRRMs is required for high affinity RNA-binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号