首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hemagglutinin (HA) is essential for Influenza A virus infection, but its diversity of subtypes presents an obstacle to developing broad-spectrum HA inhibitors. In this study, we investigated the molecular mechanisms by which poly-galloyl glucose (pGG) analogs inhibit influenza hemagglutinin (HA) in vitro and in silico. We found that (1) star-shaped pGG analogs exhibit HA-inhibition activity by interacting with the conserved structural elements of the receptor binding domain (RBD); (2) HA inhibition depends on the number of galloyl substituents in a pGG analog; the best number is four; and when PGG binds with two HA trimers at their conserved receptor binding domains (loop 130, loop 220, and 190-α-helix), PGG acts as a molecular glue by aggregating viral particles so as to prevent viral entry into host cells (this was revealed via an in silico simulation on the binding of penta-galloyl-glucose (PGG) with HA). pGGs are also effective on a broad-spectrum influenza A subtypes (including H1, H3, H5, H7); this suggests that pGG analogs can be applied to most influenza A subtypes as a prophylactic against influenza viral infections.  相似文献   

3.
Entry of Vesicular Stomatitis Virus into L Cells   总被引:13,自引:10,他引:3       下载免费PDF全文
Early stages of the entry of vesicular stomatitis (VS) virus into L cells were followed by electron microscopy with the aid of ferritin antibody labeling. Cells which were infected at 0 C and incubated for 10 min at 37 C were reacted first with antiviral-antiferritin hybrid antibody and then with ferritin or fluorescein-labeled apoferritin. Extensive ferritin labeling of the cell surface was detected by both electron and fluorescence microscopy. The labeled regions of the cell surface were continuous with and indistinguishable from the rest of the host cell membrane, suggesting incorporation of viral antigens into the cell surface during viral penetration. Fusion of parental viral membrane with host cell membrane was further demonstrated by examining the localization of (3)H-labeled viral structural proteins in cells infected at 0 C and incubated for short periods at 37 C. Viral nucleoprotein was found in a soluble fraction of the cells which was derived primarily from the cytoplasm, whereas a particulate fraction from the cells was enriched in viral envelope proteins. Cytoplasmic membrane was isolated from these cells, and this membrane contained viral envelope proteins. These results suggest that penetration by VS virus occurs by fusion of the viral and cellular membranes followed by release of nucleo-protein into the cytoplasm.  相似文献   

4.
Borna disease virus (BDV), the prototypic member of the family Bornaviridae within the order Mononegavirales, provides an important model for the investigation of viral persistence within the central nervous system (CNS) and of associated brain disorders. BDV is highly neurotropic and enters its target cell via receptor-mediated endocytosis, a process mediated by the virus surface glycoprotein (G), but the cellular factors and pathways determining BDV cell tropism within the CNS remain mostly unknown. Cholesterol has been shown to influence viral infections via its effects on different viral processes, including replication, budding, and cell entry. In this work, we show that cell entry, but not replication and gene expression, of BDV was drastically inhibited by depletion of cellular cholesterol levels. BDV G-mediated attachment to BDV-susceptible cells was cholesterol independent, but G localized to lipid rafts (LR) at the plasma membrane. LR structure and function critically depend on cholesterol, and hence, compromised structural integrity and function of LR caused by cholesterol depletion likely inhibited the initial stages of BDV cell internalization. Furthermore, we also show that viral-envelope cholesterol is required for BDV infectivity.Borna disease virus (BDV) is an enveloped virus with a nonsegmented negative-strand RNA genome whose organization (3′-N-p10/P-M-G-L-5′) is characteristic of mononegaviruses (6, 28, 46, 48). However, based on its unique genetics and biological features, BDV is considered to be the prototypic member of a new virus family, Bornaviridae, within the order Mononegavirales (8, 28, 46, 49).BDV can infect a variety of cell types in cell culture but in vivo exhibits exquisite neurotropism and causes central nervous system (CNS) disease in different vertebrate species, which is frequently manifested in behavioral abnormalities (19, 33, 44, 53). Both host and viral factors contribute to a variable period of incubation and heterogeneity in the symptoms and pathology associated with BDV infection (14, 16, 29, 42, 44). BDV provides an important model for the investigation of both immune-mediated pathological events associated with virus-induced neurological disease and mechanisms whereby noncytolytic viruses induce neurodevelopmental and behavioral disturbances in the absence of inflammation (15, 18, 41). Moreover, serological data and molecular epidemiological studies suggest that BDV, or a BDV-like virus, can infect humans and that it might be associated with certain neuropsychiatric disorders (17, 24), which further underscores the interest in understanding the mechanisms underlying BDV persistence in the CNS and its effect on brain cell functions. The achievement of these goals will require the elucidation of the determinants of BDV cell tropism within the CNS.BDV enters its target cell via receptor-mediated endocytosis, a process in which the BDV G protein plays a central role (1, 5, 13, 14, 39). Cleavage of BDV G by the cellular protease furin generates two functional subunits: GP1 (GPN), involved in virus interaction with a yet-unidentified cell surface receptor (1, 39), and GP2 (GPC), which mediates a pH-dependent fusion event between viral and cellular membranes (13). However, a detailed characterization of cellular factors and pathways involved in BDV cell entry remains to be done.Besides cell surface molecules that serve as viral receptors, many other cell factors, including nonproteinaceous molecules, can influence cell entry by virus (52). In this regard, cholesterol, which plays a critical role in cellular homeostasis (55), has also been identified as a key factor required for productive infection by different viruses. Accordingly, cholesterol participates in a variety of processes in virus-infected cells, including fusion events between viral and cellular membranes (3), viral replication (23), and budding (35, 37), as well as maintenance of lipid rafts (LR) (12) as scaffold structures where the viral receptor and coreceptor associate (11, 26, 32, 36). LR are specialized microdomains within cellular membranes constituted principally of proteins, sphingolipids, and cholesterol. LR facilitate the close proximity and interaction of specific sets of proteins and contribute to different processes associated with virus multiplication (38). Cholesterol can also influence virus infection by contributing to the maintenance of the properties of the viral envelope required for virus particle infectivity (21, 54). Here, we show for the first time that cholesterol plays a critical role in BDV infection. Depletion of cellular cholesterol prior to, but not after, BDV cell entry prevented productive BDV infection, likely due to disruption of plasma membrane LR that appear to be the cell entry point for BDV. In addition, we document that cholesterol also plays an essential role in the properties of the BDV envelope required for virus particle infectivity.  相似文献   

5.
Borna disease virus (BDV), the prototypic member of the Bornaviridae family within the order Mononegavirales, exhibits high neurotropism and provides an important and unique experimental model system for studying virus-cell interactions within the central nervous system. BDV surface glycoprotein (G) plays a critical role in virus cell entry via receptor-mediated endocytosis, and therefore, G is a critical determinant of virus tissue and cell tropism. However, the specific cell pathways involved in BDV cell entry have not been determined. Here, we provide evidence that BDV uses a clathrin-mediated, caveola-independent cell entry pathway. We also show that BDV G-mediated fusion takes place at an optimal pH of 6.0 to 6.2, corresponding to an early-endosome compartment. Consistent with this finding, BDV cell entry was Rab5 dependent but Rab7 independent and exhibited rapid fusion kinetics. Our results also uncovered a key role for microtubules in BDV cell entry, whereas the integrity and dynamics of actin cytoskeleton were not required for efficient cell entry of BDV.Borna disease virus (BDV) causes central nervous system disease in a variety of vertebrate species that is frequently manifested by behavioral abnormalities (27, 59). BDV is the causative agent of Borna disease, an often fatal immune-mediated neurological disease naturally occurring mainly in horses and sheep (21, 26, 47). However, current evidence indicates that the natural host range, prevalence, and geographic distribution of BDV are wider than originally thought (25, 31). Experimentally, BDV has a wide host range, and both host and viral factors contribute to a variable period of incubation and heterogeneity in the symptoms and pathology associated with BDV infection (20, 23, 34, 50). Notably, cases of proventricular dilatation disease affecting different species of psittacine birds have recently been linked to infection with avian bornaviruses (24, 29), a finding that expands the natural host range of bornavirus infections associated with clinical manifestations.BDV is an enveloped virus with a nonsegmented negative-strand RNA genome (11, 33, 53, 55) whose gene organization [3′-N-P-p10 (X)-M-G-L-5′] is characteristic of mononegaviruses. However, on the basis of its unique genetic and biological features, BDV is considered to be the prototypic member of a new virus family, Bornaviridae, within the order Mononegavirales.The BDV surface glycoprotein G plays a key role in receptor recognition and cell entry (20, 46). The G gene directs the synthesis of a precursor, GPC, with a predicted Mr of ca. 56 kDa, but due to its extensive glycosylation, GPC migrates with an Mr of 84 to 94 kDa. GPC is posttranslationally cleaved by the cellular protease furin into GP-1 and GP-2, corresponding to the N-and C-terminal regions, respectively, of G (2, 8, 19, 49). GP-1 has been shown to be sufficient for virus cell entry via receptor-mediated endocytosis (46), whereas GP-2 likely mediates the pH-dependent fusion event between BDV and cell membranes required for a BDV productive infection (19). In vivo, neurons are the initial target of BDV, suggesting a restricted expression pattern of a yet-unidentified virus receptor. Late in infection, BDV is detected in many tissues and organs as a consequence of its centrifugal spread via the axoplasm of peripheral nerve tissues. Receptor-independent mechanisms also contribute to cell-to-cell propagation of BDV (8).The paucity of cell-free virus associated with BDV infection has hindered studies aimed at the elucidation of the mechanisms involved in BDV cell entry. To overcome this problem, we generated a replication-competent recombinant vesicular stomatitis virus expressing BDV G (rVSVΔG*/BDVG) (45). Cells infected with rVSVΔG*/BDVG produced high titers (107 PFU/ml) of cell-free virus progeny. Notably, rVSVΔG*/BDVG recreated the cell tropism and entry pathway of bona fide BDV, thus providing a unique tool for the investigation of BDV G-mediated cell entry.Viruses that enter cells via receptor-mediated endocytosis mainly use trafficking pathways mediated by either clathrin or caveola, although alternative entry pathways have been also reported (36). Nevertheless, clathrin-mediated endocytosis (CME) is the route most commonly used by enveloped viruses for cell internalization (35). The initial virus-cell surface receptor interaction results in the activation of different signaling pathways leading to the accumulation of clathrin coated-pits and subsequent formation of endocytotic vesicles (43). Another major endocytotic pathway used by several viruses, including Ebola virus (16) and SV40 (44), uses caveolae for viral internalization into the cell. This endocytotic pathway is strictly dependent on recruitment of lipid rafts to the cell surface, an event mediated by cholesterol. In this regard, we have recently documented the requirements of cholesterol and structural integrity of cell surface lipid rafts for efficient cell entry of BDV (9).In this work, we provide evidence for the first time that BDV cell entry follows a CME-dependent, caveola-independent pathway. Moreover, we show that BDV entry is Rab5 dependent but Rab7 independent and that BDV G-mediated fusion has a rapid kinetics and an optimal pH between 6.0 and 6.2. These findings indicate that BDV G-mediated fusion occurs within the early-endosome compartment. We also provide evidence that microtubules, but not actin dynamics, play a role in BDV cell entry likely by mediating trafficking of BDV-containing endosomes to the subcellular location where viral and endosomal membranes fuse.  相似文献   

6.
Fine Structure and Morphogenesis of Borna Disease Virus   总被引:8,自引:2,他引:6       下载免费PDF全文
Borna disease virus (BDV), a negative nonsegmented single-stranded RNA virus, has not been fully characterized morphologically. Here we present what is to our knowledge the first data on the fine ultrastructure and morphogenesis of BDV. The supernatant of MDCK cells persistently infected with BDV treated with n-butyrate contained many virus-like particles and more BDV-specific RNA than that of untreated samples. The particles were spherical, enveloped, and approximately 130 nm in diameter; had spikes 7 nm in length; and reacted with BDV p40 antibody. A thin nucleocapsid, 4 nm in width, was present peripherally in contrast to the thick nucleocapsid of hemagglutinating virus of Japan. The BDV particles reproduced by budding on the cell surface.  相似文献   

7.
8.
The arenavirus Lassa virus (LASV) causes a severe hemorrhagic fever with high mortality in humans. Antigen-presenting cells, in particular dendritic cells (DCs), are early and preferred targets of LASV, and their productive infection contributes to the virus-induced immunosuppression observed in fatal disease. Here, we characterized the role of the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) in LASV entry into primary human DCs using a chimera of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) expressing the LASV glycoprotein (rLCMV-LASVGP). We found that differentiation of human primary monocytes into DCs enhanced virus attachment and entry, concomitant with the upregulation of DC-SIGN. LASV and rLCMV-LASVGP bound to DC-SIGN via mannose sugars located on the N-terminal GP1 subunit of LASVGP. We provide evidence that DC-SIGN serves as an attachment factor for rLCMV-LASVGP in monocyte-derived immature dendritic cells (MDDC) and can accelerate the capture of free virus. However, in contrast to the phlebovirus Uukuniemi virus (UUKV), which uses DC-SIGN as an authentic entry receptor, productive infection with rLCMV-LASVGP was less dependent on DC-SIGN. In contrast to the DC-SIGN-mediated cell entry of UUKV, entry of rLCMV-LASVGP in MDDC was remarkably slow and depended on actin, indicating the use of different endocytotic pathways. In sum, our data reveal that DC-SIGN can facilitate cell entry of LASV in human MDDC but that its role seems distinct from the function as an authentic entry receptor reported for phleboviruses.  相似文献   

9.
Borna disease virus (BDV) surface glycoprotein (GP) (p56) has a predicted molecular mass of 56 kDa. Due to extensive posttranslational glycosylation the protein migrates as a polypeptide of 84 kDa (gp84). The processing of gp84 by the cellular protease furin generates gp43, which corresponds to the C-terminal part of gp84. Both gp84 and gp43 have been implicated in viral entry involving receptor-mediated endocytosis and pH-dependent fusion. We have investigated the domains of BDV p56 involved in virus entry. For this, we used a pseudotype approach based on a recently developed recombinant vesicular stomatitis virus (VSV) in which the gene for green fluorescent protein was substituted for the VSV G protein gene (VSV Delta G*). Complementation of VSV Delta G* with BDV p56 resulted in infectious VSV Delta G* pseudotypes that contained both BDV gp84 and gp43. BDV-VSV chimeric GPs that contained the N-terminal 244 amino acids of BDV p56 and amino acids 421 to 511 of VSV G protein were efficiently incorporated into VSV Delta G* particles, and the resulting pseudotype virions were neutralized by BDV-specific antiserum. These findings indicate that the N-terminal part of BDV p56 is sufficient for receptor recognition and virus entry.  相似文献   

10.
The virological synapse (VS) is a specialized molecular structure that facilitates the transfer of certain lymphotropic viruses into uninfected T cells. However, the role of the VS in the transfer of nonlymphotropic viruses into T cells is unknown. Herpes simplex virus (HSV) has been shown in vitro to infect T cells and modulate T-cell receptor function, thereby suppressing T-cell antiviral function. However, whether such infection of T cells occurs in vivo is unknown. Here, we examined whether T-cell infection could be observed in human HSV disease and investigated the mechanism of HSV entry into T cells. We found that HSV-infected T cells were readily detectable during human disease, suggesting that infection and modulation of T-cell function plays a role in human immunopathology. HSV infection of both CD4+ and CD8+ T cells occurred much more efficiently via direct cell-to-cell spread from infected fibroblasts than by cell-free virus. Activation of T cells increased their permissivity to HSV infection. Cell-to-cell spread to T cells did not require HSV glycoproteins E and I (gE and gI), which are critical for cell-to-cell spread between epithelial cells. Transfer of HSV to T cells required gD, and the four known entry receptors appear to be contributing to viral entry, with a dominant role for the herpesvirus entry mediator and nectin-1. VS-like structures enriched in activated lymphocyte function-associated antigen 1 (LFA-1) were observed at the point of contact between HSV-infected fibroblasts and T cells. Consistent with spread occurring via the VS, transfer of HSV was increased by activation of LFA-1, and cell-to-cell spread could be inhibited by antibodies to LFA-1 or gD. Taken together, these results constitute the first demonstration of VS-dependent cell-to-cell spread for a predominantly nonlymphotropic virus. Furthermore, they support an important role for infection and immunomodulation of T cells in clinical human disease. Targeting of the VS might allow selective immunopotentiation during infections with HSV or other nonlymphotropic viruses.The virological synapse (VS) is a specialized molecular structure that facilitates the transfer of certain lymphotropic viruses, such as human immunodeficiency virus (HIV) and human T-cell leukemia virus type 1 (HTLV-1), into uninfected T cells (22, 28, 38). Entry and infection of T cells by HIV or HTLV-1 via the VS is far more efficient than infection by cell-free virus, and thus this structure plays a critical role in the pathogenesis of these viruses. The organization of the VS is in many respects similar to the immunological synapse (IS), in particular, to the immature IS. The VS is highly enriched in the adhesion molecule lymphocyte function-associated antigen 1 (LFA-1) and its ligands intercellular adhesion molecule 1 (ICAM-1) and ICAM-3 (29); however, it does not possess the CD3-enriched central region associated with the mature IS (28, 47). While the VS is critical to the pathogenesis of HIV and HTLV-1, it remains an unanswered question whether the VS is also involved in T-cell infection by other viruses, especially those not typically considered lymphotropic.Herpes simplex virus (HSV) is a remarkably successful human pathogen that establishes lifelong latency in neurons of the dorsal root ganglia. HSV can efficiently reactivate from the latent state and transmit to new hosts despite the presence of preformed immunity. HSV is thought to achieve this feat by employing a number of sophisticated immune evasion mechanisms (33), many of which are directed at the cellular arm of the immune response. In one such potential mechanism, HSV has evolved the ability to enter and infect T cells. Although T cells do not support efficient viral replication (25), infection by HSV profoundly modulates T-cell receptor (TCR) signaling, which prevents T-cell cytotoxic function (55) and alters cytokine production profiles toward an interleukin-10-dominated immunosuppressive phenotype (54). However, it is unknown whether and to what extent HSV infection of T cells occurs during human HSV disease. Furthermore, the dominant mechanisms by which HSV might gain access to lesion-infiltrating T cells have not been elucidated.Here, we evaluated T-cell infection during human HSV infections, the mechanisms by which HSV enters T cells, the relative involvement of cell-cell spread versus cell-free virus in T-cell infection, and the role of the VS in the infection of T cells by HSV. The demonstration of infection of T cells in human HSV disease and of a dominant role for the VS in entry of HSV into T cells suggests that the VS is important in the pathogenesis of nonlymphotropic as well as lymphotropic viruses. Thus, the VS may be a unique pharmacologic target to allow improved immune control of a wide variety of viral infections.  相似文献   

11.
Borna disease virus (BDV) is a nonsegmented, negative-stranded RNA virus characterized by noncytolytic persistent infection and replication in the nuclei of infected cells. To gain further insight on the intracellular trafficking of BDV components during infection, we sought to generate recombinant BDV (rBDV) encoding fluorescent fusion viral proteins. We successfully rescued a virus bearing a tetracysteine tag fused to BDV-P protein, which allowed assessment of the intracellular distribution and dynamics of BDV using real-time live imaging. In persistently infected cells, viral nuclear inclusions, representing viral factories tethered to chromatin, appeared to be extremely static and stable, contrasting with a very rapid and active trafficking of BDV components in the cytoplasm. Photobleaching (fluorescence recovery after photobleaching [FRAP] and fluorescence loss in photobleaching [FLIP]) imaging approaches revealed that BDV components were permanently and actively exchanged between cellular compartments, including within viral inclusions, albeit with a fraction of BDV-P protein not mobile in these structures, presumably due to its association with viral and/or cellular proteins. We also obtained evidence for transfer of viral material between persistently infected cells, with routing of the transferred components toward the cell nucleus. Finally, coculture experiments with noninfected cells allowed visualization of cell-to-cell BDV transmission and movement of the incoming viral material toward the nucleus. Our data demonstrate the potential of tetracysteine-tagged recombinant BDV for virus tracking during infection, which may provide novel information on the BDV life cycle and on the modalities of its interaction with the nuclear environment during viral persistence.  相似文献   

12.
13.
Human immunodeficiency virus (HIV) envelope binds CD4 and a chemokine receptor in sequence, releasing hydrophobic viral gp41 residues into the target membrane. HIV entry required actin-dependent concentration of coreceptors, which could be disrupted by cytochalasin D (CytoD) without an effect on cell viability or mitosis. Pretreatment of peripheral blood mononuclear cells, but not virus, inhibited entry and infection. Immunofluorescent confocal microscopy of activated cells revealed CD4 and CXCR4 in nonoverlapping patterns. Addition of gp120 caused polarized cocapping of both molecules with subsequent pseudopod formation, while CytoD pretreatment blocked these membrane changes completely.  相似文献   

14.
Infectious Cell Entry Mechanism of Influenza Virus   总被引:18,自引:8,他引:10       下载免费PDF全文
Interaction between influenza virus WSN strain and MDCK cells was studied by using spin-labeled phospholipids and electron microscopy. Envelope fusion was negligibly small at neutral pH but greatly activated in acidic media in a narrow pH range around 5.0. The half-time was less than 1 min at 37°C at pH 5.0. Virus binding was almost independent of the pH. Endocytosis occurred with a half-time of about 7 min at 37°C at neutral pH, and about 50% of the initially bound virus was internalized after 1 h. Electron micrographs showed binding of virus particles in coated pits in the microvillous surface of plasma membrane and endocytosis into coated vesicles. Chloroquine inhibited virus replication. The inhibition occurred when the drug was added not later than 10 min after inoculation. Chloroquine caused an increase in the lysosomal pH 4.9 to 6.1. The drug did not affect virus binding, endocytosis, or envelope fusion at pH 5.0. Electron micrographs showed many virus particles remaining trapped inside vacuoles even after 30 min at 37°C in the presence of drug, in contrast to only a few particles after 10 min in vacuoles and secondary lysosomes in its absence. Virus replication in an artificial condition, i.e., brief exposure of the inoculum to acidic medium followed by incubation in neutral pH in the presence of chloroquine, was also observed. These results are discussed to provide a strong support for the infection mechanism of influenza virus proposed previously: virus uptake by endocytosis, fusion of the endocytosed vesicles with lysosome, and fusion of the virus envelope with the surrounding vesicle membrane in the secondary lysosome because of the low pH. This allows the viral genome to enter the target cell cytoplasm.  相似文献   

15.
16.
博尔纳病病毒及其分子生物学研究进展   总被引:1,自引:0,他引:1  
陈大伟  谢鹏 《病毒学报》2002,18(1):89-92
博尔纳病病毒(Borna disease virus,BDV)是一种嗜神经病毒,它能引起动物的进行性脑脊髓灰质炎(博尔纳疾病[1,2]。)  相似文献   

17.
Foot-and-mouth disease virus (FMDV) can use a number of different integrins (αvβ1, αvβ3, αvβ6, and αvβ8) as receptors to initiate infection. Infection mediated by αvβ6 is known to occur by clathrin-mediated endocytosis and is dependent on the acidic pH within endosomes. On internalization, virus is detected rapidly in early endosomes (EE) and subsequently in perinuclear recycling endosomes (PNRE), but not in late endosomal compartments. Due to the extreme sensitivity of FMDV to acidic pH, it is thought that EE can provide a pH low enough for infection to occur; however, definitive proof that infection takes place from within these compartments is still lacking. Here we have investigated the intracellular transport steps required for FMDV infection of IBRS-2 cells, which express αvβ8 as their FMDV receptor. These experiments confirmed that FMDV infection mediated by αvβ8 is also dependent on clathrin-mediate endocytosis and an acidic pH within endosomes. Also, the effect on FMDV infection of dominant-negative (DN) mutants of cellular rab proteins that regulate endosomal traffic was examined. Expression of DN rab5 reduced the number of FMDV-infected cells by 80%, while expression of DN rab4 or DN rab7 had virtually no effect on infection. Expression of DN rab11 inhibited infection by FMDV, albeit to a small extent (∼35%). These results demonstrate that FMDV infection takes place predominantly from within EE and does not require virus trafficking to the late endosomal compartments. However, our results suggest that infection may not be exclusive to EE and that a small amount of infection could occur from within PNRE.Foot-and-mouth disease virus (FMDV) is a member of the Aphthovirus genus of the family Picornaviridae and the etiological agent responsible for FMD, an economically important and severe vesicular condition of cloven-hoofed animals, including cattle, pigs, sheep, and goats (2). The mature virus particle consists of a positive-sense single-stranded RNA genome (vRNA) enclosed within a nonenveloped icosahedral capsid formed from 60 copies each of four virus-encoded proteins, VP1 to VP4 (1).The initial stage of FMDV infection is virus binding to cell surface integrins via a highly conserved RGD motif located on the GH loop of VP1. A number of different species of RGD-binding integrins (αvβ1, αvβ3, αvβ6, and αvβ8) have been reported to serve as receptors for FMDV (5, 23-26). Using pharmacological and dominant-negative (DN) inhibitors of specific endocytic pathways in combination with immunofluorescence confocal microscopy, the cell entry pathway used by FMDV has been determined for αvβ6-expressing cells (6, 36). These studies established that infection occurs by clathrin-mediated endocytosis and is dependent on the acidic pH within endosomes, which serves as the trigger for capsid disassembly and translocation of the vRNA across the endosomal membrane into the cytosol. Internalized virus was detected rapidly in early endosomes (EE) and subsequently in perinuclear recycling endosomes (PNRE), but not in late endosomes (LE) or lysosomes (Lys) (the late endosomal compartments). Due to the extreme sensitivity of FMDV to acidic pH (15), it is thought that EE can provide a pH low enough for virus disassembly to occur; however, definitive proof that infection takes place from within EE is still lacking. For example, the possibility cannot be excluded that a productive infection requires virus transport to late endosomal compartments, where, following capsid disassembly and viral genome transfer into the cytosol, the capsid proteins are rapidly degraded.rab proteins control multiple membrane trafficking events in the cell. They are members of the ras superfamily of small GTP-binding proteins and cycle between active GTP- and inactive GDP-bound states (22, 38, 39, 47, 50). Conversion between these states is regulated by guanine nucleotide exchange factors, which stimulate the binding of GTP, and GTPase-activating proteins that which accelerate GTP hydrolysis. Activated rab proteins are recruited onto membrane-bounded compartments where they regulate many steps of vesicle trafficking, including vesicle budding, movement, tethering, and fusion (35, 61). Each rab is recruited to a specific compartment and functions through interactions with specific effectors that mediate the downstream rab-associated functions (39). In mammalian cells, at least 12 rab proteins that regulate trafficking through the endosomal pathway have been identified (27). Of these, rab4, rab5, rab7, and rab11 play major roles in endocytic vesicle trafficking. rab5 is present on EE and regulates transport of incoming endocytic vesicles from the plasma membrane (PM) to EE and homotypic EE fusion events (3, 8, 10, 20, 30, 44, 52). Both rab4 and rab11 are regulators of receptor recycling from EE back to the PM (34); rab4 is localized primarily to EE and regulates rapid recycling directly back to the PM (16, 45, 48, 51, 56), and rab11 is localized primarily to the PNRE and regulates a slower recycling pathway through these compartments (21, 43, 54, 60). In addition rab11 also regulates membrane traffic from endocytic recycling compartments to the trans-Golgi network (55). rab7 is located primarily on LE and regulates traffic from EE to LE and between LE and Lys (7, 9, 18, 32, 40, 58, 59). The unique targeting of rab proteins to distinct cellular compartments and their specificity as regulators of vesicular trafficking has made them important tools for studying endocytosis. For example, expression of DN or constitutively active mutants of rab proteins that regulate endosomal traffic has been used to identify the intracellular transport steps that are required for infection by a number of different viruses (13, 14, 28, 31, 41, 42, 49, 53, 57, 59).Here we have investigated the intracellular transport steps required for FMDV infection using porcine IBRS-2 cells, which are derived from a natural host of FMDV. IBRS-2 cells use αvβ8, and not αvβ6, as the major FMDV receptor (11). Our initial experiments confirmed that FMDV infection mediated by αvβ8 is dependent on clathrin-mediated endocytosis and on an acidic pH within endosomes. The effect on FMDV infection within IBRS-2 cells of DN mutants of cellular rab proteins that regulate endosomal traffic was examined. These experiments show that rab5 is needed for FMDV infection, as expression of DN rab5 reduced the number of FMDV-infected cells by ∼80%. In contrast, expression of either DN rab4 or DN rab7 had virtually no effect on infection. Expression of DN rab11 inhibited infection by FMDV, albeit to a small extent (∼35%). These results demonstrate that FMDV infection takes place predominantly from within EE and does not require virus trafficking to the late endosomal compartments. However, our results suggest that infection may not be exclusive to EE and that a small amount of infection could occur from within PNRE.  相似文献   

18.
The involvement of moesin in measles virus (MV) entry was investigated with moesin-positive and -negative mouse embryonic stem (ES) cells. MV infection of these cells was very ineffective and was independent of moesin expression. Furthermore, when these cells were transfected to express human CD46, a 100-fold increase in syncytium formation was observed with these cells and was independent of the expression of moesin. The only obvious difference between moesin-positive and -negative ES cells was the shape of the syncytia formed. Moesin-negative ES cells expressing or not expressing human CD46 formed separate pieces of fragmented syncytia which were torn apart during spreading, whereas ES cells expressing moesin exhibited typical syncytia. In addition, moesin was not detected on the surface of any murine cells or cell lines that we have tested by a flow cytometric assay with moesin-specific antibodies. These findings indicate that murine moesin is neither a receptor nor a CD46 coreceptor for MV entry into mouse ES cells. Moesin is involved in actin filament-plasma membrane interactions as a cross-linker, and it affects only the spreading and shape of MV-mediated syncytia.  相似文献   

19.
The Entry of Nitrate into Fungal Cells   总被引:1,自引:0,他引:1  
  相似文献   

20.
The Entry of Ammonia into Fungal Cells   总被引:2,自引:0,他引:2  
When Scopulariopsis brevicaulis grown on an ammonia-free mediumis supplied with an ammonium salt ammonia enters the cells morerapidly than it is removed by assimilation, until an equilibriumlevel of ammonia is reached in the cells. The equilibrium concentrationin the cells is independent of metabolism and depends on theexternal concentration over a wide range. The internal concentra--tionof ammonia can be higher than the external under suitable conditionsof pH. The cells are shown to be permeable to ammonia also inthe outward direction, and the rate of entry or loss dependson the concentration difference between external and internalenvironment. The results support the view that ammonia enters the cells mainlyby the free diffusion of the undissociated molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号