首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 730 毫秒
1.
RANK and RANKL are essential mediators of osteoclastogenesis. RANK interacts with members of the tumor necrosis factor receptor-associated factor (TRAF) family, of which TRAF6 is the critical signaling molecule. We identified a unique TRAF6-binding motif in RANK, which was subsequently co-crystallized with TRAF6 revealing distinct molecular interactions. A cell-permeable TRAF6 decoy peptide (T6DP) was shown to specifically target TRAF6 and inhibit RANKL-mediated signaling. In this study, we identified a core motif for binding to TRAF6 by generating a series of deletion mutants linked via palmitate as a means to internalize the peptide, thus making a smaller scaffold for intracellular delivery. The core motif of RKIPTEDEY inhibited RANKL-mediated osteoclastogenesis and bone resorption. In contrast, TRAF2/5 decoy peptides appeared to have no affect. Thus, disruption of the RANK-TRAF6 interaction may prove useful as a novel target for the development of a small molecule therapeutic agent for the treatment of bone-related diseases.  相似文献   

2.
3.
The contribution of osteoclasts to the process of bone loss in inflammatory arthritis has recently been demonstrated. Studies in osteoclast biology have led to the identification of factors responsible for the differentiation and activation of osteoclasts, the most important of which is the receptor activator of NF-kappa B ligand/osteoclast differentiation factor (RANKL/ODF), a tumor necrosis factor (TNF)-like protein. The RANKL/ODF receptor, receptor activator of NF-kappa B (RANK), is a TNF-receptor family member present on both osteoclast precursors and mature osteoclasts. Like other TNF-family receptors and the IL-1 receptor, RANK mediates its signal transduction via TNF receptor-associated factor (TRAF) proteins, suggesting that the signaling pathways activated by RANK and other inflammatory cytokines involved in osteoclast differentiation and activation are interconnected.  相似文献   

4.
Signaling through receptor activator of nuclear factor-kappaB (RANK) is essential for the differentiation and activation of osteoclasts, the cell principally responsible for bone resorption. Animals genetically deficient in RANK or the cognate RANK ligand are profoundly osteopetrotic because of the lack of bone resorption and remodeling. RANK provokes biochemical signaling via the recruitment of intracellular tumor necrosis factor receptor-associated factors (TRAFs) after ligand binding and receptor oligomerization. To understand the RANK-mediated signal transduction mechanism in osteoclastogenesis, we have designed a system to recapitulate osteoclast differentiation and activation in vitro by transfer of the RANK cDNA into hematopoietic precursors genetically deficient in RANK. Gene transfer of RANK constructs that are selectively incapable of binding different TRAF proteins revealed that TRAF pathways downstream of RANK that affect osteoclast differentiation are functionally redundant. In contrast, the interaction of RANK with TRAF6 is absolutely required for the proper formation of cytoskeletal structures and functional resorptive activity of osteoclasts. Moreover, signaling via the interleukin-1 receptor, which also utilizes TRAF6, rescues the osteoclast activation defects observed in the absence of RANK/TRAF6 interactions. These studies are the first to define the functional domains of the RANK cytoplasmic tail that control specific differentiation and activation pathways in osteoclasts.  相似文献   

5.
6.
7.
Tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) is an intracellular protein involved in signal transduction from TNF receptor I and II and related receptors. TRAF2 is required for TNF-induced activation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), and TRAF2 can also mediate activation of NF-kappaB. Here we have identified the actin-binding protein Filamin (actin-binding protein-280) as a TRAF2-interacting protein. Filamin binds to the Ring zinc finger domain of TRAF2. Overexpressed Filamin inhibits TRAF2-induced activation of JNK/SAPK and of NF-kappaB. Furthermore, ectopically expressed Filamin inhibits NF-kappaB activation induced via TNF, interleukin-1, Toll receptors, and TRAF6 but not activation induced via overexpression of NIK, a downstream effector in these pathways. Importantly, TNF fails to activate SAPK or NF-kappaB in a human melanoma cell line deficient in Filamin. Reintroduction of Filamin into these cells restores the TNF response. The data imply a role for Filamin in inflammatory signal transduction pathways.  相似文献   

8.
Receptor activator of NF-kappa B ligand (RANKL) and its receptor activator of NF-kappa B (RANK) play pivotal roles in osteoclast differentiation and function. However, the structural determinants of the RANK that mediate osteoclast formation and function have not been definitively identified. To address this issue, we developed a chimeric receptor approach that permits a structure/function study of the RANK cytoplasmic domain in osteoclasts. Using this approach, we examined the role of six RANK putative tumor necrosis factor receptor-associated factor-binding motifs (PTM) (PTM1, ILLMT-REE(286-293); PTM2, PSQPS(349-353); PTM3, PFQEP(369-373); PTM4, VYVSQTSQE(537-545); PTM5, PVQEET(559-564); and PTM6, PVQEQG(604-609)) in osteoclast formation and function. Our data revealed that the RANK cytoplasmic domain possesses three functional motifs (PFQEP(369-373), PVQEET(559-564), and PVQEQG(604-609)) capable of mediating osteoclast formation and function. Moreover, we demonstrated that these motifs play distinct roles in activating intracellular signaling. PFQEP(369-373) initiates NF-kappa B, c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38 signaling pathways and PVQEET(559-564) activates NF-kappa B and p38 pathways in osteoclasts, whereas PVQEQG(604-609) is only capable of activating NF-kappa B pathway. Significantly, the revelation of these functional RANK cytoplasmic motifs has not only laid a foundation for further delineating RANK signaling pathways in osteoclasts, but, more importantly, these RANK motifs themselves represent potential therapeutic targets for bone disorders such as osteoporosis.  相似文献   

9.
10.
Yen ML  Hsu PN  Liao HJ  Lee BH  Tsai HF 《PloS one》2012,7(6):e38048
Human osteoclast formation from mononuclear phagocyte precursors involves interactions between tumor necrosis factor (TNF) ligand superfamily members and their receptors. Recent evidence indicates that in addition to triggering apoptosis, the TNF-related apoptosis-inducing ligand (TRAIL) induces osteoclast differentiation. To understand TRAIL-mediated signal transduction mechanism in osteoclastogenesis, we demonstrated that TRAIL induces osteoclast differentiation via a Tumor necrosis factor receptor-associated factor 6 (TRAF-6)-dependent signaling pathway. TRAIL-induced osteoclast differentiation was significantly inhibited by treatment with TRAF-6 siRNA and TRAF6 decoy peptides in both human monocytes and murine RAW264.7 macrophage cell lines, as evaluated in terms of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and bone resorption activity. Moreover, TRAIL-induced osteoclast differentiation was also abolished in TRAF6 knockout bone marrow macrophages. In addition to induction of NFATc1, treatment of TRAIL also induced ubiquitination of TRAF6 in osteoclast differentiation. Thus, our data demonstrate that TRAIL induces osteoclastic differentiation via a TRAF-6 dependent signaling pathway. This study suggests TRAF6-dependent signaling may be a central pathway in osteoclast differentiation, and that TNF superfamily molecules other than RANKL may modify RANK signaling by interaction with TRAF6-associated signaling.  相似文献   

11.
12.
Tumor necrosis factor-alpha (TNF) and the ligand for receptor activator of NF-kappaB (RANKL) are abundant in sites of inflammatory bone erosion. Because these cytokines are potent osteoclastogenic factors and because their signaling pathways are considerably overlapping, we postulated that under pro-inflammatory conditions RANKL and TNF might synergistically orchestrate enhanced osteoclastogenesis via cooperative mechanisms. We found TNF, via TNF type 1 receptor (TNFr1), prompts robust osteoclastogenesis by osteoclast precursors pretreated with RANKL, and deletion of TNFr1 abrogates this response. Enhanced osteoclastogenesis is associated with high expression of otherwise TNF and RANKL-induced mediators, including c-Src, TRAF2, TRAF6, and MEKK-1, levels of which were notably reduced in TNFr1 knockouts. Recruitment of TRAFs and MEKK1 leads to activation of downstream pathways, primarily I kappa B/NF-kappa B, ERKs, and cJun/AP-1. Consistent with impaired osteoclastogenesis and reduced expression of TRAFs and MEKK1, we found that phosphorylation and activation of I kappa B, NF-kappa B, ERKs, and cJun/AP-1 are severely reduced in RANKL-treated TNFr1-null osteoclast precursors compared with wild type counterparts. Finally, we found that TNF and RANKL synergistically up-regulate RANK expression in wild type precursors, whereas basal and stimulated levels of RANK are significantly lower in TNFr1 knockout cells. Our data suggest that exuberant TNF-induced osteoclastogensis is the result of coupling between RANK and TNFr1 and is dependent upon signals transmitted by the latter receptor.  相似文献   

13.
The epidermal growth factor receptor (EGFR) functions in various cellular physiological processes such as proliferation, differentiation, and motility. Although recent studies have reported that EGFR signaling is involved in osteoclast recruitment and formation, the molecular mechanism of EGFR signaling for the regulation of osteoclastogenesis remains unclear. We investigated the role of the EGFR in osteoclast differentiation and survival and show that the expression of the EGFR was highly up-regulated by receptor activator of nuclear factor-kappaB ligand (RANKL) during osteoclast differentiation. EGFR-specific tyrosine kinase inhibitors and EGFR knockdown blocked RANKL-dependent osteoclast formation, suggesting that EGFR signaling plays an important role in osteoclastogenesis. EGFR inhibition impaired the RANKL-mediated activation of osteoclastogenic signaling pathways, including c-Jun N-terminal kinase (JNK), NF-kappaB, and Akt/protein kinase B (PKB). In addition, EGFR inhibition in differentiated osteoclasts caused apoptosis through caspase activation. Inhibition of the phosphoinositide-3 kinase (PI3K)-Akt/PKB pathway and subsequent activation of BAD and caspases-9 and -3 may be responsible for the EGFR inhibition-induced apoptosis. The EGFR physically associated with receptor activator of nuclear factor-kappaB (RANK) and Grb2-associated binder 2 (Gab2). Moreover, RANKL transactivated EGFR. These data indicate that EGFR regulates RANKL-activated signaling pathways by cross-talking with RANK, suggesting that the EGFR may play a crucial role as a RANK downstream signal and/or a novel type of RANK co-receptor in osteoclast differentiation and survival.  相似文献   

14.
Kim HH  Lee DE  Shin JN  Lee YS  Jeon YM  Chung CH  Ni J  Kwon BS  Lee ZH 《FEBS letters》1999,443(3):297-302
Receptor activator of NF-kappaB (RANK) is a recently cloned member of the tumor necrosis factor receptor (TNFR) superfamily, and its function has been implicated in osteoclast differentiation and dendritic cell survival. Many of the TNFR family receptors recruit various members of the TNF receptor-associated factor (TRAF) family for transduction of their signals to NF-kappaB and c-Jun N-terminal kinase. In this study, the involvement of TRAF family members and the activation of the JNK pathway in signal transduction by RANK were investigated. TRAF1, 2, 3, 5, and 6 were found to bind RANK in vitro. Association of RANK with each of these TRAF proteins was also detected in vivo. Expression of RANK in cultured cells also induced the activation of JNK, which was blocked by a dominant-negative form of JNK. Furthermore, by employing various C-terminal deletion mutants of RANK, the regions responsible for TRAF interaction and JNK activation were identified. TRAF5 was determined to bind to the C-terminal 11 amino acids and the other TRAF members to a region N-terminal to the TRAF5 binding site. The domain responsible for JNK activation was localized to the same region where TRAF1, 2, 3, and 6 bound, which suggests that these TRAF molecules might mediate the RANK-induced JNK activation.  相似文献   

15.
16.
Receptor-interacting protein (RIP) is a serine/threonine protein kinase that is critically involved in tumor necrosis factor receptor-1 (TNF-R1)-induced NF-kappa B activation. In a yeast two-hybrid screening for potential RIP-interacting proteins, we identified ZIN (zinc finger protein inhibiting NF-kappa B), a novel protein that specifically interacts with RIP. ZIN contains four RING-like zinc finger domains at the middle and a proline-rich domain at the C terminus. Overexpression of ZIN inhibits RIP-, IKK beta-, TNF-, and IL1-induced NF-kappa B activation in a dose-dependent manner in 293 cells. Domain mapping experiments indicate that the RING-like zinc finger domains of ZIN are required for its interaction with RIP and inhibition of RIP-mediated NF-kappa B activation. Overexpression of ZIN also potentiates RIP- and TNF-induced apoptosis. Moreover, immunofluorescent staining indicates that ZIN is a cytoplasmic protein and that it colocalizes with RIP. Our findings suggest that ZIN is an inhibitor of TNF- and IL1-induced NF-kappa B activation pathways.  相似文献   

17.
18.
The tumor necrosis factor receptor-associated factor (TRAF) protein family members are critically involved in activation of NF-kappaB, JNK, and p38 activation triggered by tumor necrosis factor (TNF) receptor family members and toll/interleukin-1 receptor (TIR)-containing receptors. TRAF proteins (except for TRAF1) contain an N-terminal RING finger domain that is essential for their functions. In this report, we identified a protein designated as TRAF7, which contains a RING finger domain and a zinc finger domain that are mostly conserved with those of TRAFs. TRAF7 also contains seven WD40 repeats at its C terminus. TRAF7 specifically interacted with MEKK3 and potentiated MEKK3-mediated AP1 and CHOP activation. Depletion of TRAF7 by antisense RNA inhibited MEKK3-mediated AP1 and CHOP activation. Moreover, overexpression of TRAF7 induced caspase-dependent apoptosis. Domain mapping experiments indicated that TRAF7 potentiated MEKK3-mediated AP1 and CHOP activation and induced apoptosis through distinct domains. Our studies identified a novel TRAF family member that is involved in MEKK3 signaling and apoptosis.  相似文献   

19.
Signals delivered to antigen-presenting cells through CD40 are critical for the activation of immune responses. Intracellular tumor necrosis factor (TNF) receptor-associated factors (TRAFs) are key elements of the signal transduction pathways of many TNF receptor family members, including CD40. We show for the first time that engagement of CD40 in intact B cells induces the rapid translocation of TRAF2 from the cytoplasm to the plasma membrane. We found that CD40 engagement also results in its recruitment, together with TRAF2 and TRAF3, to membrane microdomains, regions of the plasma membrane enriched in signaling molecules such as the Src family kinases. Using a membrane-permeable chelator of zinc or a mutant TRAF2 molecule, we show that the putative zinc-binding domains of TRAFs contribute to their recruitment to microdomains and to the downstream activation of c-Jun N-terminal kinase. We suggest that the zinc RING and zinc finger domains of TRAFs are required for communication between CD40 and microdomain-associated signaling molecules and may serve a similar role in the signal transduction pathways of other TNF receptor family members.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号