首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel hybrid methodology for the automated identification of peptides via de novo integer linear optimization, local database search, and tandem mass spectrometry is presented in this article. A modified version of the de novo identification algorithm PILOT, is utilized to construct accurate de novo peptide sequences. A modified version of the local database search tool FASTA is used to query these de novo predictions against the nonredundant protein database to resolve any low-confidence amino acids in the candidate sequences. The computational burden associated with performing several alignments is alleviated with the use of distributive computing. Extensive computational studies are presented for this new hybrid methodology, as well as comparisons with MASCOT for a set of 38 quadrupole time-of-flight (QTOF) and 380 OrbiTrap tandem mass spectra. The results for our proposed hybrid method for the OrbiTrap spectra are also compared with a modified version of PepNovo, which was trained for use on high-precision tandem mass spectra, and the tag-based method InsPecT. The de novo sequences of PILOT and PepNovo are also searched against the nonredundant protein database using CIDentify to compare with the alignments achieved by our modifications of FASTA. The comparative studies demonstrate the excellent peptide identification accuracy gained from combining the strengths of our de novo method, which is based on integer linear optimization, and database driven search methods.  相似文献   

2.
Confident peptide identification is one of the most important components in mass-spectrometry-based proteomics. We propose a method to properly combine the results from different database search methods to enhance the accuracy of peptide identifications. The database search methods included in our analysis are SEQUEST (v27 rev12), ProbID (v1.0), InsPecT (v20060505), Mascot (v2.1), X! Tandem (v2007.07.01.2), OMSSA (v2.0) and RAId_DbS. Using two data sets, one collected in profile mode and one collected in centroid mode, we tested the search performance of all 21 combinations of two search methods as well as all 35 possible combinations of three search methods. The results obtained from our study suggest that properly combining search methods does improve retrieval accuracy. In addition to performance results, we also describe the theoretical framework which in principle allows one to combine many independent scoring methods including de novo sequencing and spectral library searches. The correlations among different methods are also investigated in terms of common true positives, common false positives, and a global analysis. We find that the average correlation strength, between any pairwise combination of the seven methods studied, is usually smaller than the associated standard error. This indicates only weak correlation may be present among different methods and validates our approach in combining the search results. The usefulness of our approach is further confirmed by showing that the average cumulative number of false positive peptides agrees reasonably well with the combined E-value. The data related to this study are freely available upon request.  相似文献   

3.
Tandem mass spectrometry-based proteomics is currently in great demand of computational methods that facilitate the elimination of likely false positives in peptide and protein identification. In the last few years, a number of new peptide identification programs have been described, but scores or other significance measures reported by these programs cannot always be directly translated into an easy to interpret error rate measurement such as the false discovery rate. In this work we used generalized lambda distributions to model frequency distributions of database search scores computed by MASCOT, X!TANDEM with k-score plug-in, OMSSA, and InsPecT. From these distributions, we could successfully estimate p values and false discovery rates with high accuracy. From the set of peptide assignments reported by any of these engines, we also defined a generic protein scoring scheme that enabled accurate estimation of protein-level p values by simulation of random score distributions that was also found to yield good estimates of protein-level false discovery rate. The performance of these methods was evaluated by searching four freely available data sets ranging from 40,000 to 285,000 MS/MS spectra.  相似文献   

4.
We demonstrate a new approach to the determination of amino acid composition from tandem mass spectrometrically fragmented peptides using both experimental and simulated data. The approach has been developed to be used as a search-space filter in a protein identification pipeline with the aim of increased performance above that which could be attained by using immonium ion information. Three automated methods have been developed and tested: one based upon a simple peak traversal, in which all intense ion peaks are treated as being either a b- or y-ion using a wide mass tolerance; a second which uses a much narrower tolerance and does not perform transformations of ion peaks to the complementary type; and the unique fragments method which allows for b- or y-ion type to be inferred and corroborated using a scan of the other ions present in each peptide spectrum. The combination of these methods is shown to provide a high-accuracy set of amino acid predictions using both experimental and simulated data sets. These high quality predictions, with an accuracy of over 85%, may be used to identify peptide fragments that are hard to identify using other methods. The data simulation algorithm is also shown post priori to be a good model of noiseless tandem mass spectrometric peptide data.  相似文献   

5.
Protein identification has been greatly facilitated by database searches against protein sequences derived from product ion spectra of peptides. This approach is primarily based on the use of fragment ion mass information contained in a MS/MS spectrum. Unambiguous protein identification from a spectrum with low sequence coverage or poor spectral quality can be a major challenge. We present a two-dimensional (2D) mass spectrometric method in which the numbers of nitrogen atoms in the molecular ion and the fragment ions are used to provide additional discriminating power for much improved protein identification and de novo peptide sequencing. The nitrogen number is determined by analyzing the mass difference of corresponding peak pairs in overlaid spectra of (15)N-labeled and unlabeled peptides. These peptides are produced by enzymatic or chemical cleavage of proteins from cells grown in (15)N-enriched and normal media, respectively. It is demonstrated that, using 2D information, i.e., m/z and its associated nitrogen number, this method can, not only confirm protein identification results generated by MS/MS database searching, but also identify peptides that are not possible to identify by database searching alone. Examples are presented of analyzing Escherichia coli K12 extracts that yielded relatively poor MS/MS spectra, presumably from the digests of low abundance proteins, which can still give positive protein identification using this method. Additionally, this 2D MS method can facilitate spectral interpretation for de novo peptide sequencing and identification of posttranslational or other chemical modifications. We envision that this method should be particularly useful for proteome expression profiling of organelles or cells that can be grown in (15)N-enriched media.  相似文献   

6.
Identification of proteins from the mass spectra of peptide fragments generated by proteolytic cleavage using database searching has become one of the most powerful techniques in proteome science, capable of rapid and efficient protein identification. Using computer simulation, we have studied how the application of chemical derivatisation techniques may improve the efficiency of protein identification from mass spectrometric data. These approaches enhance ion yield and lead to the promotion of specific ions and fragments, yielding additional database search information. The impact of three alternative techniques has been assessed by searching representative proteome databases for both single proteins and simple protein mixtures. For example, by reliably promoting fragmentation of singly-charged peptide ions at aspartic acid residues after homoarginine derivatisation, 82% of yeast proteins can be unambiguously identified from a single typical peptide-mass datum, with a measured mass accuracy of 50 ppm, by using the associated secondary ion data. The extra search information also provides a means to confidently identify proteins in protein mixtures where only limited data are available. Furthermore, the inclusion of limited sequence information for the peptides can compensate and exceed the search efficiency available via high accuracy searches of around 5 ppm, suggesting that this is a potentially useful approach for simple protein mixtures routinely obtained from two-dimensional gels.  相似文献   

7.
Yang  Runmin  Zhu  Daming 《BMC genomics》2018,19(7):666-39

Background

Database search has been the main approach for proteoform identification by top-down tandem mass spectrometry. However, when the target proteoform that produced the spectrum contains post-translational modifications (PTMs) and/or mutations, it is quite time consuming to align a query spectrum against all protein sequences without any PTMs and mutations in a large database. Consequently, it is essential to develop efficient and sensitive filtering algorithms for speeding up database search.

Results

In this paper, we propose a spectrum graph matching (SGM) based protein sequence filtering method for top-down mass spectral identification. It uses the subspectra of a query spectrum to generate spectrum graphs and searches them against a protein database to report the best candidates. As the sequence tag and gaped tag approaches need the preprocessing step to extract and select tags, the SGM filtering method circumvents this preprocessing step, thus simplifying data processing. We evaluated the filtration efficiency of the SGM filtering method with various parameter settings on an Escherichia coli top-down mass spectrometry data set and compared the performances of the SGM filtering method and two tag-based filtering methods on a data set of MCF-7 cells.

Conclusions

Experimental results on the data sets show that the SGM filtering method achieves high sensitivity in protein sequence filtration. When coupled with a spectral alignment algorithm, the SGM filtering method significantly increases the number of identified proteoform spectrum-matches compared with the tag-based methods in top-down mass spectrometry data analysis.
  相似文献   

8.
A novel protein identification framework, PILOT_PROTEIN, has been developed to construct a comprehensive list of all unmodified proteins that are present in a living sample. It uses the peptide identification results from the PILOT_SEQUEL algorithm to initially determine all unmodified proteins within the sample. Using a rigorous biclustering approach that groups incorrect peptide sequences with other homologous sequences, the number of false positives reported is minimized. A sequence tag procedure is then incorporated along with the untargeted PTM identification algorithm, PILOT_PTM, to determine a list of all modification types and sites for each protein. The unmodified protein identification algorithm, PILOT_PROTEIN, is compared to the methods SEQUEST, InsPecT, X!Tandem, VEMS, and ProteinProspector using both prepared protein samples and a more complex chromatin digest. The algorithm demonstrates superior protein identification accuracy with a lower false positive rate. All materials are freely available to the scientific community at http://pumpd.princeton.edu .  相似文献   

9.
We present a wrapper-based approach to estimate and control the false discovery rate for peptide identifications using the outputs from multiple commercially available MS/MS search engines. Features of the approach include the flexibility to combine output from multiple search engines with sequence and spectral derived features in a flexible classification model to produce a score associated with correct peptide identifications. This classification model score from a reversed database search is taken as the null distribution for estimating p-values and false discovery rates using a simple and established statistical procedure. Results from 10 analyses of rat sera on an LTQ-FT mass spectrometer indicate that the method is well calibrated for controlling the proportion of false positives in a set of reported peptide identifications while correctly identifying more peptides than rule-based methods using one search engine alone.  相似文献   

10.
We present a new approach capable of assigning charge states to peptides based on both their intact mass spectrum and their fragmentation mass spectrum. More specifically, our approach aims at fully exploiting available information to improve correct charge assignment rate. This is achieved by using information provided by the fragmentation spectrum extensively. For low-resolution spectra, charge assignment based on fragmentation mass spectrum is better than charge assignment based on intact peptide signal only. We introduce two methods that allow to integrate information contributing to successful peptide charge state assignment. We demonstrate the performance of our algorithms on large ion trap data sets. The application of these algorithms to large-scale proteomics projects can save significant computation time and have a positive impact on identification false positive rates.  相似文献   

11.
Beam-type collisional activation dissociation (HCD) offers many advantages over resonant excitation collision-activated dissociation, including improved identification of phosphorylated peptides and compatibility with isobaric tag-based quantitation (e.g. tandem mass tag (TMT) and iTRAQ). However, HCD typically requires specially designed and dedicated collision cells. Here we demonstrate that HCD can be performed in the ion injection pathway of a mass spectrometer with a standard atmospheric inlet (iHCD). Testing this method on complex peptide mixtures revealed similar identification rates to collision-activated dissociation (2883 versus 2730 IDs for iHCD/CAD, respectively) and precursor-product-conversion efficiency comparable to that achieved within a dedicated collision cell. Compared with pulsed-q dissociation, a quadrupole ion trap-based method that retains low-mass isobaric tag reporter ions, iHCD yielded isobaric tag for relative and absolute quantification reporter ions 10-fold more intense. This method involves no additional hardware and can theoretically be implemented on any mass spectrometer with an atmospheric inlet.  相似文献   

12.
Microbes are known to regulate both gene expression and protein activity through the use of post-translational modifications (PTMs). Common PTMs involved in cellular signaling and gene control include methylations, acetylations, and phosphorylations, whereas oxidations have been implicated as an indicator of stress. Shewanella oneidensis MR-1 is a Gram-negative bacterium that demonstrates both respiratory versatility and the ability to sense and adapt to diverse environmental conditions. The data set used in this study consisted of tandem mass spectra derived from midlog phase aerobic cultures of S. oneidensis either native or shocked with 1 mM chromate [Cr(VI)]. In this study, three algorithms (DBDigger, Sequest, and InsPecT) were evaluated for their ability to scrutinize shotgun proteomic data for evidence of PTMs. The use of conservative scoring filters for peptides or proteins versus creating a subdatabase first from a nonmodification search was evaluated with DBDigger. The use of higher-scoring filters for peptide identifications was found to result in optimal identifications of PTM peptides with a 2% false discovery rate (FDR) for the total data set using the DBDigger algorithm. However, the FDR climbs to unacceptably high levels when only PTM peptides are considered. Sequest was evaluated as a method for confirming PTM peptides putatively identified using DBDigger; however, there was a low identification rate ( approximately 25%) for the searched spectra. InsPecT was found to have a much lower, and thus more acceptable, FDR than DBDigger for PTM peptides. Comparisons between InsPecT and DBDigger were made with respect to both the FDR and PTM peptide identifications. As a demonstration of this approach, a number of S. oneidensis chemotaxis proteins as well as low-abundance signal transduction proteins were identified as being post-translationally modified in response to chromate challenge.  相似文献   

13.
MOTIVATION: The identification of peptides by tandem mass spectrometry (MS/MS) is a central method of proteomics research, but due to the complexity of MS/MS data and the large databases searched, the accuracy of peptide identification algorithms remains limited. To improve the accuracy of identification we applied a machine-learning approach using a hidden Markov model (HMM) to capture the complex and often subtle links between a peptide sequence and its MS/MS spectrum. Model: Our model, HMM_Score, represents ion types as HMM states and calculates the maximum joint probability for a peptide/spectrum pair using emission probabilities from three factors: the amino acids adjacent to each fragmentation site, the mass dependence of ion types and the intensity dependence of ion types. The Viterbi algorithm is used to calculate the most probable assignment between ion types in a spectrum and a peptide sequence, then a correction factor is added to account for the propensity of the model to favor longer peptides. An expectation value is calculated based on the model score to assess the significance of each peptide/spectrum match. RESULTS: We trained and tested HMM_Score on three data sets generated by two different mass spectrometer types. For a reference data set recently reported in the literature and validated using seven identification algorithms, HMM_Score produced 43% more positive identification results at a 1% false positive rate than the best of two other commonly used algorithms, Mascot and X!Tandem. HMM_Score is a highly accurate platform for peptide identification that works well for a variety of mass spectrometer and biological sample types. AVAILABILITY: The program is freely available on ProteomeCommons via an OpenSource license. See http://bioinfo.unc.edu/downloads/ for the download link.  相似文献   

14.
Proteins can be identified using a set of peptide fragment weights produced by a specific digestion to search a protein database in which sequences have been replaced by fragment weights calculated for various cleavage methods. We present a method using multidimensional searches that greatly increases the confidence level for identification, allowing DNA sequence databases to be examined. This method provides a link between 2-dimensional gel electrophoresis protein databases and genome sequencing projects. Moreover, the increased confidence level allows unknown proteins to be matched to expressed sequence tags, potentially eliminating the need to obtain sequence information for cloning. Database searching from a mass profile is offered as a free service by an automatic server at the ETH, Zürich. For information, send an electronic message to the address cbrg/inf.ethz.ch with the line: help mass search, or help all.  相似文献   

15.
As the speed of mass spectrometers, sophistication of sample fractionation, and complexity of experimental designs increase, the volume of tandem mass spectra requiring reliable automated analysis continues to grow. Software tools that quickly, effectively, and robustly determine the peptide associated with each spectrum with high confidence are sorely needed. Currently available tools that postprocess the output of sequence-database search engines use three techniques to distinguish the correct peptide identifications from the incorrect: statistical significance re-estimation, supervised machine learning scoring and prediction, and combining or merging of search engine results. We present a unifying framework that encompasses each of these techniques in a single model-free machine-learning framework that can be trained in an unsupervised manner. The predictor is trained on the fly for each new set of search results without user intervention, making it robust for different instruments, search engines, and search engine parameters. We demonstrate the performance of the technique using mixtures of known proteins and by using shuffled databases to estimate false discovery rates, from data acquired on three different instruments with two different ionization technologies. We show that this approach outperforms machine-learning techniques applied to a single search engine’s output, and demonstrate that combining search engine results provides additional benefit. We show that the performance of the commercial Mascot tool can be bested by the machine-learning combination of two open-source tools X!Tandem and OMSSA, but that the use of all three search engines boosts performance further still. The Peptide identification Arbiter by Machine Learning (PepArML) unsupervised, model-free, combining framework can be easily extended to support an arbitrary number of additional searches, search engines, or specialized peptide–spectrum match metrics for each spectrum data set. PepArML is open-source and is available from . Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

16.
It is a major challenge to develop effective sequence database search algorithms to translate molecular weight and fragment mass information obtained from tandem mass spectrometry into high quality peptide and protein assignments. We investigated the peptide identification performance of Mascot and X!Tandem for mass tolerance settings common for low and high accuracy mass spectrometry. We demonstrated that sensitivity and specificity of peptide identification can vary substantially for different mass tolerance settings, but this effect was more significant for Mascot. We present an adjusted Mascot threshold, which allows the user to freely select the best trade-off between sensitivity and specificity. The adjusted Mascot threshold was compared with the default Mascot and X!Tandem scoring thresholds and shown to be more sensitive at the same false discovery rates for both low and high accuracy mass spectrometry data.  相似文献   

17.
The derivation and long-term maintenance of human embryonic stem cells (hESCs) has been established in culture formats that are both dependent and independent of support (feeder) cells. However, the factors responsible for preserving the viability of hESCs in a nascent state remain unknown. We describe a mass spectrometry-based method for probing the secretome of the hESC culture microenvironment to identify potential regulating protein factors that are in low abundance. Individual samples were analyzed several times, using successive mass (m/z) and retention time-directed exclusion, without sampling the same peptide ion twice. This iterative exclusion -mass spectrometry (IE-MS) approach more than doubled protein and peptide metrics in comparison to a simple repeat analysis method on the same instrument, even after extensive sample pre-fractionation. Furthermore, implementation of the IE-MS approach was shown to enhance the performance of an older quadrupole time of flight (Q-ToF) MS. The resulting number of identified peptides approached that of a parallel repeat analysis on a newer LTQ-Orbitrap MS. The combination of the results of both instruments proved to be superior to that achieved by a single instrument in the identification of additional proteins. Using the IE-MS strategy, combined with complementary gel- and solution-based fractionation methods, the hESC culture microenvironment was extensively probed. Over 10 to 12 times more extracellular proteins were observed compared with previously published surveys. The detection of previously undetectable growth factors, present at concentrations ranging from 10(-9) to 10(-11) g/ml, highlights the depth of our profiling. The IE-MS approach provides a simple and reliable technique that greatly enhances instrument performance by increasing the effective depth of MS-based proteomic profiling. This approach should be widely applicable to any LC-MS/MS instrument platform or biological system.  相似文献   

18.
Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for every possible PSM and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for most proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses.  相似文献   

19.
Proteomic identifications hinge on the measurement of both parent and fragment masses and matching these to amino acid sequences via database search engines. The correctness of the identifications is assessed by statistical means. Here we present an experimental approach to test identifications. Chemical modification of all peptides in a sample leads to shifts in masses depending on the chemical properties of each peptide. The identification of a native peptide sequence and its perturbed version with a different parent mass and fragment ion masses provides valuable information. Labeling all peptides using reductive alkylation with formaldehyde is one such perturbation where the ensemble of peptides shifts mass depending on the number of reactive amine groups. Matching covalently perturbed fragmentation patterns from the same underlying peptide sequence increases confidence in the assignments and can salvage low scoring post‐translationally modified peptides. Applying this strategy to bovine alpha‐crystallin, we identify 9 lysine acetylation sites, 4 O‐GlcNAc sites and 13 phosphorylation sites.  相似文献   

20.
MS‐based proteomics characterizes protein contents of biological samples. The most common approach is to first match observed MS/MS peptide spectra against theoretical spectra from a protein sequence database and then to score these matches. The false discovery rate (FDR) can be estimated as a function of the score by searching together the protein sequence database and its randomized version and comparing the score distributions of the randomized versus nonrandomized matches. This work introduces a straightforward isotonic regression‐based method to estimate the cumulative FDRs and local FDRs (LFDRs) of peptide identification. Our isotonic method not only performed as well as other methods used for comparison, but also has the advantages of being: (i) monotonic in the score, (ii) computationally simple, and (iii) not dependent on assumptions about score distributions. We demonstrate the flexibility of our approach by using it to estimate FDRs and LFDRs for protein identification using summaries of the peptide spectra scores. We reconfirmed that several of these methods were superior to a two‐peptide rule. Finally, by estimating both the FDRs and LFDRs, we showed for both peptide and protein identification, moderate FDR values (5%) corresponded to large LFDR values (53 and 60%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号